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ABSTRACT: Proteomic diversity in biological samples can be characterized by
mass spectrometry (MS)-based proteomics using customized protein databases
generated from sets of transcripts previously detected by RNA-seq. This diversity
has only been increased by the recent discovery that many translated alternative
open reading frames rest unannotated at unsuspected locations of mRNAs and
ncRNAs. These novel protein products, termed alternative proteins, have been left
out of all previous custom database generation tools. Consequently, genetic
variations that impact alternative open reading frames and variant peptides from
their translated proteins are not detectable with current computational workflows.
To fill this gap, we present OpenCustomDB, a bioinformatics tool that uses
sample-specific RNaseq data to identify genomic variants in canonical and
alternative open reading frames, allowing for more than one coding region per
transcript. In a test reanalysis of a cohort of 16 patients with acute myeloid
leukemia, 5666 peptides from alternative proteins were detected, including 201 variant peptides. We also observed that a significant
fraction of peptide-spectrum matches previously assigned to peptides from canonical proteins got better scores when reassigned to
peptides from alternative proteins. Custom protein libraries that include sample-specific sequence variations of all possible open
reading frames are promising contributions to the development of proteomics and precision medicine. The raw and processed
proteomics data presented in this study can be found in PRIDE repository with accession number PXD029240.
KEYWORDS: proteogenomics, alternative proteins, alternative ORFs, database, variants, precision medicine, multicoding

■ INTRODUCTION
The inability to detect variants of canonical proteins represents a
major drawback when using reference protein databases for
shotgun mass spectrometry-based proteomics to perform large-
scale proteomic profiles of biological samples. In addition,
several thousands of functional ORFs have been discovered in
regions of the transcriptome that were not expected to be
protein-coding, thus are not annotated in conventional data-
bases. These novel or alternative ORFs (altORFs) are present
within 5′- and 3′-UTRs, overlap a known coding sequence
(CDS) in a frameshifted reading frame, or are present in
transcripts expressed from noncoding RNA genes or from
pseudogenes and automatically annotated as noncoding.1 These
are particularly major issues in the field of precision medicine,
which, among other things, aims at associating each biological
sample with a specific proteomic profile. Proteogenomics is an
increasingly popular solution to this problem, enabling the
construction of customized protein databases using sample-
specific genomic or transcriptomic data. For this approach, two
main types of computational tools have been developed. In the
first group, variants discovered in RNA-seq data are added to an

existing reference protein database.2−6 Here, variations may
include single or multiple nucleotide variations, indels, frame-
shifts, novel alternative splice forms, and gene fusions according
to the proteogenomic workflow. These tools do not enable the
detection of variants of novel proteins. The second group of
computational tools enables the detection of novel proteins and
their variants, increasing the depth of proteomic profiling of a
biological sample.7,8 These proteogenomics workflows insert a
3-frame or a 6-frame translation step of transcripts or genomes
to annotate possible novel proteins, resulting in very large
databases and therefore dramatically increasing both computing
time and the challenge of false positive identifications.9 To
address this problem, different experimental or computational
strategies are incorporated to reduce the size of the customized
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Figure 1. OpenCustomDB enables the construction of customized protein sequence databases integrating noncanonical proteins, including genetic
variants. (A) Compared to other strategies, OpenCustomDB uses OpenProt annotations to integrate proteins that are not included in conventional
databases. (B) OpenCustomDB workflow. OpenProt annotations include all ORFs longer than 30 codons and allow more than one ORF per
transcript. Therefore, transcripts annotated as mRNAs may contain 1 or more ORFs in addition to the annotated coding sequence (CDS). (C)
Representative composition of a customized database generated using data from patient 05H143. OpenCustomDB was run with (OpenCustomDB,
green columns) or without (canonical proteins only, gray columns) the integration of altProts and novel isoforms. The number of protein entries is
indicated. The size of the database with altProts and novel isoforms was limited to a total of 100,000 entries. A total of 16 patients were included in this
study and all databases are shown in supplementary Figure 1. (D) Transcript sequence localization of ORFs encoding noncanonical proteins from the
patient database 05H143.
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database.7,8,10,11 However, these proteogenomics workflows are
primarily designed to discover novel peptides and a limited
number of variant types, rather than to enable precision
medicine studies on a routine basis. Finally, none of these
tools allows for the possibility of more than oneORF in the same
reading frame or in different reading frames in a single RNA or in
different reading frames in a single RNA.
OpenProt is a proteogenomic resource that provides

functional annotation of any ORF with a minimum size of 30
codons in the transcriptome (NCBI RefSeq and Ensembl) of
several species without a priori regarding the coding biotype of
the transcripts, the number of ORFs in each transcript, and the
reading frame12 Therefore, OpenProt allows several ORFs
within the same transcripts, in agreement with experimental
observations of a significant number of dual coding (overlapping
ORFs) and polycistronic (at least two nonoverlapping ORFs)
genes in mammals.13,14 Proteins annotated by OpenProt in
human include (1) 134,477 canonical proteins that are already
annotated in UniProt, NCBI RefSeq or Ensembl; (2) 68,612
novel isoforms that are novel proteins with a significant identity
with a canonical protein from the same gene; and (3) 488,956
alternative proteins (altProts) that are novel proteins with no
significant identity with any canonical proteins.
To build RNaseq-based custom protein databases using

OpenProt annotations for precision medicine, we created
OpenCustomDB, available both as a Python package and as a
web application. In contrast to other proteogenomic workflows,
OpenCustomDB-derived protein databases allow the identi-
fication of canonical proteins, novel isoforms of canonical
proteins, and altProts encoded in the transcriptome of a sample
of interest, and of their variants (Figure 1). To test this new
proteogenomic workflow, we used OpenCustomDB on
leukemic cells from 16 patients with acute myeloid leukemia.15

Acute myeloid leukemia is among the most lethal of all
hematologic cancers that affect both children and adults. From a
total of 91,372 unique detected peptides, 5666 are from
alternative proteins, including 201 variant peptides.

■ EXPERIMENTAL PROCEDURES

Human AML Samples from the Quebec Leukemia Cell Bank
AML specimens were purified from bone marrow or
leukapheresis samples by Ficoll density centrifugation and
cryopreserved in liquid nitrogen (DMSO 10%). All samples
were collected, prepared, and cryopreserved by the Quebec
Leukemia Cell Bank (BCLQ, http://bclq.org/), which is
certified by the Canadian Tissue Repository Network
(CTRNet). The technical and clinical characteristics have
previously been described.15 AML samples were thawed (1 min
in 37 °C water bath) and resuspended in 48 mL of 4 °C PBS.
Twomillion cells (1mL)were pelleted and resuspended in 1mL
of Trizol for RNA sequencing, while 5 million were pelleted and
snap frozen in liquid nitrogen for mass spectrometry analyses.
RNA Sequencing
RNA extraction, library preparation, and sequencing were
performed as previously described.15 RNA-Seq reads were
trimmed for sequencing adapters and low quality 3′ bases using
TrimGalore version 0.6.4 (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). The reads were then
aligned to the reference genome GRCh38.p12 using STAR
version 2.7.3a16 running with default parameters except for ‘−
outSAMprimaryFlag: AllBestScore,−outFilterMismatchNmax: 5,
−alignSJoverhangMin 10, −alignMatesGapMax 200 000, −

alignIntronMax 200 000, −alignSJstitchMismatchNmax “5-1 5
5”,−bamRemoveDuplicatesType UniqueIdenticalNotMulti’. Tran-
script expression was quantified in transcripts per million (tpm)
with kallisto version 0.46.017 running with default parameters.
Variant Calling and Integration in the Transcripts
Variants were called from genomic DNA. Variant calling files
(VCF) were generated from BAM files with FreeBayes version
1.3.1 with the setting “−min-alternate-count” set to 5. SNPs and
Indels with FreeBayes quality of less than 20 were filtered out
with an internal Python script. Then, OpenCustomDB uses
OpenVar18 to predict the impact of variations on the primary
structure of the corresponding canonical proteins, novel
isoforms, and altProts and inserts the variations at their correct
positions in the transcripts.
OpenCustomDB Inputs
OpenCustomDB has two mandatory inputs: a VCF file that can
be generated with any variant caller such as FreeBayes, and a
transcript expression file.
OpenCustomDB also uses optional inputs:
• By default, the maximum number of proteins in the
custom database is set at 100,000 and the number of
transcripts is limited by this value. This value can be
modified.

• An additional list of transcriptsmay be included to recover
proteins from transcripts that do not reach the threshold
enforced by the maximum number of proteins.

• An additional list of transcripts to be removed may be
uploaded to exclude specific proteins.

Customised Database Generation
First, a VCF file is used by the variant annotator OpenVar to
annotate variants in canonical and noncanonical proteins. After
this step, all protein sequences specific to the sample
transcriptome are obtained, including cases where, for example,
a single nucleotide variation caused a change in amino acid in the
protein sequence. Then, the Kallisto quantified transcripts are
ranked from the highest to the lowest expression level, and all
OpenProt-annotated proteins that are associated with these
transcripts (Figure 1B) are added to the customized database
until a maximum number of proteins is reached (100,000 by
default). When a protein variant is added to the database, the
corresponding wild-type protein with no variation is also
included in the database (to account for the possibility of
heterozygosity).
Search and Postprocessing
MS/MS spectra were searched against sample-specific custom-
ized databases using MaxQuant v1.6.14.0 without false
discovery rate (FDR) filtering.19 All other parameters were set
by default. All peptide-spectrummatches (PSMs) were rescored
using a combination of the spectral intensity predictor
MS2PIP,20 HPLC retention time predictor DeepLC21 and the
postprocessing tool Percolator22 within MS2Rescore23 as
previously described.24 Percolator was run with MS2Rescore
to compute PSM scores as well as q-values.22,25 The PSMs were
selected by applying a FDR < 1%, and the unicity of nonvariant
and variant peptides from novel isoforms and altProts was
checked against Ensembl and UniProt. Peptides were classified
into 6 categories: derived from canonical proteins, alternative
proteins, novel isoforms, each with their corresponding variants.
The Percolator Fido protein inference tool was used to obtain
proteins groups. The protein groups were selected applying
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FDR < 1%. Identified protein numbers were calculated from
Percolator Fido results with the following rules: (1) one
canonical protein was counted for each gene; (2) variant
proteins were computed only if the corresponding peptides
showing the variation were identified in the protein group; (3)
altProts were computed if at least one unique peptide was
identified.
Cell Lysis, Protein Extraction, In-Gel Digestion
Cells were lysed with 0.5% w/v CHAPS (final concentration)
containing a protease inhibitor cocktail (Sigma, cat#P8340-
5ML) for 60 min with tumbling at 4 °C. BCA dosage was done
following by reduction in 10 mm DTT and alkylation in 50 mM
iodoacetamide. SDS-Page, in-gel digestion, peptide extraction
and desalting were performed as previously described26 with
minor modifications. Mini-PROTEAN TGX Precast Gels were
used, and a ratio of 1:10 (w/w) of TrypsinGold (Promega) were
used for tryptic digestion.
LC-MS/MS Analysis
The peptides were separated with a Dionex Ultimate 3000
nanoHPLC system. Here, 10 μL of sample (1.5 μg) in 1% (v/v)
formic acid were loaded with a constant flow of 4 μL/min onto
an Acclaim PepMap100 C18 column (0.3 mm id × 5 mm,
Dionex Corporation). After trap enrichment, the peptides were
eluted in an EasySpray PepMap C18 nano column (75 μm × 50
cm, Dionex Corporation) with a linear gradient of 5−35%
solvent B (90% acetonitrile with 0.1% formic acid) with a
constant flow of 200 nL/min for 240 min. The HPLC system
was coupled to an OrbiTrap Q-Exactive mass spectrometer
(Thermo Fisher Scientific Inc.) via an EasySpray source. The
spray voltage was set to 2.0 kV and the column temperature was
set to 40 °C. Full scan MS survey spectra (m/z 350−1600) in
profile mode were acquired in the Orbitrap with a resolution of
70,000 after accumulation of 1,000,000 ions. The 10 most
intense peptide ions from the Orbitrap survey scan were
fragmented by high-energy collision dissociation (normalized
collision energy 25% and resolution of 17,500) after the
accumulation of 50,000 ions. Maximal filling times were 250 ms
for the full scans and 60 ms for the MS/MS scans. Precursor ion
charge state screening was enabled and all unassigned charge
states as well as singly, 7 and 8 charged species were rejected.
The dynamic exclusion list was restricted to a maximum of 500
entries with a maximum retention period of 40 s and a relative
mass window of 10 ppm. The lock mass option was enabled for
survey scans to improve mass accuracy. Data were acquired
using the Xcalibur software.
Availability and Implementation
OpenCustomDB is an open-source pipeline written in Python.
It is also available as a web application https://www.openprot.
org/opencustomdb.

■ RESULTS
The translation of proteins unannotated in conventional protein
sequence databases, including novel isoforms of canonical
proteins and altProts has been largely reported using MS-based
proteomics and ribosome profiling strategies. However, there
are no tools for the annotation and detection of variants of these
novel proteins. OpenCustomDB fills this gap and enables the
detection of a deeper proteome.
OpenCustomDB: Design and Implementation
OpenCustomDB uses RNA-seq data to generate customized
protein sequence databases (Figure 1B). It takes advantage of

the OpenProt annotation that includes altProts, predicted novel
isoforms of canonical proteins, and canonical proteins.12 A VCF
(Variant Calling File) is generated with the OpenVar genomic
variant annotator, which integrates altORFs.18 A transcript
expression file is used as a second input to control database size
by either adjusting the number of transcripts according to their
level of expression (i.e., threshold value) or by establishing a
maximum number of protein entries. With the default
parameters, the maximum number of protein entries is
100,000 and the Transcripts Per Kilobase Million or TPM
threshold is adjusted accordingly. Finally, specific transcripts can
also be added or removed. Transcripts must have a TPM > 0 to
be considered in the analysis, even if the maximum number of
protein entries has not been reached.
We used RNA-seq data from cells from 16 patients with acute

myeloblastic leukemia.15 For example, the resulting customized
database for patient 05H143 contains a significant number of
novel proteins and variants compared to the standard
proteogenomic database containing only canonical proteins
and their variants (Figure 1C). Here, the default parameters
were used and 13,382 transcripts with TPM> 5.38 were selected
to limit the database to 100,000 protein entries. The
conventional database with canonical proteins and their variants
contains a total of 13,716 protein entries (11,600 canonical
proteins and 2116 variants). The custom database contains
78,083 altProts and novel isoforms, and 8201 variants, in
addition to the 13,716 canonical proteins including their
variants. The altORFs encoding the predicted altProts are
mainly located within mRNAs (Figure 1D). Among them, the
majority overlap the canonical CDS in a different reading frame
or localize in 3′-UTRs. Similar results were obtained for 15 other
patients (Supplementary Figure 1). The RNaseq approach
included the selection of poly-A+, thus is necessarily biased for
mRNAs and poly-A+ ncRNAs.
Peptide Level Analysis
We used MaxQuant19 followed by a combination of the
MS2Rescore spectral intensity predictor and the Percolator

Table 1. Number of Unique Reference and Variant Peptides
in Canonical Proteins, Alternative Proteins, and Novel
Isoforms in 16 Patients with Acute Myeloid Leukemiaa

Peptides derived
from canonical

proteins

Peptides derived
from alternative

proteins

Peptides derived
from novel
isoforms

Patients Total Variants Total Variants Total Variants

05H143 45895 143 607 26 21 4
05H149 27771 73 463 11 10 9
07H063 45504 145 612 14 23 2
07H122 46882 181 545 14 12 3
07H141 33691 111 486 18 13 2
08H039 31784 91 384 7 8 2
08H053 33801 93 397 10 7 6
11H008 25517 61 252 8 9 1
11H035 32586 95 467 10 13 3
12H172 43334 129 527 28 17 5
15H013 32250 32 342 3 14 2
15H023 40593 135 404 10 18 1
15H063 31231 94 322 4 13 3
15H080 43293 153 449 14 25 2
16H123 35204 103 471 19 13 3
16H145 46346 183 612 15 25 3

aPeptide level FDR 1%.
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postprocessing tool24 for proteomics analyses. This workflow is
particularly effective in the context of proteogenomics with large
databases.21 and is therefore well suited for our analyses with
custom databases containing 100,000 protein entries. Here, we
use the OpenProt assignment rule where a peptide that can be
assigned to both a canonical protein and an altProt is always
assigned to the canonical protein. In addition to reference and
variant peptides from canonical proteins, a significant number of
reference and variant peptides from altProts and novel isoforms
were also identified in each patient, confirming the validity of our
proteogenomic approach for the discovery of novel proteins
(Table 1). Variant peptides are listed in Supplementary Table 1.
These identifications of peptides derived from altProts and

novel isoforms may result from the replacement of doubtful
identifications of peptides originating from canonical proteins
with more confident identifications of peptides from altProts,
from the successful assignment of PSMs typically unassigned
with a conventional database, or from both processes.
To address this question, we first compared statistical

confidence measures of PSMs obtained using a customized
database with conventional proteins only to those obtained
using a customized database containing altProts and novel
isoforms in addition to canonical proteins. We determined that

6493 spectra were matched to canonical peptides with a custom
database containing canonical proteins only, but the majority
(63.5%) did not pass the PSM-level FDR threshold of 1%. In
contrast, in the analysis using a custom database containing
canonical proteins, altProts, and novel isoforms, these same
6493 spectra were matched to altProts or novel isoforms, all of
which passed the PSM-level FDR threshold of 1% (Figure 2A).
This indicates that peptides from novel proteins are much

better explanations for these spectra than the poorly matched
peptides from canonical proteins. Examples of MS2 spectra
randomly selected are provided in Supplementary Figure 3. The
distribution of posterior error probability scores associated to
theses 6493 spectra assigned to peptides from canonical proteins
was shifted toward the distribution for the decoy proteins
compared to the same spectra assigned to peptides from altProts
and novel isoforms. This highlights the fact that a significant
fraction of PSMs is not accurate when using a database with
canonical proteins only and obtain more confident statistical
measures with a database containing altProts and novel isoforms
in addition to canonical proteins (Figure 2B).
Second, we analyzed the PSMs that could not be assigned at

all using a customized database containing canonical proteins
only but were assigned to peptides from altProts and novel

Figure 2. Many PSMs typically assigned to peptides from canonical proteins can be assigned to peptides from altProts and novel isoforms with better
statistical confidencemeasures. (A) The left and right panels show the Percolator score distributions for the same set of 6493 spectra from two analyses
of the same dataset. On the left, only canonical proteins were present in the database at the peptide-spectrummatching step. On the right, altProts and
novel isoforms were included. The dashed line represents the q-value at which PSMs on the right are excluded when enforcing an FDR below 1%. (B)
Percolator-derived peptide posterior error probability (log10) for the same 6493 spectra from A associated either to peptide from canonical proteins
(custom database with canonical proteins only; grey) or to peptides from altProts and novel isoforms (custom database with canonical proteins,
altProts and novel isoforms; green), as indicated.
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isoforms using a custom database containing canonical proteins,
altProts, and novel isoforms. These represent the data acquired

at the MS/MS that go unnoticed when analyzed conventionally,
but are explained by the presence of altProts and novel isoforms.
We identified 41,480 of those PSMs, 19.13% of which passed the
FDR of 1% (i.e., 7939) (Figure 3A). The distribution of
posterior error probability values for these PSMs compared to
the decoys confirmed that most are very unlikely to be false-
positive PSMs (Figure 3B).
Protein level analysis

We used the Percolator Fido inference software tool to assemble
the identified peptides into a list of proteins. The number of
canonical proteins detected in each patient ranged between
3202 and 5004, including 826 variants (Table 2). The analysis
identified a total of 434 altProts, including 9 variants and 30
novel Isoforms, including 19 variants (Table 2).
Among the noncanonical proteins identified in the largest

number of patients, 9 altProts and 2 novel isoforms, including 1
variant, were detected across 9 to 15 patients (Table 3).
The corresponding altORFs are in UTRs and ncRNAs,

confirming previous observations that regions of the tran-
scriptome previously believed to be noncoding can actually
encode proteins.14,27,28 As a result of the identification of novel
proteins, OpenCustomDB typically increases the number of
genes identified for each patient (supplementary Figure 2).

■ DISCUSSION
With the rise of personalized medicine comes increasing interest
in proteogenomics, a set of analytical methods where variant
proteins predicted from a personal genome or transcriptome
information are added to a protein search database prior analysis
of the raw data. However, existing approaches that rely on
canonical annotations ignore the many altProts that have been
shown to be expressed.12,29 The integration of altProts and their
variants could help determine personalized proteomes with
better resolution. We built OpenCustomDB, a new variant
annotator that relies on OpenProt annotations and enables the
generation of customized databases from RNaseq data. We
showed that the analysis of proteomics data with Open-
CustomDB helps identify altProts and their variants. Fur-
thermore, we demonstrated that previously unassigned spectra
may be successfully assigned to peptides derived from altProts
and that spectra matched with low confidence to canonical
peptides may have better scores when matched to alternative
peptides.
Proteogenomic databases customized using sample-specific

RNaseq data and noncanonical annotations such as OpenProt
can be powerful tools for identifying novel peptides and variants
that are not included in generic protein sequence databases.
However, this promise of proteogenomics is offset by the fact
that such databases are much larger than conventional
proteomic databases because they include predicted and
therefore potentially spurious proteins, as it is not known
whether they are expressed. This typically results in fewer PSMs
at fixed FDRs, more erroneous identifications, and a
considerable increase in computing costs.9,10,30 OpenCus-
tomDB allows users to control the size of the database by
adjusting the transcript expression level threshold or by
removing specific transcripts. The user may also choose to
completely remove altProts from the database to generate
conventional proteogenomic databases that integrate only
canonical proteins. This flexibility is intended to give control
to the user, who can thus customize the database according to
the objectives of the study.

Figure 3. Statistical measures of spectra assigned using Open-
CustomDB. (A) Percolator score distribution of 7939 spectra
unassigned in the analysis using the database excluding altProts and
novel isoforms, but confidently assigned to peptides from altProts or
novel isoforms when they are included in the database. The dashed line
represents the q-value at which PSMs on the right are excluded when
enforcing an FDR below 1%. (B) Percolator peptide posterior error
probability (log10) for the PSMs shown in (A).

Table 2. Number of Reference and Variant Protein Groups in
16 Patients with Acute Myeloid Leukemiaa

Canonical proteins
Alternative
proteins Novel isoforms

Patients Total Variants Total Variants Total Variants

05H143 4380 76 53 2 21 1
05H149 3202 41 23 0 44 9
07H063 4975 92 53 0 7 3
07H122 5004 105 48 0 13 2
07H141 3627 56 42 1 9 2
08H039 3941 51 50 2 12 2
08H053 4105 47 32 1 8 2
11H008 3548 34 20 0 7 1
11H035 3999 54 40 1 10 1
12H172 4572 74 40 2 9 3
15H013 3894 46 35 1 8 1
15H023 4452 72 34 1 10 1
15H063 4014 41 30 1 13 3
15H080 4703 79 32 1 15 2
16H123 3889 51 33 0 6 2
16H145 4510 91 40 0 9 3

aFDR 1% at the protein level.
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Protein databases assembled using OpenCustomDB enable
not only the identification of peptides from canonical proteins
and alternative proteins with variants specific to each sample but
also a general improvement of PSM assignments. This is because
spectra assigned to peptides of canonical proteins with low
confidence are reassigned with better scores to peptides of
alternative proteins. This observation is particularly important
given the central role of accurate PSM assignment in shotgun
MS-based proteomics and database search.31 In fact, a list of
candidate PSMs is typically returned for each spectrum and
sorted according to their calculated scores. The peptide with the
highest PSM score is then selected as the best match. When
altProts are included in customized databases, a fraction of
spectra receives higher PSM scores with peptides derived from
altProts; hence, OpenCustomDB prevents some inaccuracies in
peptide identifications and possible downstream erroneous
conclusions about the presence of the corresponding proteins.
While OpenCutsomDB presents a useful first step in the

inclusion of the multicoding aspect of many human genes into
proteogenomic investigations, there remain some drawbacks
that will need addressing in future works. For example,
OpenProt annotations currently do not consider open reading
frames smaller than 30 codons. This is a problem because many
proteins shorter than this length are already known to be
expressed and play important functional roles; current Open-
Prot annotation does not allow the discovery of new proteins in
this class.
Another drawback comes from the filter based on transcript

expression. This filter serves to keep the database in a
manageable size range for a more effective use of the target-
decoy strategy, but it may be inadequate for the detection of
some proteins whose abundance does not correlate well with the
abundance of their respective transcripts. As new machine
learning strategies are applied to the problem of peptide
spectrum matching task, the size of the protein library may
become less of a hindrance.32

■ CONCLUSIONS
We have built OpenCustomDB to generate customized protein
databases from sample-specific RNaseq data. In contrast to
previous tools, OpenCustomDB-derived databases enable the
identification of genetic variants in canonical and noncanonical
ORFs and the detection of the corresponding protein products.
Continued work in this field is increasingly important because
new proteins and their disease-associated variants can have a
great impact in precision medicine and proteomics. Open-
CustomDB is a contribution toward this goal by providing a

convenient and easy-to-use tool for researchers to better
decipher the true diversity proteomes.
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Data Availability Statement

The OpenCustomDB codebase is open source and hosted on
GitHub at https://github.com/MAB-Lab/OpenCustomDB.
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study can be found in PRIDE repository with accession number
PXD029240.
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Supplementary Figure 1: Customised protein sequence
databases that integrate reference and variant proteins.
For each patient, both the composition (left) and the
localization of predicted coding sequences (right) are
shown. OpenCustomDB was run with (green bars) or
without (gray bars) integration of altProts and novel
isoforms. The size of the databases with altProts and novel
isoforms was limited to a total of 100,000 entries by
imposing the corresponding TPM threshold. Supple-
mentary Figure 2: Number of genes coding for proteins
identified with OpenCustomDB libraries with and
without alternative proteins. For each patient, the number
of genes identified using customized protein sequence
databases integrating reference and variant proteins with
alternative proteins (green) and without (canonical
library only, gray). Despite the difference in size between
the two databases for each patient, there is a notable
overlap in identified genes. Supplementary Figure 3:
Examples of MS2 spectra assigned to a reference protein
with a canonical protein database and reassigned to an
alternative protein with a database containing canonical
proteins, altProts, and novel isoforms. (A) MS/MS
spectrum confidently mapped to either a peptide unique
to the reference protein ENSP0000378967 (A) or
Q96QH2 (B) using a database containing canonical
proteins only (bottom spectrum), or to a peptide unique
to the novel isoform II_726022 (A) or IP_643011 (B)
using a database containing canonical proteins, altProts,
and novel isoforms (top spectrum). Peaks are represented
by their mass over charge ratios (m/z) and their intensity
relative to the highest (relative intensity). The y ions are
colored in red, the b ions in blue and the unannotated
peaks appear in gray. (PDF)

Table 3. Several altProts and Novel Isoforms Are Detected in Many Patients

Accession Gene Protein type RNA biotype Number of patients Location

IP_260057 JPT1 AltProt mRNA 15 3′UTR
IP_078777 ABCB10 AltProt mRNA 14 CDS
IP_196754 AHNAK AltProt mRNA 13 CDS
IP_295104 DESI1 AltProt mRNA 13 3′UTR
IP_105341 PBRM1 AltProt mRNA 12 3′UTR
IP_595290 ASS1P1 AltProt ncRNA 11 N/A
IP_120014 PPM1K AltProt mRNA 11 3′UTR
II_772356 NDUFA9 Novel isoform ncRNA 11 N/A
IP_580779 TRIM74, STAG3L3, STAG3L1, STAG3L2 AltProt ncRNA, miscRNA 10 N/A
IP_065105 SSBP3 AltProt mRNA 9 CDS, 5′UTR
II_726022@Ala112Thr RPL13 Novel isoform ncRNA 9 N/A
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Supplementary Table 1: list of variant peptides in
canonical and alternative proteins. (XLSX)
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