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A B S T R A C T   

The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of 
SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of 
alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen 
receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded 
houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high 
binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS- 
CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the 
development of VNAR-based therapeutics or diagnostics against future pandemics.   

1. Introduction 

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in a 
significant global health crisis, with over 760 million cases and 6.9 
million deaths reported worldwide [1]. To combat the pandemic, re-
searchers have sought to develop antibodies against the SARS-CoV-2 
receptor binding domain (RBD) for use in viral therapeutics and di-
agnostics [2,3], including single-domain antibodies (sdAbs). SdAbs are 
antibody fragments of heavy chain-only antibodies derived from cam-
elid IgG2 and IgG3 [4–10], or cartilaginous fish immunoglobulin new 
antigen receptor (IgNAR) [11–16]. SdAbs obtained from camelids or 
cartilaginous fishes are known as nanobodies or VNARs, respectively. 
SdAbs possess several advantageous properties that make them 

attractive for use in therapeutics and diagnostics, including small size, 
high physicochemical stability, solubility, specificity for cryptic epi-
topes, low immunogenicity, ease of protein engineering, more efficient 
cell penetration, and low production cost [17,18]. Because of these 
advantages, some researchers have attempted to develop multivalent [6, 
14,16] or nasal drugs [7] using SARS-CoV-2 RBD-specific sdAbs. 

A primary reason medical and biotechnological researchers prefer 
nanobodies is the relatively limited availability of animal models for 
discovering VNARs [19]. Although various IgNARs have been discov-
ered in numerous cartilaginous fish species [20], the six reported 
SARS-CoV-2 specific VNARs were derived exclusively from the nurse 
shark (Ginglymostoma cirratum) [11,12,16], white-spotted bamboo 
shark (Chiloscyllium plagiosum) [13,14], and a synthetic library [15]. 

Abbreviations: RBD, Receptor binding domain; VNAR, Variable new antigen receptor; sdAb, Single-domain antibody; IgNAR, Immunoglobulin new antigen re-
ceptor; ELISA, Enzyme-linked immunosorbent assay; CDR, Complementarity determining region; HV, Hypervariable region; EC50, 50% maximal effective con-
centration; IC50, Half-maximal inhibitory concentration. 
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Nurse and white-spotted bamboo sharks are suitable animal models for 
immunization; however, these species have not been found in the coastal 
areas of Korea [21]. Nurse shark is restricted to the western and eastern 
Atlantic areas, while white-spotted bamboo shark has been found 
naturally in the Indian Ocean and central Indo-Pacific [21]. Therefore, 
we selected banded houndshark (Triakis scyllium) as another animal 
model for discovering SARS-CoV-2 RBD-specific VNARs. Banded 
houndsharks frequently inhabit the coastal waters of Korea [21], pose no 
threat to humans, and adapt well to captivity [22,23]. Interestingly, 

immunization of banded houndsharks has not been previously reported 
[19], although their IgNARs have been identified [24–26]. In this study, 
we isolated several SARS-CoV-2 RBD-specific VNARs from the banded 
houndshark, including CoV2NAR-1, which exhibited high binding af-
finity and neutralizing activity against SARS-CoV-2 pseudoviruses. 
These findings suggest that the banded houndshark could serve as a 
valuable animal model for the development of VNAR-based therapeutics 
or diagnostics to combat against future pandemics. 

Fig. 1. Identification of banded houndshark derived VNAR against SARS-CoV-2 RBD. (A) Schematic figure of phage library construction from immunized sharks. (B) 
Identification of wild-type RBD specific VNAR by the periplasmic extract ELISA. The red dashed line indicates a threshold for the selection of RBD-specific VNARs. (C) 
Amino acid sequence alignment of CoV2NARs. Asterisks indicate amino acid sequences consistent with CoV2NAR-1. Blue boxes represent CDRs and HVs determined 
according to the previous reference [24]. (D) SDS-PAGE analysis of purified CoV2NAR-1,2,3. The lanes of SDS-PAGE are as follows: lane 1, protein size marker 
(Thermo Fisher); lane 2, CoV2NAR-1; lane 3, CoV2NAR-2; and lane 4, CoV2NAR-3. Binding affinity analysis of (E) purified CoV2NARs against the wild-type RBD and 
(F) CoV2NAR-1 against the RBDs from wild-type and its variants (Alpha, Beta, Delta, Kappa, and Omicron BA.1) by ELISA. Error bars are ±standard deviation for 
triplicate experiments. 
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2. Results and discussion 

To generate immunized VNAR libraries against SARS-CoV-2 RBD, a 
banded houndshark was immunized with recombinant SARS-CoV-2 
wild-type RBD protein. After the three consecutive immunizations, the 
shark exhibited an appropriate anti-serum titer (Supplementary Fig. 1). 
Total RNA was then extracted from the shark spleen and converted to 
cDNA to construct a phage display immune library (Fig. 1A). After 
analyzing 45 randomly picked colonies from the 107 diluted immune 
libraries, it was found that each of the 45 colony sequences was unique, 
indicating a library size of 4.5 × 108 as determined by the number of 
transformants (Supplementary Fig. 2). 

To identify RBD-specific VNARs, biopanning was conducted using 
the recombinant wild-type RBD as the target antigen (Supplementary 
Methods). After completing three rounds of biopanning, 33 clones of 
M13 phages displaying RBD-specific VNARs were isolated via enzyme- 
linked immunosorbent assay (ELISA) using periplasmic extract 
(Fig. 1B). Among the 33 clones, 31 were turned out to be derived from a 
single enriched clone, CoV2NAR-1 with identical nucleotide sequences 
of complementarity determining regions (CDRs) and hypervariable re-
gion (HV), while the remaining two clones, CoV2NAR-2 and CoV2NAR-3 
displayed slightly different CDRs and framework sequences (Fig. 1C). To 
determine their binding affinity to the recombinant wild-type RBD, 
CoV2NAR-1, -2, and -3 were expressed in Escherichia coli and purified 
using Ni-NTA chromatography (Fig. 1D). The purified CoV2NAR-1, -2, 
and -3 demonstrated strong binding affinities to the wild-type RBD, with 
50% maximal effective concentration (EC50) values of 1.6 nM, 5.8 nM, 
and 4.5 nM, respectively (Fig. 1E). CoV2NAR-1 exhibited the highest 
binding affinity to the recombinant wild-type RBD (Fig. 1E) and also 

demonstrated broad binding affinities to RBDs of SARS-CoV-2 Alpha, 
Beta, and Delta variants (Fig. 1F and Table 1). These findings indicate 
that the RBD specific VNAR clones were successfully enriched by bio-
panning using the banded houndshark immunized phage display library. 

To investigate the physicochemical property and in vitro efficacy of 
CoV2NAR-1, we conducted various biophysical and biochemical studies 
shown in Fig. 2. Protein homogeneity analysis using size-exclusion 
chromatography showed that the Ni-NTA purified CoV2NAR-1 was 
monomeric, with no detectable oligomers or higher-order aggregates 
(Fig. 2A). Heat-treated CoV2NAR-1 retained its binding affinity even 
after incubation at 80 ◦C for 1 h (Fig. 2B), indicating great thermal 
stability. CoV2NAR-1 was also found to neutralize wild-type SARS-CoV- 
2 pseudovirus with a half-maximal inhibitory concentration (IC50) of 
660 nM in a pseudotyped virus neutralization assay (Fig. 2C). To 
improve the IC50, we produced a bivalent CoV2NAR-1 by utilizing the 
human IgG1 Fc CH3 domain (Supplementary Fig. 3), which is a small- 
sized dimeric fused protein capable of inducing avidity [27] while 
retaining the advantageous features of VNAR such as small size and cell 
permeability. The IC50 of bivalent CoV2NAR-1 was remarkably 
improved by two orders of magnitude compared to that of monovalent 
CoV2NAR-1 (Fig. 2C), indicating that the bivalent or multivalent form 
offers an excellent platform for developing SARS-CoV-2 therapeutics 
using VNAR. Additionally, bivalent CoV2NAR-1 exhibited broad 
neutralizing activities against SARS-CoV-2 Alpha and Delta variants 
with the half-maximal inhibitory concentration (IC50) in the nanomolar 
range (Fig. 2D), demonstrating its high potential as a therapeutic agent 
against diverse SARS-CoV-2 variants. Small-angle X-ray scattering 
measurement of the CoV2NAR-1/MBP fused RBD complex (Fig. 2E and 
Supplementary Table 2) revealed that CoV2NAR-1 binds to two previ-
ously reported epitope groups of RBD (group A and B) [28], which 
significantly overlap with the ACE2 binding site and include RBD mu-
tation sites, such as K417 (group A) and E484 (group B) [28]. These 
findings suggest that RBD mutations at K417 and E484 could potentially 
affect the binding affinities of CoV2NAR-1 to Beta (3 mutations in RBD 
including K417N and E484K), Kappa (2 mutations in RBD including 
E484Q), and Omicron BA.1 (15 mutations in RBD including K417N, 
E484A) variants. 

Table 1 
Binding affinities of CoV2NAR-1 against the recombinant RBD from SARS-CoV-2 
and its variants.  

SARS-CoV-2 Wild-type Alpha Beta Delta Kappa Omicron BA.1 

EC50 (nM) 1.6 2.3 290 92 NDa NDa  

a ND: Not determined. 

Fig. 2. Characterization of CoV2NAR-1. (A) Size exclusion profile of CoV2NAR-1 using Hiload Superdex 75 16/600 (Cytiva). To obtain the calibration curve for 
Hiload Superdex 75, conalbumin (75 kDa), carbonic anhydrase (29 kDa), ribonuclease A (13.7 kDa), and aprotinin (6.5 kDa) in Gel Filtration LMW Calibration Kit 
(Cytiva) were used as size markers. The estimated molecular mass of the CoV2NAR-1 was 10.4 kDa. (B) Binding affinity analysis of purified CoV2NAR-1 against the 
wild-type RBD after acute heat challenge by ELISA. CoV2NAR-1 was incubated at different temperatures for 1 h. The binding affinities of the heat-treated CoV2NAR-1 
against the wild-type RBD were then measured by ELISA. Neutralization efficiency of CoV2NAR-1 against (C) a pseudo-SARS-CoV-2 wild-type and (D) its variants. 
IC50 for SARS-CoV-2 pseudoviruses were mediated by CoV2NAR-1 in HEK293T-ACE2-TMPRSS2 cell. Error bars are ±standard deviation for triplicate experiments. 
(E) SAXS-based rigid body model of the CoV2NAR-1 in complex with MBP fused wild-type RBD. Sky blue, brown, and green cartoons indicate CoV2NAR-1, wild-type 
RBD, and MBP, respectively. 
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VNARs offer several advantages over conventional IgG antibodies, 
including a small size that allows for more efficient tissue penetration, 
high stability, and specificity for cryptic epitopes [18]. Since 
antigen-specific VNARs from immunized libraries generally have higher 
binding affinities than naïve and synthetic libraries [19], there is a 
growing demand for validated animal models that can produce 
antigen-specific VNARs to broaden the scope of VNAR-based research. 
In this study, we constructed an immunized library from banded 
houndshark for the first time to identify VNARs against SARS-CoV-2 
RBD. Using recombinant RBD affinity-based screening, we discovered 
CoV2NAR-1, which displayed excellent physicochemical properties, 
potent neutralizing activities, and broad binding affinities to RBDs from 
both the wild-type and its variants. Furthermore, in silico immunoge-
nicity assessments for 27 human leukocyte antigen (HLA)-types indi-
cated that peptides containing the CoV2NAR-1 sequence were even less 
immunogenic than peptides derived from trastuzumab (anti-HER2: 
Herceptin®), which is a therapeutic IgG antibody currently used in 
clinical practice (Supplementary Fig. 4). To date, only semi-synthetic 
libraries have been constructed from banded houndshark [25,26]. 
Therefore, our study demonstrates the potential of the banded hound-
shark as an alternative animal model for the development of 
VNAR-based therapeutics or diagnostics against various pathogens, 
including but not limited to emerging viruses, and provides a new 
avenue for the discovery of novel VNAR-based biologics. 
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