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Candidate biomarkers in psychiatric disorders: state of the field
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The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individ­
ualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuro­
science literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar 
disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for 
the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in 
the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, 
to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to 
consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process 
of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential 
measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic reso­
nance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of 
treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety 
disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms 
of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond 
genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may 
significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and 
partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically 
predictive at the individual level and viable in clinical settings.
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The search for biomarkers in psychiatry 
is motivated by the need for objective mea­
sures to inform diagnosis, prognosis, and 
treatment choices. The ultimate purpose of 
a biomarker is to improve management of a 
disease towards better outcomes1, allowing 
for preventive and therapeutic interven­
tions that are tailored to a particular per­
son’s genes, environment and lifestyle (i.e., 
a precision medicine approach).

The US Food and Drug Administration 
(FDA) separates classes of biomarkers based  
on their applications2, and several of these 
are likely to impact the clinical management  
of mental disorders: a) susceptibility bio­
markers, aimed at estimating the likelihood 
of developing an illness, which may inform 
allocation of preventive interventions; b) 
predictive biomarkers, aimed at estimating 
the likelihood of experiencing a therapeutic 
drug effect, which may consequently inform 
treatment selection; and c) safety biomark­
ers, aimed at predicting side effects, which 
may further aid in therapeutic decisions by 
anticipating poor tolerability.

Non-invasive biomarkers, for example 
those based on magnetic resonance imag­
ing (MRI) and electroencephalography 
(EEG), are of particular interest for devel­
oping personalized approaches. This is not 
only because they are relevant to the patho­
physiology of interest, but also because it is  
hoped that they may be scalable and adop­
table in the clinic – either now or in the near-
term future.

The general litmus test for biomarkers in 
psychiatric disorders is their ability to change 
clinical practice. To achieve this goal, several 
steps in their development are required.

The first stage is to identify a target clini­
cal question that a particular biological mea-  
sure may be appropriate to address. The 
most valuable target applications for bio­
markers are those that can inform “high-risk,  
high-reward” decisions. For example, target­
ing decisions to prescribe a medication with 
potential life-changing benefits but also se­
rious side effects (e.g., clozapine for schizo­
phrenia3) may take priority over targeting 
decisions bearing less potential benefits  

or risks. Another relevant consideration is 
the extent to which a biomarker may opti­
mize decision-making above and beyond 
clinical data. In this respect, diagnostic bio­
markers may be less clinically informative in 
cases where they are unlikely to override de­
cisions based on patients’ complaints and 
clinical presentation. A final consideration 
is that the value of biomarkers will neces­
sarily evolve with novel therapeutic options. 
For example, susceptibility biomarkers for 
conversion to psychosis, or for the emer­
gence of autism spectrum disorder, would 
become particularly valuable in the case 
that interventions capable of preventing 
these outcomes become available.

The second stage is internal validation. In 
this stage, it must be demonstrated that a 
relevant biomarker reflects the underlying 
process of interest, instead of confounds 
or other epiphenomena. Confounds may 
include demographic characteristics, ill­
ness chronicity or severity, treatment, co-
occurring psychiatric and medical con­
ditions, and site characteristics, among 
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others. There may also be methodological 
confounds, such as head-motion artifacts 
that are inextricably tied to the disorder or 
psychopathological trait itself (e.g., impul­
sivity4), and therefore are not amenable to 
traditional statistical covariation5. Unfor­
tunately, most biomarkers under develop­
ment fail to move past the internal valida­
tion step.

The third stage is external validation. In 
this stage, it must be demonstrated that a 
biomarker has sufficient predictive valid­
ity in a sample independent from the one 
used to develop it. A critical impediment to 
external validation is overfitting. This refers 
to a model that excessively reflects the idi­
osyncratic (noisy) features of the dataset in 
which it is developed, so that it underper­
forms when applied to new data6. This stage 
of biomarker development thus focuses 
on minimizing overfitting and maximiz­
ing generalizability. It further focuses on  
considering and managing issues such as  
lack of diversity in clinical trials, failure to ac­
count for common comorbidities, or a poten­
tially evolving biology over the course of a 
disorder. Statistical methods such as cross-  
validation and resampling allow one to mea­
sure the generalizability of a model without 
applying it to an independent sample7. How-  
ever, this does not replace the critical step of 
confirming generalizability in a fully inde­
pendent sample not used for model train-  
ing6.

At the stage of external validation, the most  
relevant performance metrics no longer per­
tain to significant statistical associations;  
instead, out-of-sample discrimination or pre-  
dictive performance are most important8. 
Common metrics include the area under the  
curve (AUC) in receiver-operator curves, and 
the hazard ratio for time-to-event predictions  
9. The AUC captures a trade-off between true  
positives and false positives, with higher AUC  
values indicating improved discriminative 
ability to identify true positives without ex-  
cessive false positives. As a general reference,  
the American Psychiatric Association Work  
Group on Neuroimaging Markers of Psychi-  
atric Disorders suggested an AUC >0.8 as a 
minimally useful threshold10. Nonetheless, 
what is considered useful may at least part-  
ly depend on contextual factors such as the 
performance of available predictive models 
and the consequences of inaccurate predic­

tion11, or the value of the expected informa­
tion gain. For example, although available  
predictive models in suicide prevention 
have accuracy near zero12, incorrect predic-  
tions are catastrophic, and therefore even a 
marginal increase in accuracy could be high­
ly valuable from an individual and public-  
health standpoint. As a final step in external 
validation, calibration of trained models 
can be used to assess, and fine-tune as nec­
essary, the prediction performance across 
the entire range of outcome probabilities8.

The fourth and final stage requires dem­
onstrating clinical utility. At this stage, bio­
markers will have to exhibit added value 
relative to existing tools for clinical decision-
making. They must also be scalable and, 
ultimately, cost-effective. This may involve 
model comparison against current meth­
ods of prediction, such as expert prognosti­
cation of relevant outcomes or clinical judg­
ments13,14, in addition to chance-level pre­
diction. However, once again, the designa­
tion of clinical utility may be partly context-
dependent. For outcomes with especially 
high stakes (e.g., suicide, drug overdose, 
conversion to psychosis), expensive and/or 
marginally accurate new biomarkers may 
still provide high clinical value in compari­
son to the status quo, and ultimately may be 
cost-effective if they can prevent the cata­
strophic outcome from occurring, particu­
larly if they are proximal predictors of that 
outcome.

The goal of this paper is to describe and  
discuss candidate biomarkers – encompass­
ing genetic, molecular, neuroimaging and/or  
peripheral assays as warranted – for autism 
spectrum disorder (ASD); schizophrenia  
spectrum disorders (hereafter referred to as  
schizophrenia for simplicity); anxiety disor­
ders and post-traumatic stress disorder (PTSD); 
mood disorders, encompassing major de-  
pressive disorder (MDD) and bipolar disorder 
(BD); and substance use disorders (SUDs). 
Recognizing that a listing of all potential bio-  
markers could be overwhelming and lack  
coherence, we do not provide an exhaustive  
list of the candidate biomarkers for each dis­
order that have been proposed or evaluated 
to date. Rather, we list and critically evaluate 
the evidence only for selected biomarkers 
which we view as especially promising for the  
field.

Biomarker development may be gener­

ally viewed as following a stepwise pipeline  
akin to that in drug development11. For some  
indications, the biomarkers reviewed here 
are farther along in development and closer 
to being clinically actionable; for other indi­
cations, the focus is on biomarkers which 
are earlier in development but are seen as 
having strong potential for breakthrough 
advancement once validated. We end each  
section with a brief summary of the review­
ed literature, as well as a shortlist of what 
we consider to be especially promising (if 
applicable). These especially promising 
biomarkers could be prioritized for future 
large-scale, highly powered studies, which 
in turn can provide the definitive evidence 
of that particular biomarker’s ultimate suc­
cess or failure.

BIOMARKERS IN AUTISM 
SPECTRUM DISORDER

Biological markers have been a focus in 
autism since its initial description in 1943  
by L. Kanner, who noted large head size in  
five of eleven children15. Over time, research  
on biological markers in ASD has ranged 
from crude measures of head size to longi­
tudinal imaging of the brain to sequencing 
of the entire genome.

Like all psychiatric diagnoses, ASD de­
scribes common behavioral features across 
individuals, instead of being a “disease”  
with a unifying pathophysiology. ASD spans  
a broad range of function and impairment: 
some patients require lifelong 1:1 care, while  
others are successful professionals and par­
ents. Yet, unlike in other diagnostic catego­
ries reviewed here, ASD is a developmental  
disorder that presents in early childhood, 
with less time to identify biomarkers that 
predict onset, and with longitudinal out­
comes typically measured in years rather 
than in weeks to months. Additionally, treat­
ments are lacking for the core symptoms of  
autism – behavioral interventions show ben-  
efit primarily for IQ or language16, and med-  
ications primarily treat associated symptoms  
such as agitation or hyperactivity17.

ASD biomarkers that have been inves­
tigated to date primarily correspond to the 
susceptibility biomarkers discussed else­
where in this review more than to predic­
tive or safety biomarkers. Some have been 
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described as stratification or subtyping bio­
markers, given that they have sought to 
parse ASD into subgroups with common 
features. Truly unifying biology is expected 
at the level of single genes implicated in 
ASD, but peripheral or brain-based bio­
markers may identify larger subgroups that  
may predict prognosis or treatment res­
ponse. Each of these approaches has some 
emerging data pointing to future utility, but 
to date only genetic testing is regularly used 
in the clinic.

Note that, throughout this section, we 
have endeavored to recognize the strong 
preference of many in the autistic commu­
nity for identity-first language (“autistic per­
son”) over person-first language (“person 
with ASD”)18, except when referring to the 
DSM diagnosis of ASD. This is in contrast 
to other mental disorders, such as SUDs, 
where it is suggested to avoid labeling a per­
son by his/her disease19.

Genetic biomarkers

More genes are implicated in ASD than 
in any other DSM diagnosis. Most genetic 
variants are not inherited from either parent 
but are instead de novo mutations. These 
include single nucleotide variants (SNVs) 
and small insertions or deletions (indels) 
that disrupt single gene function, collec­
tively implicating more than 100 genes to 
date20-23. De novo copy number variants 
(CNVs) are also implicated in ASD, most of 
which either delete or duplicate multiple 
genes24. Emerging data also point to rare 
inherited SNVs and CNVs that contribute 
to ASD risk25-27. Collectively, rare ASD-
associated SNVs and CNVs are found in 
about 15% of autistic individuals, although 
no single variant is found in more than 1%.

Rare ASD-associated genetic variants are 
best conceptualized as identifying genetic 
syndromes within the overall population of 
autistic individuals. This extends our knowl­
edge beyond syndromes that are typically 
identified before an ASD diagnosis, such as 
fragile X syndrome and tuberous sclerosis28. 
None of these rare variants leads to an ASD 
diagnosis in every individual, and many 
resulting syndromes also include dysmor­
phic features or involvement of other organ 
systems. Rare ASD-associated variants are 

more often identified in individuals who 
also have intellectual disability (ID), but are 
still enriched in those without ID29,30. Evi­
dence therefore supports genetic testing, 
including fragile X testing, chromosomal 
microarray to detect CNVs, and whole ex­
ome sequencing, for all autistic individu­
als31,32, although clinical uptake remains 
low33. This is unfortunate, as neurodevel­
opmental CNVs are enriched for congenital 
disorders and are correlated with multiple 
psychiatric and medical ailments34, sug­
gesting that they could potentially be used 
to assess risk even beyond ASD.

Genetics-based biomarkers could also be  
used to identify larger subgroups of indi-  
viduals with unifying biology. As one exam-  
ple, the fragile X mental retardation pro­
tein (FMRP) binds to the mRNA of mul-  
tiple genes implicated in ASD23,29, and in-  
dividuals with disruption of any of these  
genes could potentially respond to a com-  
mon treatment. A more concrete approach 
would be to cluster rare genetic variants 
into larger groupings that have defined im­
pact on a signaling pathway, such as mTor 
signaling disinhibition in tuberous sclero­
sis and PTEN hamartoma syndrome35.

Common genetic variation may be an­
other pathway to identifying biomarkers in 
ASD. The first five significant genome-wide  
association studies (GWAS) loci were re­
cently reported in ASD, presenting an oppor-  
tunity to begin studying common variants  
that confer risk36. Thus far, polygenic risk  
scores (PRS) predict less than 3% of risk in 
ASD36, although this is likely to grow with 
larger GWAS sample sizes. Approaches to 
partitioning high and low PRS values alre­
ady suggest avenues toward clinical utility 
in schizophrenia risk prediction or treat­
ment response37,38, and similar opportuni­
ties may also open in ASD.

Peripheral biomarkers

Considerable effort has gone toward i-  
dentifying and understanding potential pe­
ripheral biomarkers in ASD, beginning with 
the first description of elevated blood sero­
tonin levels or hyperserotonemia in 196139. 
Numerous peripheral findings have been 
reported in ASD blood, saliva and stool 
samples, including tests that have been ap­

proved for use by the FDA, but none of these 
has been sufficiently developed to warrant 
its use in the clinic. In many cases, research 
on peripheral biomarkers has focused on 
searching for correspondence to brain or 
behavioral features of ASD, without neces­
sarily establishing a clear target for the bio­
marker’s clinical utility, such as prediction  
of diagnosis or response to treatment.

The serotonin system provides an in­
structive example of the approaches taken 
to peripheral biomarkers in ASD. The de­
scription of hyperserotonemia was an early 
indicator of a biological origin for ASD39, 
in contrast to early attribution of the con­
dition to parenting style40. Even while the 
diagnosis of ASD has climbed from very 
rare to about 2% of school-aged children41, 
rates of hyperserotonemia (>95th percen­
tile) have remained stable at more than 25% 
in ASD (meta-analysis p=10−12)42. Various 
approaches to validation have been applied, 
including demonstration that hypersero­
tonemia is specific to ASD43, heritable44, pri­
marily seen in boys45, and more commonly 
seen in families with multiple affected chil­
dren46, but not associated with a particular 
clinical pattern47. Despite investigations 
spanning six decades, no prospective study 
has yet assessed whether hyperserotonemia 
may predict ASD risk in infants or whether it 
may predict treatment response to medica­
tions that target the serotonin system47.

Numerous other candidate peripheral bio­
markers have been identified, although with  
less consistency across studies or specifi-  
city to ASD. Elevated pro-inflammatory cy-  
tokines, particularly interleukin-6 (IL-6)  
and IL-1β, have been described in several  
studies and are supported by meta-analysis  
48. Increased markers of oxidative stress 
have also been reported, again supported 
by meta-analysis49. Multiple groups have 
found differences in components of the 
stool microbiome in ASD, with some sup­
port but also inconsistency noted in meta-
analysis50.

Overall, these peripheral studies have 
identified broad patterns of difference be­
tween groups of autistic children or adults 
and comparison groups, but have not eval­
uated their utility as clinical biomarkers.  
As noted in other sections below, these mark­
ers may be largely non-specific, due to over-  
lap with other psychiatric and medical con-  
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ditions. One group, though, has been system-  
atically evaluating folate receptor-α auto­
antibody as a potential biomarker in rela­
tion to treatment51. Initial data are intrigu­
ing, indicating that those with the antibody 
are more likely to show improved verbal 
communication following folinic acid ad­
ministration in a placebo-controlled pilot 
trial52. External validation of the biomarker 
and direct replication of these effects are 
still needed.

Finally, some groups have focused on 
composite biomarkers, including transcrip­
tome and metabolome profiles, primarily  
focused on predicting ASD diagnosis. Ini­
tial studies of 100-200 participants provided  
some hope that lymphocyte transcriptome  
profiles might separate autistic children 
from typically developing controls, but lack­
ed a prospective approach53 and/or were not  
specific to ASD versus developmental delay  
54. An industry-funded study of 880 partic-  
ipants failed to find any transcriptome or  
metabolome signature with potential clini-  
cal utility in predicting diagnosis in pre-  
schoolers recruited prior to ASD evaluation  
(NCT01810341). In contrast, an industry-fund-  
ed study of 708 preschoolers with ASD ver­
sus non-referred controls reported a cluster 
of “metabotypes” that predicted ASD diag­
nosis with a sensitivity of 53% and specifici­
ty of 91%55, with 17% having a branch chain  
amino acid profile with higher sensitivity.  
This NeuroPointDx ASD Test is currently mar­
keted to consumers without any evidence 
that it prospectively improves ASD screen­
ing or diagnosis, or that it is useful to guide 
potential treatment. This marketing of a test  
without requiring FDA approval or prospec­
tive evaluation is a cautionary tale for clini-  
cian-scientists collaborating with industry to 
test biomarkers in ASD.

Central nervous system biomarkers

Researchers have sought a brain signa­
ture of ASD since the advent of neuroimag­
ing. In the last three decades, many studies 
have focused on potential brain-based bio­
markers quantified by a variety of indicators 
and techniques. These include head size as 
a proxy for brain size, structural MRI (sMRI) 
to delineate the morphology of brain struc­
tures, functional MRI (fMRI) and EEG to 

elucidate brain function, and cerebrospinal 
fluid (CSF) sampling as a measure of brain 
neurochemistry.

Kanner’s original description of autism 
noted macrocephaly in some but not all 
cases. Consistent with this, later systematic 
examinations of head size in autism found 
macrocephaly in a subgroup that showed 
increased head growth after birth through 
early childhood15,56. Subsequent work sug­
gested an initial surge in head growth in 
infants followed by a regression of growth in 
late childhood, but methodological prob-  
lems weaken these results57. A recent longi­
tudinal study confirmed the initial observa­
tion: a subgroup of ~15% showed persistent 
macrocephaly, primarily driven by gray 
matter and cortical surface area, whereas 
the rest of the ASD sample showed no dif­
ference from the control population58.  
Further, those with macrocephaly showed 
more cognitive impairment and less impro­
vement over time59.

While the early observation of macro­
cephaly pointed to the origins of ASD in 
the brain, structural neuroimaging stud­
ies have not consistently found particular 
brain regions to be implicated in ASD60,61. 
Resting-state functional connectivity stud­
ies have found complex patterns of altered 
connectivity in ASD, with evidence for both 
over-connectivity and under-connectivity 
in short- and long-range networks62,63. Most  
promising as potential biomarkers are the 
findings of longitudinal neuroimaging stud­
ies in infants who have an older sibling with 
autism (“baby siblings”) and are therefore 
at elevated familial risk. In this population, 
changes in gray matter growth and white 
matter connectivity across a child’s first 6-24 
months show robust prediction of later ASD 
diagnosis64,65. These studies have also found 
increased extra-axial fluid volume in babies 
and toddlers who are later diagnosed with 
ASD​66,67, and in toddlers after diagnosis68.

Only a minority of autistic children can 
tolerate an MRI scan, and EEG approaches 
may offer a more feasible alternative. Like 
MRI measures, EEG results suggest dimin­
ished long-range connectivity, but there is 
inconsistency across studies69,70. EEG offers 
the benefit of low cost and high temporal 
resolution, despite poor spatial resolution. 
Investigators use event-related potentials 
(ERPs) to evaluate processing of sensory 

stimuli, including social cues. The ERP 
response to faces is particularly character­
istic, with a negative deflection at approxi­
mately 170 milliseconds (N170) showing 
a delay in many autistic children71,72. This 
N170 signal has been well replicated and 
validated across multiple groups, and is 
the only ASD biomarker to date to be sub­
mitted to the FDA. The initial target of the 
FDA submission is subgroup identification 
within ASD, but there may be future poten­
tial as a marker of treatment response as  
well73,74.

Neurochemical markers have also gener­
ated considerable interest in ASD. Magnetic 
resonance spectroscopy (MRS) studies have  
suggested possible regional changes in 
GABA or glutamate levels, though findings  
are inconclusive75,76. Positron emission to-  
mography (PET) and single photon emis­
sion computed tomography (SPECT) studies 
have indicated decreased serotonin recep­
tor 5-HT2A binding77, which could inform 
treatment studies using medications that 
block 5-HT2A in addition to other receptors.

Recently, decreased CSF vasopressin in 
neonates has been associated with later ASD 
diagnosis78. Parallel findings indicate an 
association between CSF vasopressin levels 
and symptom severity in ASD79. Following 
an initial pilot study with promising results 
for intranasal vasopressin in ASD80, it would 
be logical to assess CSF vasopressin as a 
potential biomarker of treatment response.

Finally, eye-tracking is sometimes de­
scribed as a biomarker in ASD. However, 
most eye-tracking studies represent a fine-
grained analysis of behavior, rather than a 
biomarker per se – except perhaps for pupil­
lometry, which is occasionally applied. 
Non-biased approaches to behavioral ob­
servation are quite promising in ASD, but 
are beyond the scope of this review.

Summary of autism biomarkers

Biomarker development in ASD has rare-  
ly been systematic, but several potential bio­
markers hold promise for future studies.

Genetic testing is now recommended for  
every child with an ASD diagnosis, with find-  
ings identifying genetic syndromes that of-  
ten explain most of a child’s risk, but are not 
specific to ASD. Some peripheral findings 
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are well replicated, but most have not been 
assessed prospectively and none has been 
adequately tested for clinical utility.

Brain-based markers show promise for 
subgrouping individuals, and there is some  
initial evidence in baby sibling studies show­
ing that longitudinal neuroimaging can pro­
vide neural signatures that precede ASD di­
agnosis. After diagnosis, the EEG/ERP N170 
signal has been most rigorously tested as a 
biomarker, with promise for identifying a 
subgroup within ASD and some potential  
as an indicator of treatment response. Fi­
nally, signals across domains support fur­
ther study of serotonin- and vasopressin-
based biomarkers in relation to subgrouping 
or response to targeted treatment.

BIOMARKERS IN 
SCHIZOPHRENIA

The specific relevance of biomarkers 
for schizophrenia lies in the large burden 
related to this disease81 and the costly con­
sequences of trial-and-error approaches to 
clinical decision-making. Delays in effec­
tive treatment involving repeated failed  
trials unnecessarily prolong social impair­
ment and personal suffering, and can in­
crease danger to self or others. Furthermore,  
multiple failed trials can undermine treat­
ment engagement, which is generally already  
tenuous in schizophrenia, especially in the 
early phases of the illness82.

Schizophrenia is the psychiatric diagno­
sis with the most research on personalized 
biomarker approaches after depression83. 
Recent papers have provided a broad over­
view of biomarkers for this disorder84,85, in­
cluding target biomarkers for drug develop-  
ment2,86 and diagnostic biomarkers for patho-  
physiological interrogation84. This section  
will mainly focus on candidate neuroimag­
ing biomarkers that have shown potential 
for eventual clinical applications by virtue 
of their ability to allow out-of-sample pre­
dictions at the individual-subject level (i.e., 
beyond in-sample statistical associations at 
the group level). Discussed topics include 
prediction of conversion to psychosis, treat­
ment response, treatment discontinuation, 
and relapse risk, among others. We will, how­
ever, make exceptions in the case of relevant 
potential applications for which predictive 

performance has not yet been evaluated. 
In such cases, we will discuss statistical as­
sociations as examples of the preliminary 
stages of biomarker development.

Susceptibility biomarkers of 
conversion to psychosis

Susceptibility biomarkers to estimate 
the risk of conversion to psychosis at the 
individual level could be highly useful in 
many ways. They could indicate which sub­
jects at clinical high risk (CHR) for psycho­
sis are most likely to develop a full-blown 
psychotic disorder, which could motivate 
earlier initiation of available treatments87,88 
to reduce the duration of untreated psy­
chosis and its associated impact. Prognosis 
associated with these biomarkers would  
also have inherent value in preparing pa­
tients and families for what to expect in terms  
of chronicity and prognosis. Finally, suscep-  
tibility biomarkers could facilitate person­
alized treatment selection of novel disease-  
modifying agents as they become availa­
ble89-91.

Prognostic models based solely on clin­
ical data are reasonably developed. For ex­
ample, the North American Prodrome Lon­
gitudinal Study (NAPLS2) individualized 
risk calculator92 predicted conversion to 
psychosis with an AUC of 0.71 in the devel­
opment cohort, and subsequently was ex­
ternally validated in two large independent 
cohorts with an AUC ranging between 0.63  
and 0.7993,94. A machine-learning model from  
the Personalized Prognostic Tools for Early 
Psychosis Management (PRONIA) consor­
tium achieved substantial prognostic ac­
curacy using only clinical data, showing a  
balanced accuracy of 76.9%14. Similar pre­
dictive accuracy was achieved with the Co­
lumbia risk calculator (i.e., 73%), based on 
data from the Structured Interview for Pro­
dromal Syndromes95. A major challenge for 
clinical predictive models is that they are 
unlikely to modify clinical practice, as high-
scoring individuals will have greater symp­
tom burden and may already be allocated 
additional resources.

Neural susceptibility biomarkers could 
be clinically useful if they improve predic­
tions above and beyond what is possible 
using clinical data. Investigators from the 

PRONIA consortium trained machine-learn­
ing algorithms using clinical and gray mat­
ter volume maps to predict impaired func­
tion in a CHR cohort of 116 individuals, of 
whom 66 met impairment criteria at one-
year follow-up14. The model using clinical 
data predicted social function at outcome 
with a balanced accuracy of 76.9%, which 
improved to 82.7% when adding volumet­
ric MRI data.

In another study, the same group opti­
mized a predictive algorithm for conver-  
sion risk in CHR states by sequentially in-  
tegrating clinical-neurocognitive-based, 
expert-based, PRS-based, and sMRI-based 
risk estimates for individual subjects, which  
resulted in a combined balanced accuracy  
of 85.9% (84.6% sensitivity, 87.3% specific-  
ity) using leave-one-site-out cross-valida-  
tion96. The accuracy for the algorithm combin­
ing risk estimates across modalities surpass-  
ed that based solely on clinical and neuro-  
cognitive data or other individual modali­
ties. Notably, this stepwise algorithm only re-  
quired additional modalities that were deem­
ed necessary (i.e., MRI data would be required 
only if clinical data were insufficient), a fea­
ture that could improve the feasibility of its 
clinical implementation by reducing costs 
and diagnostic burden.

In a smaller study, striatal glutamate  
measured by MRS showed promise in 19 in-  
dividuals, including 7 converters. The accu­
racy of a predictive model based on clinical  
information alone was 82.1%, and this in-  
creased to 86.9% when adding a striatal glu­
tamate measure into the model97.

Other biological measures that could be  
integrated in predictive algorithms show  
some promise. One example is a neuroana­
tomical-maturity marker developed by the 
NAPLS2 consortium: in secondary analyses 
of 275 CHR adolescents (39 converters), a 
“brain-age-gap” marker showed an AUC of 
0.63 in predicting conversion in the devel­
opment sample using 10-fold cross-valida­
tion98. Another promising candidate is the  
EEG-based mismatch negativity (MMN): in  
a study of 62 research participants who were 
categorized into high or low risk based on 
MMN, the respective hazard rate for conver-  
sion was 85% versus 13%99.

These and other encouraging results 
showing in-sample associations100,101 call 
for additional studies directly testing the 
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predictive ability and generalizability of 
MMN as a susceptibility biomarker for con­
version. Similarly, while resting-state fMRI  
measures, including indices of cerebello-  
thalamo-cortical connectivity102, have shown 
robust results in association studies, their 
ability to improve upon the predictive 
capabilities of structural, neurochemical or  
MMN-based measures – alone or in com­
bination – remains to be studied. Overall, 
though, most susceptibility neural biomark­
ers for conversion have not yet been tested 
against models using clinical information.

It is important to note that the candidate 
markers reviewed here have undergone 
varying levels of validation. For instance, 
the volumetric MRI model from PRONIA14 
showed internal validity in several analy­
ses, ruling out scanner/site effects by using 
nested leave-one-site-out cross-validation 
and assessing various effects of site, image 
quality, follow-up interval, and baseline 
social function. Similar internal-validation 
steps were taken for the NAPLS2 brain-age-
gap marker98, but not for the striatal gluta­
mate biomarker97. With respect to external 
validation, the initial gray-matter-volume 
PRONIA biomarker14 used rigorous cross-
validation but so far lacks validation in in-  
dependent samples. In contrast, the sub­
sequent multimodal algorithm for conver­
sion risk from PRONIA was externally vali­
dated in independent samples, yielding a  
balanced accuracy of 65.3-70.4%. This ex­
ception withstanding, lack of independent 
validation remains a caveat that applies to 
most candidate biomarkers.

Finally, striatal dopamine excess has been  
measured with PET in CHR subjects103,104. 
Elevated striatal [18F]DOPA uptake pre­
cedes the onset of psychosis105, correlates 
with greater severity of prodromal symp­
toms and neuropsychological impairment,  
predicts conversion, and, in both the pro­
drome and schizophrenia, relates negative­
ly to prefrontal cortical activation during 
cognitive tasks106,107, although findings are 
not consistent108,109. Uptake is also pre­
dominant in the associative striatum​110,111. 
Thus, striatal [18F]DOPA uptake could ad­
vance to validation in multisite studies as 
a predictive diagnostic biomarker, but the 
cost and limited availability of PET facilities 
may limit its practicality. Neuromelanin-​
sensitive MRI112, a non-invasive and reli­

able measure of nigrostriatal dopamine 
function relevant to psychosis113, could  
provide an alternative. However, more work 
is needed to show its potential and justify 
the investment in broader testing and vali­
dation.

Susceptibility biomarkers of 
complications in psychosis

Susceptibility biomarkers could be clini­
cally useful if they predict the development 
of complications over the course of schizo­
phrenia. One example is the prediction of  
violent and/or self-injurious behavior, for 
which individuals with schizophrenia are 
at risk114,115. Some models using clinical 
information have shown fair in-sample as­
sociations116,117, but their generalizability 
needs to be evaluated. Neuroimaging stud­
ies have similarly shown associations of 
certain structural and functional features 
with dangerous behaviors118, and in some 
cases these neuroimaging measures have 
been studied alongside clinical variables119. 
Further biomarker development is needed 
in this area.

Predictive biomarkers of treatment 
response

Acute psychosis

Around 20-30% of individuals may have 
treatment-resistant schizophrenia120, and 
for these patients clozapine is the only ap­
proved drug39,40,120,121. Despite its clear 
superiority over other antipsychotics, clo­
zapine has response rates neighboring 40% 
and carries potentially life-threatening side 
effects3. Thus, expediting clozapine treat­
ment for those likely to exhibit treatment 
resistance and who may benefit most from 
clozapine represents a relevant target for  
predictive biomarkers. More broadly, bio-  
markers of treatment response could fur-  
ther aid in personalized treatment selection, 
as more treatments with distinct mecha-  
nisms of action, such as cholinergic agents  
122, become available.

Perhaps the most advanced treatment-
response biomarkers along the develop­
ment pipeline focus on striatal resting-state 

fMRI measures, including the functional 
striatal abnormalities (FSA) index123 and 
the striatal connectivity index (SCI)124.

The FSA index has been conceptualized  
as a diagnostic classifier. It was developed  
using data from 1,100 participants across 
seven sites, incorporating measurements 
that included fractional amplitude of resting-
state derived low-frequency fluctuations125 
of striatal voxels as well as intra- and extra-
striatal functional connectivity of those vox­
els. A support vector machine (SVM) clas­
sifier was first trained to predict the diag­
nostic status of each individual using these 
features, and the FSA for any given individ­
ual was defined as the distance in the SVM 
feature space to the hyperplane separating 
cases and controls. Using leave-one-site-
out cross-validation, the FSA discriminated 
cases from controls with 80% accuracy123.

In a second step, the investigators mea­
sured the association between FSA scores 
and symptom change over six weeks of anti-  
psychotic treatment in a subset of 91 indi­
viduals from two of the sites. At both sites, 
more control-like FSA scores showed mod-  
erate-to-strong correlations with improve­
ments in total symptom severity (r=0.62, 
p<0.001 and r=0.42, p<0.001, respectively). 
Substantial efforts were made to rule out 
confounding factors associated with anti­
psychotic treatment, head motion, baseline 
symptom severity, and site effects, and to 
show specificity of the FSA relative to other 
psychiatric diagnoses and markers based 
on non-striatal fMRI features123. However, 
a caveat is that the FSA’s predictive ability 
was not externally validated, as the demon­
stration of treatment-response prediction 
relied on data trained to classify diagnosis 
(although in orthogonal tests).

The SCI was first developed on a cohort 
of 41 individuals undergoing initial treat­
ment with aripiprazole or risperidone, 24 
of whom responded to treatment over 12 
weeks. Functional connectivity maps for six 
bilateral subregions within the striatum126 
were used to identify pairwise connectivity 
features associated with time to response in 
univariate tests. Ninety-one features were 
identified and weighted according to their 
association with time to response, and this 
information was used to estimate a scalar 
value summarizing the connectivity pro­
files for each individual, albeit using uni­
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variate methods without cross-validation. 
Nonetheless, external validation was dem­
onstrated in an independent cohort of 40 
individuals with multi-episode schizo­
phrenia, where individual SCI scores, cal­
culated with the same methodology as the 
discovery cohort, discriminated between 
responders and non-responders with an 
AUC of 0.78126. Further studies have linked 
the SCI to processes implicated in treat­
ment responsiveness, such as duration 
of untreated psychosis127, relapse128, and 
interactions with cannabis use129, providing 
some support for its internal validity.

Non-striatal functional biomarkers have  
also been examined. Resting-state function­
al connectivity between bilateral superior 
temporal cortex and other cortical regions 
was used in an SVM classifier model to pre­
dict 10-week risperidone response in 38 
medication-naïve individuals130. This clas­
sifier showed a leave-one-subject-out cross-​
validation accuracy of 82.5%, although  
checks of internal validity were limited. Oth-  
er studies have tested measures of hippo-  
campal functional connectivity131,132, or ante­
rior cingulate cortex glutamate levels mea­
sured with spectroscopy133-136, as potential  
biomarkers of treatment response, but so far  
these studies have only provided support  
for in-sample statistical associations and  
are awaiting further validation. This is also  
the case for neuromelanin-sensitive MRI112,  
which is currently being tested137 as a po­
tential biomarker of treatment response, 
building on previous dopamine PET work138.

While elevated dopamine levels in the 
striatum are linked to antipsychotic treat­
ment responsiveness139,140, no prospective 
studies have assessed their potential util­
ity as a biomarker for treatment response. 
This relates to the difficulty in implement­
ing PET biomarkers at large scale and the 
limited therapeutic choices from which to 
select, in the case that patients were found 
to be non-responsive to currently used anti­
psychotics, which are all acting on D2 re­
ceptors.

Psychosis relapse

Another major problem in schizophre­
nia is the frequency and burden of relapse, 
underscoring the need for predictive bio­

markers of this important clinical outcome. 
About 80% of patients with schizophrenia 
will relapse at least once over the course of 
their illness, and many of these patients will 
relapse numerous times141,142. Relapse cor­
relates to increased potential danger to self 
or others, and to cumulative decrements in 
treatment responsiveness142,143.

Antipsychotic drugs, in addition to miti­
gating acute psychotic symptoms, are effi­
cacious in preventing relapse144. So, relapse 
usually occurs after interruption of mainte­
nance antipsychotic treatment145, although  
many patients relapse while on mainte­
nance treatment146. Because pathophysio­
logical differences may exist between  re-  
lapse that occurs while patients are on or off  
antipsychotics, these two scenarios war­
rant separate lines of investigation147. Bio-  
markers could allow identification of low-
relapse-risk individuals as candidates for 
monitored interruption of maintenance 
treatment, and for high-relapse-risk indi­
viduals as requiring more intensive and 
consistent intervention148. To date, the lit­
erature on this topic is fairly limited, and no 
validated biomarkers have shown predic­
tive value as yet. Nonetheless, exploratory 
analyses suggest that the SCI may be dis­
tinctly sensitive to relapse associated with 
treatment interruption128, which encour­
ages its study in the future as a potential 
biomarker of relapse risk, in addition to its 
utility in diagnostic prediction.

Cognitive dysfunction

Although most biomarkers to date have 
aimed to predict and intervene on positive 
symptoms of schizophrenia, interest has 
recently emerged in developing predictive 
biomarkers for interventions addressing 
cognitive dysfunction. MMN has been stud­
ied for this purpose, based on its favorable 
test-retest reliability149,150 and the relation­
ship between its deficits and cognitive dys­
function in schizophrenia149-151.

To date, no investigations have reported 
cross-validated performance of MMN in 
predicting treatment response to cognitive 
training, but several studies are suggestive 
in this respect. For example, one trial found 
that the change in MMN after 1 hour of 
auditory cognitive training was associated 

with the final improvements seen with a 
full course of treatment152. Two other stud­
ies found that baseline MMN deficits pre­
dicted greater gains across various cognitive 
domains in response to a similar type of 
training153,154. Thus, converging data suggest 
the potential for developing MMN as a pre­
dictive biomarker for treatments address­
ing cognition. However, internal validity 
remains to be established, particularly as 
MMN may reflect illness duration and nico­
tine smoking155. Moreover, utility for this 
class of biomarkers will ultimately depend 
on the availability of effective interventions 
for cognitive dysfunction in schizophrenia.

Other pragmatic outcomes

A critical aspect of successful biomarker 
development is real-world implementa­
tion. For example, the SCI was related to 
length of hospital stay123, speaking to its 
potential impact in real-world clinical set­
tings. Other early examples include a study 
predicting treatment discontinuation on 
the basis of subfield hippocampal vol­
umes156, which reported that dentate gyrus 
volume predicted treatment disengage­
ment with an AUC of 0.75.

However, as real-world implementa­
tion must follow other necessary steps in 
the biomarker development pipeline, most 
candidate biomarkers are not ready for test­
ing in real-world clinical settings.

Predictive biomarkers of medication 
side effects

The prediction of treatment side effects, 
while highly important, is likely among the 
most challenging goals for neurophysio­
logical biomarkers in schizophrenia. This is 
because some side effects may be partly due 
to non-neural mechanisms (e.g., atypical 
antipsychotics modulating insulin effects 
on adipocytes157), and some of the most 
serious side effects, such as neuroleptic 
malignant syndrome158, are relatively rare.

Bearing in mind these limitations, neu­
ral markers for weight gain have been stud­
ied based on observations that atypical anti­
psychotics can enhance anticipatory reward 
activations to food in the striatum159 and 
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affect the hypothalamic histaminergic sys­
tem160. Some initial data suggest that stri­
atal function may predict antipsychotic-
induced weight gain. For example, in a trial  
with amisulpride in 69 early-phase patients, 
weight gain was associated with low reward-  
related activation of the right putamen161. 
In another clinical trial in 81 early-phase pa-  
tients treated with atypical antipsychotics, 
baseline left putamen volume and lower 
sensory-motor connectivity at rest corre­
lated with weight gain162.

This area of biomarker development is 
thus at a preliminary stage and requires more  
work. Similarly, other side effects for which 
neural measures may be appropriate, such 
as tardive dyskinesia163, represent a poten­
tial target for future development.

Summary of schizophrenia 
biomarkers

Recent efforts are advancing biomarker 
development for schizophrenia, particu­
larly in clinically relevant areas of predic­
tion of conversion to psychosis in at-risk 
individuals and prediction of treatment re­
sponse in acute psychosis.

In the area of conversion prediction, we 
have discussed examples of well-validated 
multimodal algorithms incorporating sMRI 
and clinical information (and in some cases 
genetic and other data), which have reached 
the third stage of external validation in the 
biomarker development pipeline. In the area 
of treatment-response prediction, we have 
also discussed reasonably well-developed 
candidate biomarkers, mostly those based 
on striatal resting-state fMRI (FSA123 and 
SCI124), which show different levels of gen­
eralizability in external samples.

While none of the reviewed candidate 
biomarkers have established clinical util­
ity – the fourth and final stage of biomarker 
development required for incorporation 
into clinical practice – the highlighted can­
didates are cause for optimism. For these  
most promising candidates, definitive dem-  
onstrations of external validity by indepen­
dent groups or via large-scale internation­
al studies are recommended, followed by 
demonstrations of clinical utility. Investing in  
these studies, particularly those using rel­
atively accessible measures (e.g., sMRI, 

PRS, resting-state fMRI) for clinically ac­
tionable indications (e.g., conversion and 
treatment-response prediction) seems well 
justified, given supportive evidence and 
high potential impact on clinical practice. 
Further development of multimodal se­
quential algorithmic workflows with the 
ability to decrease costs and diagnostic bur­
den96 also seems a fruitful area for future 
work. Finally, since there is no guarantee 
that these highlighted candidate biomark­
ers will show clinical utility, development of 
other reliable, broadly accessible, and well-
motivated measures (e.g., EEG MMN and 
neuromelanin-sensitive MRI112) currently 
at the early stages is still warranted.

A potential genetic biomarker is the PRS 
derived from the latest GWAS in schizo­
phrenia, which can index substantial dif­
ferences in liability between individuals. 
Compared with the lowest centile of PRS, 
the highest centile of PRS has an odds ratio 
for schizophrenia of 39 (95% CI: 29-53). 
However, the clinical utility of the PRS as a 
diagnostic biomarker is limited, since the 
median area under the receiver operat­
ing characteristic curve (AUROC) is only 
0.72, meaning that the liability explained is 
insufficient for predicting diagnosis in the 
general population164.

BIOMARKERS IN ANXIETY 
DISORDERS

Anxiety disorders – encompassing spe­
cific phobias, social anxiety disorder, agora­
phobia, panic disorder, generalized anxiety 
disorder (GAD), separation anxiety disorder, 
and selective mutism – are the most frequent 
mental disorders, with a 12-month preva­
lence of 10-14%165-167. These disorders gen-  
erate a substantial socioeconomic burden  
168, as well as significant direct and indirect  
health care costs169. They are also highly co-  
morbid with each other, and carry an in-  
creased risk of sequential comorbidity with 
depression170 and SUDs171.

Cognitive-behavioral psychotherapy (CBT) 
and various psychotropic medications have 
proven efficacy in anxiety disorders, but 
treatment response is achieved in only half  
to two thirds of cases172-174. Accordingly, these  
disorders often follow a chronic course, with 
a high rate of recurrence (32.1%), and may 

even show stable treatment resistance (8.6%) 
at nine-year follow-up175.

Given this high burden and limited treat­
ment efficacy, the identification of valid 
biomarkers for anxiety disorders is critical. 
Multiple biological mechanisms that may 
potentially serve as biomarkers of patho­
genesis or treatment response to psycho­
therapy or pharmacotherapy have been 
identified176-181. Selected findings based 
on genetic, neuroimaging, neurochemical, 
neurophysiological and/or neurocognitive 
assays, which could potentially lead to bio­
markers with additional validation, are pre­
sented below.

Susceptibility biomarkers

Genetics

Candidate gene studies have found that  
COMT (rs4680, G [val] allele), NPSR1 
(rs324981, T allele), TPH1 (rs1800532, AA 
genotype), HTR2A (rs6313, T allele), and 
MAOA (uVNTR, long alleles) gene vari­
ants are most consistently involved in the 
pathogenesis of panic disorder. OXTR 
(e.g., rs2254298 GG genotype), SLC6A4 (5-​
HTTLPR, short [s] allele), MAOA (uVNTR,  
long alleles), and HTR1A (rs6295, G allele) 
gene variation is most consistently involved 
in other anxiety phenotypes182-185. However, 
since replication has largely been elusive, 
candidate gene studies have mostly given 
way to GWAS, a more powerful and unbi­
ased approach.

GWAS conducted in cooperative efforts 
– such as the ANGST (Anxiety NeuroGe­
netics Study) consortium, the UK Biobank, 
and the Danish iPSYCH study – have sug­
gested that several single nucleotide poly­
morphisms (SNPs) in genes such as ESR1, 
GLRB, MYH15, NTRK2, PDE4B, RBFOX1, 
SATB1, TMEM132D, TMEM106B, and a 
non-coding RNA locus associated with the  
CAMKMT gene, are linked to anxiety-related 
traits, current anxiety symptoms, or lifetime 
anxiety disorders186. The largest GWAS of 
anxiety traits to date, using the Million Vet­
eran Program dataset, identified genome-
wide significant associations with the Gen­
eralized Anxiety Disorder 2-item (GAD-2) 
score near genes involved in global regula­
tion of gene expression (SATB1) and the 
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estrogen receptor alpha (ESR1)187. These 
are promising leads, but the effects require 
confirmation as more data are acquired.

Given the close interaction of genetic fac­
tors with environmental influences in the 
pathogenesis of anxiety disorders, studies 
are increasingly testing gene-environment 
(GxE) interaction effects using both can­
didate gene (e.g., RGS2188) and genome-
widee.g.,189 approaches. These, too, have 
produced initial, but as-yet unreplicated 
results. The GxE concept has recently been 
expanded to include a dimension of “cop­
ing”, yielding a three-dimensional model 
(GxExC). For instance, replicated evidence 
has been reported for an interactive effect 
on trait anxiety of a neuropeptide S receptor 
(NPSR1) gene variant, early adversity, and 
coping factors, such that adaptive coping 
compensates for the otherwise deleterious 
effects of a GxE risk constellation190.

Finally, growing evidence is emerging 
for epigenetic mechanisms that can bridge 
between genetic and environmental lev­
els191. For instance, altered DNA methyla­
tion patterns in the MAOA, OXTR, BDNF, 
NET, GAD1, CRHR1 and NR3C1 genes 
have been associated with panic disorder 
or social anxiety disorder192,193. In addi­
tion, still-underpowered epigenome-wide 
association studies (EWAS) in panic disor­
der and social anxiety disorder suggestively 
point to altered DNA methylation in previ­
ously unidentified risk genes194-197.

Given the small effect sizes of individual 
genetic variants, a combination of genetic, 
epigenetic and further molecular markers 
might be more informative than genetic or 
epigenetic data alone. For example, as the 
field matures, PRS such as those used to 
predict illness course in schizophrenia198 
could be developed for anxiety disorders. 
An important caveat in epigenetic studies 
is that they have largely relied on periph­
eral tissues (with the exception of inves­
tigations in post-mortem samples), and 
epigenetic changes in peripheral tissues 
do not provide direct evidence of changes 
in the central nervous system199. Provid­
ing some optimism, though, studies that 
compared peripheral and central tissue 
have often reported considerable functional  
overlap192.

Neuroimaging

Numerous structural and task-related 
fMRI, PET, SPECT and MRS studies have 
been conducted in anxiety disorders. Struc­
tural studies have not provided consistent 
results, in terms of regions or directionality. 
In functional studies, altered brain activa­
tion elicited in response to words or pic­
tures with anxiety- or fear-related content 
has been observed in the “fear network”. 
This includes both increased and decreased 
inhibitory control-relevant activity in the 
orbitofrontal and in the dorsolateral, dorso­
medial and ventrolateral prefrontal cortex, 
as well as mostly increased activity in lim­
bic structures such as the amygdala, insula, 
anterior cingulate cortex, bed nucleus of 
the stria terminalis (BNST), and striatum. 
The BNST may be involved in sustained 
rather than phasic anxiety180,200.

Particularly consistent evidence has e­
merged for increased amygdala reactiv­
ity towards negative emotional stimuli in 
combination with insufficient prefrontal 
control201. One interpretative constraint, 
though, is that this activation phenotype 
tends to be seen across anxiety, stress-relat-  
ed and mood disorders, limiting its value 
as a biomarker able to distinguish between 
clinical presentations.

Psychophysiological assays and  
challenges

In general, “fear”-based disorders are 
often characterized by heightened physi­
ological reactivity to salient threat stimuli, 
as measured by skin conductance response, 
fear-potentiated startle, pupillometry, corti­
sol, alpha amylase, or heart rate variability. 
In contrast, “anxiety”-related disorders are 
often characterized by a more blunted pat­
tern of physiological reactivity using these 
same assays202. This is a potentially note­
worthy dissociation providing some support 
to the notion that these biological measure­
ments may be at least partly disorder-specific 
and developed as potential biomarkers.

An exemplary longitudinal study dem­
onstrated the utility of the error-related neg­
ativity (ERN) as a specific, albeit not highly 

sensitive, electrophysiological biomarker 
predicting the first onset of GAD over 1.5 
years in adolescent girls: ΔERN increased 
the odds of GAD onset to 1.64 even after 
controlling for clinical risk factors203. There 
is also evidence for altered interoceptive 
sensitivity as a marker or mechanism of 
anxiety disorders204: for example, hyper­
sensitivity to carbon dioxide (CO2) intro­
duced during a laboratory challenge has 
been proposed as a relatively specific and 
heritable predictive marker for subsequent 
panic attacks, but not necessarily panic dis­
order, during long-term follow-up205,206.

There are also pharmacological chal­
lenges that have the potential to serve as 
risk or diagnostic biomarkers, particularly 
in panic disorder. In one study, a yohim­
bine challenge increased panic symptoms 
in patients with panic disorder more than 
healthy controls, and the extent of the 
yohimbine-induced symptoms in patients 
(but not controls) correlated with a trait mea­
sure assessing fear of publicly observable 
anxiety207. Similarly, another study showed 
that m-chlorophenyl-piperazine (mCPP) 
provoked panic symptoms in patients with 
panic disorder but not in those with general­
ized social anxiety disorder208, showing some 
diagnostic specificity. Finally, cholecysto­
kinin tetrapeptide (CCK-4) induces panic 
symptoms in individuals with panic disorder 
at a greater frequency than in healthy con­
trols209, and the extent of symptom expres­
sion seems to be dose-dependent210.

Predictive biomarkers of therapeutic 
response

Genetics

The 5-HTTLPR/rs25531 variant in the 
SLC6A4 gene has been extensively explored 
in the context of psychotherapy-genetic 
studies of anxiety disorders, which how­
ever have produced mixed results. A recent 
meta-analysis incorporating 10 independ­
ent samples totaling 2,195 patients could 
not confirm a role of this genetic variant in  
moderating the effect of CBT on anxiety dis­
order outcomes211. Similarly, limited stud­
ies investigating other serotonin-related 
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(e.g., HTR1A, HTR2A, MAOA, TPH, TPH2), 
dopamine/noradrenaline-related (e.g., COMT,  
DRD2, DAT1), or neurotrophic factor-related 
(BDNF, NGF) genes did not report consist­
ently replicable results212. The largest therapy-
genetic GWAS meta-analysis of CBT treat­
ment response in adults with anxiety disor­
ders or major depressive disorder and in chil­
dren with anxiety disorders (total N=2,724) 
failed to detect any sufficiently robust asso­
ciation of genetic variation with treatment 
outcome213. Finally, some recent studies have 
focused on potential epigenetic predictors of 
psychotherapy response in anxiety disorders, 
mostly pointing to a potential role of predic­
tive DNA methylation patterns in the MAOA, 
SLC6A4, and FKBP5 genes192.

Pharmacogenetic studies in anxiety dis­
orders have investigated candidate genes 
involved in pharmacokinetics (i.e., drug 
availability, metabolism and degradation) 
such as CYP2D6 and CYP2C19, or candi­
date genes involved in pharmacodynamics 
(i.e., receptors, transporters) of the seroto­
nin, dopamine and noradrenaline systems; 
hypothalamic-pituitary-adrenal axis (HPA); 
stress pathways; and neurotrophic factors. 
Thus far, the results have been inconclu­
sive186,214. One study used a commercially 
available test (NeuroIDgenetix®) in GAD215, 
but industry-sponsored pharmacogenetic  
tests have yet to be implemented in daily 
clinical practice. To the best of our knowl­
edge, only one GWAS to date has investigated 
genetic markers of treatment response to ven­
lafaxine in GAD, but there was no genome-
wide significant association216. Pharmaco-
epigenetic research in anxiety is still in its 
infancy and has yet to yield any consistently 
promising findings193.

Neuroimaging

A systematic review of 17 studies on neu­
roimaging markers predicting psychother­
apy response in anxiety disorders revealed 
the most compelling evidence for: a) mostly 
increased pre-treatment dorsal anterior 
cingulate cortex activity during relevant 
fMRI tasks (e.g., emotional face processing/
matching, anticipation of emotional pic­
tures, or differential fear conditioning); and 
b) increased resting-state anterior cingulate 
cortex-amygdala coupling212.

Similarly, a quantitative meta-analysis 
of primarily emotion processing/regula­
tion task-based fMRI studies observed that 
increased dorsal anterior cingulate cor­
tex activity was related to CBT response in 
17 datasets comprising 442 patients with 
various anxiety and stress disorders217. This 
meta-analysis further revealed associations  
between treatment response and activations  
spanning the larger salience and interocep­
tion networks (i.e., comprising not only the 
dorsal anterior cingulate cortex, but also the 
right inferior frontal gyrus, anterior insular 
cortex, and dorsomedial prefrontal cortex). 
A sub-analysis restricted to patients with 
social anxiety disorder revealed positive 
correlations between CBT response and 
activity of the bilateral Rolandic operculum, 
subgenual anterior cingulate cortex, right 
precentral gyrus, right dorsolateral prefron­
tal cortex, right supplementary motor area, 
and posterior cingulate cortex217.

Perhaps most promising of all, the first 
multimodal study integrating clinical data 
with resting-state and structural brain con­
nectomics imaging data using a machine 
learning approach predicted CBT outcome 
at a single-subject level in social anxiety dis­
order with an accuracy of 84%; there was a 
five-fold improvement in predictive power 
compared to clinical measures of severity 
and single connectomic measures alone218.

Additional studies have examined po­
tential neuroimaging biomarkers of response 
to pharmacotherapy. An exemplary fMRI 
study in social anxiety disorder applying 
the Multi-Source Interference Task revealed 
that greater pre-treatment dorsal anterior 
cingulate cortex reactivity predicted better  
response to combined psychotherapy and 
selective serotonin reuptake inhibitor (SSRI) 
treatment with 83% accuracy219. In a pilot 
study of patients with the same diagnosis,  
higher baseline activity in the anterior and 
lateral parts of the left temporal cortex and  
the lateral part of the left middle frontal re­
gions, measured by Tc-99m HMPAO SPECT, 
predicted non-response after a six-eight 
week regimen of citalopram220.

Also in social anxiety disorder, a PET 
study discerned task-based negative left 
amygdala/rostral anterior cingulate cortex 
and positive left amygdala/dorsomedial 
prefrontal cortex co-activation patterns in 
SSRI responders. However, this study and 

further comparable investigations in other 
anxiety disorder phenotypes applied a lon­
gitudinal pre-post design and thus followed 
a mechanistic rather than a predictive study 
approachsee221.

In GAD, a favorable response to eight-
week treatment with venlafaxine was pre­
dicted by greater rostral anterior cingulate  
cortex activity and lower amygdala activity  
in response to fearful faces, and by increased  
pregenual anterior cingulate cortex activity  
in anticipation of aversive and neutral im­
ages222,223.

Other measures

Cardiovascular markers – including tonic  
and/or phasic heart rate, heart rate variabi­
lity, and blood pressure – as well as markers  
of the adrenergic system – including adreno-   
ceptor density and plasma 3-​methoxy-4-  
hydroxyphenylglycol (MHPG) levels – have 
been proposed as potential markers of CBT 
response. Studies testing these biological 
assays, however, have largely used subopti­
mal study designs and/or relied on limited 
sample sizes212. Their potential to serve as bio-  
markers for anxiety disorders, therefore, re­
mains to be determined.

Summary of anxiety disorder 
biomarkers

The majority of studies to date have fail-  
ed to identify valid biomarkers of anxiety dis-  
order pathogenesis or treatment response. 
Only a few studies have actually assessed 
sensitivity, specificity, or positive/nega­
tive predictive values203,218,219,224,225, and 
are potentially actionable. For instance, 
ERN showed a modest overall accuracy 
in predicting future GAD, with an AUC of 
0.60, but marked elevations of ERN were 
quite informative about risk, and predicted 
onset above and beyond clinical risk fac­
tors203. Notably, because EEG can be widely 
deployed in clinical practice and the ERN 
marker is malleable by attention bias modi­
fication training226, this could be a promis­
ing and practicable risk marker of GAD.

Some task-based MRI findings have also 
shown satisfactory prediction of treatment 
response218,219,224,225. Biomarkers based 



246� World Psychiatry 22:2 - June 2023

on connectomics neuroimaging methods 
(resting-state fMRI, diffusion MRI)218 might 
offer some additional advantages over acti­
vation mapping markers, as connectomics-
based measurements can be acquired more  
consistently and reliably across settings, are  
independent of task performance con­
founders, and can be performed even in 
infants218. It should be noted, however, 
that MRI-based biomarkers ultimately 
might prove less clinically viable than neu­
rophysiology-based markers, since fMRI 
technology and analysis expertise are cur­
rently expensive and typically only available 
in large academic medical centers.

Apart from the few exceptions illustrated 
above, the majority of studies reported find­
ings on a merely correlational or associative 
level, and did not assess sensitivity, specific­
ity or positive/negative predictive values. 
According to the criteria for biomarker dis­
covery11, markers of anxiety disorder patho­
genesis and treatment proposed so far re-  
main at stage 1 (“target identification”) and 
have not explicitly ruled out confounding 
factors such as stress, comorbidity, physi­
cal activity and/or psychotropic medication 
(stage 2, “internal validation”). Most pres­
ently available findings also warrant repli­
cation in validation samples independent 
of the discovery samples (stage 3, “external 
validation”), and await testing in trials dem­
onstrating “clinical utility” (stage 4). There­
fore, their potential remains unclear223.

BIOMARKERS IN POST-
TRAUMATIC STRESS DISORDER

A distinct literature has developed on 
biomarkers for PTSD. This research fre­
quently operationalizes post-traumatic 
stress with continuous scores on measures 
such as the PTSD Checklist (PCL-5)227. The 
most well-established pharmacotherapies 
for PTSD are SSRIs, but they have limited 
efficacy228. Consequently, PTSD research 
has focused on developing susceptibility 
and diagnostic biomarkers.

Genetics

GWAS have revealed that contributions 
of individual genetic polymorphisms to  

PTSD are very small229. For example, in the  
largest GWAS to date (48,221 individuals with 
PTSD and 217,223 without), the effect size 
of the top single-nucleotide polymorphism 
(SNP) was trivial (odds ratio, OR​=1.06)230. 
However, PRS that combine effects of hun­
dreds of thousands of SNPs show meaning­
ful, albeit modest effects. The strongest PRS 
was correlated at r=.20 with the PTSD Check­
list for DSM-5 (PCL-5) score. This estimate is 
likely optimistic, because it was assessed us­
ing internal replication. Other studies have 
observed effect sizes of r=.10 to r=.16 in inde­
pendent samples using an earlier version of 
this PRS231,232.

Neuroimaging

Numerous neuroimaging studies have 
investigated potential biomarkers of PTSD, 
but they have produced mixed results, also 
due to small sample sizes233. Meta-analyses 
have revealed clear links of PTSD to smaller 
hippocampal, amygdala and total brain 
volume, and lower structural connectivity 
of the corpus callosum234,235. Few studies 
examined other regions, making conclu­
sions about them less reliable. Moreover, 
meta-analyses are vulnerable to publica­
tion bias (e.g., primary studies reporting 
only on regions where significant effects 
were found).

Mega-analyses can address this limita­
tion by pooling voxel-level data from mul­
tiple samples to perform whole-brain 
analyses and present an unbiased picture 
of neural correlates. The Enhancing Neu­
roImaging Genetics through Meta-Analysis 
(ENIGMA) consortium performed a mega-  
analysis of cortical volume comparing 1,379  
people with PTSD to 2,192 without236. Sig­
nificant differences were found in 21  re­
gions, all showing smaller volume in PTSD, 
but the largest group difference was only 
0.17 standard deviations (SD). Another 
ENIGMA study examined subcortical vol­
umes in 794 individuals with PTSD and 
1,074 without237. Hippocampal volume 
was lower in PTSD by 0.17 SD. Amygdala 
volume and total brain volume were also 
smaller, but these differences did not reach 
significance. ENIGMA mega-analysis was  
also conducted on structural connectivity  
in 1,426 people with PTSD and 1,621 with­

out238. Significant differences emerged in  
only one region, tapetum of corpus callo­
sum, where structural connectivity was low-  
er in PTSD by 0.11 SD.

Overall, these ENIGMA studies used ri-  
gorous methodology, and alignment with 
previous meta-analyses further increases 
confidence. However, their results have not 
been confirmed in sufficiently powered in-  
dependent studies yet, and their relevance 
for developing biomarkers of susceptibility,  
prediction, or treatment response is ques­
tionable.

As links between PTSD and regional struc­
tural morphology are weak, at least for 
standard neuroimaging modalities, one po-  
tential avenue for improvement is if re-  
gions or voxels are combined into a com­
posite biosignature, especially using ma-  
chine learning techniques. Reliable com­
posites will likely require larger sample 
sizes than currently available for PTSD. For  
example, research to estimate a participant’s  
age from sMRI found that a biosignature  
developed in a sample of 35,474 individuals  
correlated at r=.69 with age in an independ­
ent sample239. Performance of this biosig­
nature was proportional to the sample size 
used to develop it, although most of the 
increase occurred by the sample size of 
5,000.

Peripheral biomarkers

Numerous peripheral measures have 
been explored as potential biomarkers of 
PTSD, and we consider only the most stud­
ied ones.

Psychophysiology research has linked 
PTSD to autonomic nervous system func­
tioning. Meta-analyses of heart rate vari­
ability and respiratory sinus arrhythmia 
found differences between people with 
and without PTSD of 0.16 to 0.50 SD240,241, 
though some of this signal may be due to 
potential confounders such as low socio­
economic status or physical comorbidi­
ties. Another possible marker is startle 
response to an acoustic probe (i.e., sud­
den loud sound) when the person expects 
danger (e.g., possible electric shock) (fear-
potentiated startle). This paradigm pro­
duces reliable differences in startle magni­
tude between danger and safety conditions, 
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but the link to PTSD is unclear. It appears 
that some patients with PTSD show poten­
tiation, while others are indistinguishable  
from healthy participants242. This casts doubt  
on fear-potentiated startle as a viable bio­
marker.

Biomarker research has also focused on  
developing relevant assays from blood, urine  
and saliva. Evidence suggests that these 
assays are informative, albeit imperfect, sur-  
rogates for brain tissue243-246. Initially, peri­
pheral tissue studies focused on candidate 
markers, such as cortisol and inflamma­
tion markers247,248. They reported elevat-  
ed inflammation in PTSD, but the findings 
were quite mixed and may have been con­
founded by physical comorbidities.

Omics studies seek to investigate tissues 
comprehensively. The largest methylome-
wide study included 878 participants with 
PTSD and 1,018 without, finding four sig-  
nificant methylation sites, all in gene AHRR  
249. Two of these sites were replicated in an 
independent sample250. However, the differ­
ence between groups was small even for the  
top site, and a composite methylation sig­
nature was not attempted.

The largest transcriptome-wide study in­
cluded data on 977 participants and did not 
find any significant associations between 
PTSD and expression of individual genes251. 
However, it did not attempt to develop a tran­
scriptomic signature. Two previous studies 
constructed such signatures and observed 
moderate accuracy, with an AUC of 0.64 to 
0.76252,253, but neither signature was evalu­
ated in an independent sample.

Proteomics is a new modality in PTSD re-  
search. The most comprehensive study to-
date included 276 plasma proteins, finding 
significant links between numerous pro­
teins and PTSD254. A multiprotein signature 
showed a moderate association with PTSD 
within-sample, but these results require rep-  
lication.

Summary of PTSD biomarkers

PRS for PTSD has passed the first three 
stages of biomarker development. It is an 
informative measure of susceptibility, reli­
able and non-invasive. However, its links 
with PTSD are too weak to be useful clini­
cally. Even as performance of PRS improves 

with increasing discovery sample sizes, 
it is unlikely to reach the level needed for 
clinical utility. Nevertheless, it may become 
useful when combined with clinical and 
demographic risk factors255.

The other potential biomarkers need ri-  
gorous replication and careful control for 
confounds. Moreover, their links to PTSD 
are quite weak. Integration of data across 
the whole brain, methylome, transcrip­
tome and proteome is needed to improve 
effect sizes and replicability. However, this 
approach requires very large sample sizes.

BIOMARKERS IN MOOD 
DISORDERS

Mood disorders (MDD and BD) are a-  
mong the most prevalent and costly illness­
es167, and the development of clinically 
actionable biomarkers is therefore a critical 
research and therapeutic goal. Early bio­
marker efforts throughout the 1970s and 
1980s centered on urinary levels of various 
catecholamine metabolites, measures of 
platelet monoamine oxidase activity, and 
hypothalamic-pituitary-adrenal axis (HPA) 
function256,257, with inconclusive results.

Neuroimaging modalities, such as gase­
ous encephalography, were used as early as 
the 1950s258, and structural imaging meth­
ods were increasingly employed through­
out the 1980s in attempts to define major 
structural and volumetric differences in the 
brains of individuals suffering from mood 
disorders259. The use of neuroimaging in 
mood disorders dramatically increased in 
popularity over the last 20 years, with the 
introduction of novel, minimally invasive 
MRI and MRS techniques that allow for 
structural, functional and neurochemical 
investigations. These emerging modalities 
were paired with novel pathophysiological 
and treatment concepts such as neuroin­
flammatory pathology, neurometabolic 
contributions to behavioral disorders, cir­
cuit/network based disorders, and neuro­
plasticity enhancing treatments. The field 
of psychiatric genetics has also leveraged 
technical and conceptual advances to per­
form ever larger studies aiming to identify 
genetic variation contributing to disease 
risk and treatment response.

However, despite decades of work at­

tempting to identify clinically meaningful 
diagnostic tools and procedures, there has 
been limited progress in developing bio­
markers that meaningfully aid in the diag­
nosis, prognosis, or personalization of treat­
ment choices for mood disorders. Below, 
we present an overview of the current state 
of knowledge.

Susceptibility biomarkers

Genetics

The hope of identifying genetic biomark­
ers for mood disorders is bolstered by the 
clear epidemiological evidence of heritable 
factors contributing to these disorders, such 
as the moderate level of genetic contribu­
tion found in the Scottish Family Health 
Study for MDD260, and the heritability esti­
mates of approximately 70-90% for BD261. 
However, the identification of specific 
genetic contributions to these disorders has 
proven extremely challenging.

Several large, recently-completed GWAS 
have provided new information on the gene-  
tics of mood disorders. For example, a GWAS  
study identified 17 loci – relating to aspects 
of brain function ranging from excitatory  
neurotransmission to neuron spine/den­
drite functions – that were associated with 
depressive phenotypes in ~114,000 peo­
ple262. These findings are generally in line 
with a meta-analysis of post-mortem stud­
ies, which reported lower levels of synap­
tic protein or mRNA across MDD and BD 
(protein levels of SNAP-25, PSD-95 and 
syntaxin in MDD, and PSD-95 mRNA levels 
in BD)263.

More recent GWAS efforts with growing 
sample sizes continue to expand the num­
ber of genome-wide significant hits264,265. 
These large studies provide additional evi­
dence that the genetics of depression maps 
onto the broader genetic structure of mental 
disorders and cognition. Furthermore, tran­
scriptional signatures in MDD have been 
found to be gender-specific266,267, suggesting 
an important further area of investigation.

A GWAS study in ~42,000 patients iden­
tified 15 genes linked to BD268. However, 
the pattern that emerges most consistently 
is that BD shares many common weak 
genetic risk factors with MDD and schizo­
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phrenia269. Ultimately, it seems likely that 
these genes will each have a small impact 
on the susceptibility to mood disorders, 
and progression to disorder will impor­
tantly depend on interactions with environ­
mental factors, such as (perceived) uncon­
trollable stress.

Neuroimaging

Much of the neuroimaging work related 
to mood disorder susceptibility seems to 
parallel the effects of stress on the central 
nervous system. Large meta-analyses of 
the structural correlates of mood disorders 
show volume reductions in the areas com­
monly associated with the stress response, 
including the hippocampus and frontal 
lobe259.

The large multi-site ENIGMA consor­
tium study, comprising ~2,000 participants, 
found reduced hippocampal volume, lower 
cortical thickness in multiple regions, and 
white matter alterations in MDD270. Similar 
to the genetic studies, the ENIGMA find­
ings indicate relatively small overall effect 
sizes and common abnormalities in MDD, 
BD and schizophrenia, making it unlikely 
that the measures will prove useful in pro­
viding diagnostic biomarkers at the individ­
ual level. However, newer work using PET 
and MRI methodologies may be uncover­
ing the cytoarchitectural correlates of the 
above structural findings, by demonstrating 
reductions of synaptic density in MDD271.

Functional imaging studies, conducted 
at rest or during the performance of emo­
tional or cognitive tasks, have increased 
dramatically over the last decade. Although 
these studies have provided support for 
circuit and network contributions to mood 
disorder pathophysiology, few findings 
reliably distinguish mood disorders from 
other conditions272, similar to the structural 
and genetic findings previously described. 
Overall, prefrontal dysfunction may be a  
trait feature of mood disorders, while in-  
creased activation in limbic regions such as  
the anterior cingulate cortex and the amyg­
dala may be associated with symptom ex-  
pression273. However, medication and the 
presence of comorbid conditions – such as 
anxiety or substance abuse – may affect these  
findings. Much more work is needed at both  

the technical and conceptual levels before 
functional imaging can have more direct 
clinical applications in mood disorders.

The findings of MRS studies are far from 
consistent or conclusive, and are often com­
plicated by methodological and technical 
heterogeneity. However, they have provided 
evidence to suggest the involvement of the  
amino acid neurotransmitter systems, includ-  
ing GABA and glutamate, in the pathophysi­
ology of mood disorders274-277. These find­
ings again appear not to be pathognomonic  
of these disorders, but common among a 
range of psychiatric conditions278-282.

Early-stage MRS studies also suggest a 
role for pathophysiological effects related 
to oxidative stress as a contributor to mood 
disorders. Newer proton-MRS has enabled 
the quantification of glutathione concen­
trations in the brain, allowing for in vivo 
investigations of oxidative stress neuro­
chemistry283. Although only a limited num­
ber of MRS studies have been completed to 
date, there is some indication of reduced 
glutathione measures in mood-disordered 
patients compared with healthy controls, 
with possible differences between MDD 
and BD284, and specific regional asso­
ciations with anhedonia in MDD285. Most 
recently, glutathione concentrations in the 
anterior cingulate cortex were found to be 
inversely correlated with depression scores 
and white matter hyperintensities associ­
ated to COVID-19 infection, further sug­
gesting a link between neuroinflammation, 
oxidative stress, and mood286.

In sum, the emergence of novel MRS 
methodologies has allowed unique in vivo 
explorations related to neurochemistry, 
brain metabolism, and neuroenergetics of 
mood disorders. While various technical 
and methodological limitations of the exist­
ing studies prevent firm conclusions about 
relationships to mood disorder susceptibil­
ity, the emerging data are generally in line 
with rodent models and post-mortem stud­
ies287,288, and with predictions from large 
genetic studies showing effects on synaptic 
density and excitatory/inhibitory neuro­
transmitter pathways265,268, and may reflect 
the reduction of synaptic density observed 
in MDD271. However, the methodology to 
date is not meaningfully helpful in provid­
ing prognostic markers, or in differentiat­
ing clinically relevant phenotypes of mood 

disorders.

Peripheral biomarkers

A myriad of peripheral measures attempt­
ing to capture monoaminergic neurotrans­
mitter functioning have been employed over 
the years, with limited to no success in mod­
ifying diagnostic or treatment approaches. 
More recently developed metabolomics ap-  
proaches, however, allow dynamic measures  
of large numbers of metabolites over time. 
Meta-analyses of these studies have found 
several metabolic abnormalities associated 
with mood disorders, including decreased 
levels of tryptophan, kynurenic acid and 
kynurenine, and increased glutamate lev­
els in MDD patients. Pathway and network 
analyses of these data indicate disturbances 
of amino acid and lipid metabolism, espe­
cially the tryptophan-kynurenine pathway 
and fatty acid metabolism289. Overall, these 
findings support the involvement of several 
pathophysiological processes – including 
cellular signaling systems, components of 
the cell membrane, various neurotransmit­
ter systems, hormonal regulation, modera­
tors of circadian rhythm and sleep, as well as 
inflammation and immunological factors. 
However, no specific abnormalities can be 
associated with clinically meaningful differ­
ences to date.

Peripheral HPA axis measures have also 
been studied in large numbers of patients 
over the last five decades. The findings gen­
erally indicate HPA hyperactivity in depres­
sion, providing evidence of a link between 
MDD and comorbid conditions such as dia-  
betes, dementia and coronary heart dis­
ease, especially in older and more severely 
depressed inpatients with melancholic or  
psychotic features290. However, the results are  
quite heterogeneous, and the effect sizes are  
modest, limiting the utility of these measures  
as diagnostic tools291.

A relatively large number of studies, con­
ducted over the past two decades, have ex­
amined peripheral measures of relevant neu-  
rotrophic factors. Much of this work has dem-  
onstrated a relationship between abnormally  
low peripheral measures of brain-derived 
neurotrophic factor (BDNF) and mood dis-  
orders. Reduced plasma and serum BDNF 
levels are commonly reported in depressed 



World Psychiatry 22:2 - June 2023� 249

patients and may be altered with treatment  
response292,293. Although fitting nicely with  
data suggesting that BDNF gene expression  
and function contributes to the pathophysi-  
ology of depressive-like behaviors, these  
findings lack specificity, and notable incon­
sistencies pervade research related to gene 
expression changes in human and rodent 
studies294.

Interest in peripheral markers of im­
mune function and inflammation has also  
increased over time. Abnormalities in sev­
eral inflammation markers – including C-  
reactive protein (CRP), IL-6, IL-12 and tu­
mor necrosis factor alpha (TNFα) – are con-  
sistently observed in major depression, 
often with medium sized effects. Neverthe­
less, the specificity and selectivity of these 
markers has not yet been convincingly dem-  
onstrated295.

Finally, an emerging but potentially ex­
citing body of research has begun to exam­
ine susceptibility biomarkers related to cir-  
cadian rhythms. Mounting evidence sug­
gests that abnormalities in circadian phase 
may precede mood disorders296-304. Indeed, 
change in sleep is one of the diagnostic cri­
teria for MDD305, and sleep difficulties are 
present in >85% of cases298,306-308 and are  
correlated with greater depression sever­
ity309,310. Depressed patients exhibit re­
duced motor activity during the day309,311, 
and lower rhythm-adjusted mean (or mid-  
line estimating statistic of rhythm, MESOR) 
has been reported as a diagnostic indicator  
of depression, with up to 80% accuracy312. A  
phase shift in activity is also present, as time  
to peak activity (acrophase) is delayed309,312,313,  
and this delay may be associated with great-  
er depression severity309,313. Disrupted sleep  
is also a diagnostic criterion for BD305,314. BD 
patients are also likely to have lower ampli­
tude of motor activity when depressed315 or 
euthymic316.

Interestingly, circadian markers may have 
the potential to distinguish MDD from 
BD317. In particular, while further studies 
are needed, initial evidence suggests that 
MDD is associated with a phase delay318,319, 
whereas BD is associated with a phase ad­
vance during mania320, and a phase delay 
during euthymia321, mixed mania, and de­
pression320,322. Additional information may 
be gleaned by measuring melatonin during 

sleep/wake cycles304,323,324, or by measuring 
awakening cortisol levels in euthymic BD 
patients325.

Further work has indicated that the 3111T/  
C clock gene polymorphism, related to cir­
cadian rhythms, is associated with a higher 
recurrence of initial, middle and early in­
somnia in homozygotes for the C variant 
and a similar trend concerning decreased 
need of sleep in BD patients326. Moreover, 
expression of the clock genes PER1 and 
NR1D1 from saliva of BD patients in manic 
episodes is phase advanced relative to de-  
pressive episodes327.

Prediction of treatment response

The best predictors of treatment response  
in mood disorders have traditionally in-  
cluded demographic and clinically-defined 
factors, such as age, severity and duration  
of illness, number of comorbidities, and the  
presence or absence of psychotic or mixed 
features328,329. However, several large-scale  
efforts aiming to identify biological predic-  
tors of treatment response have been imple-  
mented in the last decade. The international 
Study to Predict Optimized Treatment of 
Depression (iSPOT-D)330, the Predictors of 
Remission in Depression to Individual and 
Combined Treatments (PReDICT)331, and 
the Genome-Based Therapeutic Drugs for 
Depression (GENDEP)332 studies all used 
large sample sizes to study and identify pos­
sible biomarkers for treatment response in 
depression.

The iSPOT-D study randomized over 
1,000 depressed patients to 8 weeks of treat­
ment with escitalopram, sertraline or ven­
lafaxine, and assessed a large number of 
outcome variables, including clinical, daily 
functioning, cognitive, genetic and psy­
chophysiological (e.g., EEG, event-related 
potentials, heart rate) markers. At least 
some outcome predictive value was found 
for various EEG measures (such as alpha 
connectivity)333; genetic factors (including 
variants in the CRHBP gene334, and regula­
tors of the gene coding for P-glycoprotein, 
which limits brain concentrations of cer­
tain antidepressants335); structural mark­
ers (such as hippocampal tail volume336); 
functional measures (such as activation in 

the frontoparietal network during response 
inhibition337); and environmental factors 
(such as early childhood trauma338). Fur­
ther evidence also suggested that measures 
of functional connectivity of cognitive con­
trol and reward circuits could selectively 
and differentially predict antidepressant 
treatment responses339,340.

The GENDEP study identified baseline 
levels of macrophage migration inhibitory  
factor (MIF), IL-1β, and TNF-α as “predic-  
tors” of antidepressant treatment response. 
That is, higher levels of pro-inflammatory 
cytokines predicted lack of antidepressant 
response, but lower levels did not predict a 
positive antidepressant response341. Inter­
estingly, modulation of the glucocorticoid 
receptor complex and measures related to 
neuroplasticity were associated with a ther­
apeutic antidepressant effect.

The Establishing Moderators and Biosig­
natures of Antidepressant Response for Clin­
ical Care for Depression (EMBARC) study 
was a randomized sequential treatment 
study. In phase 1 of the study, nearly 300 pa­
tients were randomized to either sertraline 
or placebo. In phase 2, non-responders were  
randomized to placebo, sertraline (except 
previous non-responders), or bupropion. The  
goal was to identify potentially treatment-
predictive endophenotypes of MDD, using 
electrophysiological methods, functional 
imaging, and peripheral markers342-344. 
Pre-treatment brain reward was somewhat  
predictive of individual antidepressant re-  
sponse345. Similar to reports from the CO-
MED trial346, the study also found evidence 
suggesting that CRP levels had some value  
in predicting treatment response, though the 
effect may be gender-specific347.

The familial aggregation of BD (particu­
larly the lithium-responsive type) among 
responders to lithium prophylaxis348 has 
prompted recent attempts to identify geno­
mic correlates of lithium response. The larg­
est GWAS study349 found a single associated 
locus on chromosome 21. The authors dem­
onstrated that the response-related alleles 
were associated with lower rates of relapse 
in an independent sample of 73 patients 
treated for two years of lithium monotherapy. 
However, the predictive power of genomic 
data remains unknown, since GWAS are not 
designed to evaluate predictive capacity350.
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Summary of mood disorder 
biomarkers

Numerous biomarkers have been pro­
posed in MDD and BD, and multiple studies 
including large-scale initiatives have identi­
fied potential candidates for future valida­
tion. There are several reasons underlying the 
limited gains achieved to date. These include 
the extreme heterogeneity of mood disorder 
diagnoses, limited treatment options, incom­
plete understanding of how the biomarkers 
actually reflect pathophysiological states, and 
the specific technical limitations and costs of 
the individual modalities.

Neuroimaging modalities, particularly 
those based on emerging spectroscopy ap-  
proaches, may hold promise for improving 
prediction. However, at present, it remains 
a challenge to distinguish such findings in  
MDD or BD from similar effects in other men-  
tal disorders, such as schizophrenia, perhaps 
partly due to the imaging measures captur­
ing a generalized “stress” phenotype rather a 
disorder-specific signature.

Similar challenges of sensitivity and spec­
ificity confront the use of peripheral biomark-  
ers, such as neurotrophic factors as well as 
markers of immune function and inflamma-  
tion. Future research may aim to integrate 
these measures with emerging approaches, 
such as those related to circadian rhythms, 
which may have the capability of differen­
tiating MDD and BD biologically and behav­
iorally.

Acquiring combinations of available mark-  
ers may also be useful351-353, potentially pro­
viding complementary information while 
reducing noise and alternative explanations 
that compromise internal validation efforts. 
Future studies will also need to continue un-   
raveling the formidable heterogeneity in  
mood disorder prediction, which may de­
pend on factors such as gender and early 
childhood adversity, among many others.

BIOMARKERS IN SUBSTANCE 
USE DISORDERS

Among psychiatric disorders, SUDs are 
unique in the sense that the presence of a 
potentially addictive drug within the con­
text of use-related dysfunction provides bio­
logical evidence for a disorder. Yet, beyond 

the presence of a drug in individuals’ bio­
logical fluids, SUDs reflect repeated, com­
pulsive substance use patterns mediated by 
complex (and not well-understood) inter­
actions between biological drug effects, 
genetic predispositions, early life experienc-  
es, external stressors, and central and periph-  
eral nervous system adaptations. Only an  
estimated 1 in 7 individuals who use sub­
stances will progress to use disorder354, and  
such estimates vary according to which sub-  
stance is used355. Considering that stable 
use with limited adverse consequences may  
describe a substantial group of substance-
using individuals356, it is vital to determine 
which susceptible individuals will eventu­
ally transition into full SUD.

Furthermore, among those diagnosed 
with SUD, there is a huge treatment gap. 
Epidemiological data indicate that 19 out 
of 20 individuals classified as needing treat­
ment for SUD do not think that they need 
it357, and this low perception of treatment 
need tends to persist over time358. Mul­
tiple factors likely drive this low percep­
tion, including minimization of the signs/
symptoms of dysfunction associated with 
substance use, fear of stigmatization359, and 
possibly neurocognitive impairments that 
might affect insight360,361. Thus, it is vital to 
develop and validate biomarkers that can 
help predict who is more likely to engage 
and succeed with treatment.

The area of neuroimaging has attracted 
the greatest attention in the search for bio­
markers in SUDs362,363, for several reasons.  
First, there are now well-established sub­
stance-related brain circuitry changes that 
involve: a) disruption in executive control, 
underpinned by dysregulation of prefrontal-
subcortical processing, and b) increased 
salience processing of substance-related 
stimuli, spanning subcortical and cortical 
structures364. Second, neuroimaging can 
be used to integrate mechanistic models of 
substance effects (e.g., increasing dopamin­
ergic tone via the transporter365 or vesicular 
sources of intracellular dopamine366) with 
adaptations of brain systems to repeated use 
(e.g., decreased dopamine receptor avail­
ability and release measured with PET), 
which are some of the most reliable findings 
in the addiction literature367,368. Third, some 
studies support the idea that individual dif­
ferences in neuroimaging assays may be of 

sufficient effect size to be used for predic­
tive purposes369. On the other hand, sev­
eral studies show clear evidence of limited 
associations between brain and behavior370, 
and even large-scale studies show only mod­
est correlations between psychopathology 
and structural or functional brain charac­
teristics371. Despite these challenges and 
uncertainties, several studies have success­
fully used neuroimaging markers to predict 
important substance use outcomes.

Susceptibility biomarkers of 
transition to problematic use

In one large cohort study, transition from  
no use to frequent drinking in early to mid-
adolescence was predicted by blunted activ­
ity of the medial orbitofrontal cortex during 
reward outcome372. Also in adolescents, 
structural characteristics – such as a larger 
cingulate gyrus – were predictive of resilience 
to problematic use after 3 years373. In a review 
of 44 longitudinal neurobehavioral studies 
predicting substance use in youth374, func­
tional vulnerability markers of substance use 
– i.e., markers that predict onset of subsequent 
substance use – included increased fMRI acti­
vation during reward feedback and risk evalu­
ation in prefrontal and ventral striatal regions, 
and fronto-parietal hypoactivation during 
working memory. Altered neural patterns 
during response inhibition and differences in 
structural markers, including smaller fronto-
parietal and amygdala volumes and larger 
ventral striatal volumes, were also observed.

In one examplary study of this approach, 
occasional stimulant users completed a 
Risky Gains Task during fMRI and were fol­
lowed up to three years later to determine 
whether or not they transitioned to problem­
atic use. Compared with participants who 
stopped their occasional stimulant use, those 
who later transitioned to problematic use 
made riskier baseline decisions after win­
ning feedback, and exhibited lower baseline 
frontal, insular and striatal blood oxygen level 
dependent (BOLD) responses to win/loss 
feedback after making risky decisions375. In 
another study, initially alcohol-naïve adoles­
cents were tested with fMRI during a reward 
task and were followed for 3 years to deter­
mine whether or not they initiated alcohol 
drinking. Compared with adolescents who 
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did not initiate alcohol use, those who did 
displayed increased baseline fMRI activa­
tion to loss in the left dorsal striatum (puta­
men) and right precuneus376. Finally, a study 
used connectome-based predictive mod­
eling with leave-one-out cross-validation to 
uncover stress-linked connectivity patterns 
that differentiated risky from non-risky drink­
ers, finding that the stress-linked network 
profiles of the risky drinkers predicted loss of 
control of drinking in the entire sample377.

These brain-based assays complement 
well-established behavioral predictors of 
problematic substance use. Investigators 
have found that non-planning and affect-
based impulsivity, as well as reward-related 
valuation, were predictors of SUD vulnera­
bility378. Other investigators have addition­
ally found support for relatively poor con­
trol, early substance use initiation, binge 
patterns of use379, and lower efficiency of  
evidence accumulation380. However, regard-  
less of whether these neuroimaging or be-  
havioral markers can serve as predictive bio­
markers, a fundamental question persists 
of how these markers can be used in a pre­
dictive context. In fact, no study in SUD has 
used prospectively predictive biomarkers to 
examine their ability to affect outcomes or 
guide clinical decisions.

Predictive biomarkers of relapse and 
abstinence

Among individuals who have already 
met criteria for SUD, another important 
goal for biomarker development is the pre-  
diction of relapse versus abstinence. Predic­
tion of relapse to substance use has been  
a major focus for biomarker development 
in SUD research for some time381, and sev­
eral investigators have been intrigued by 
findings that individual differences on vari­
ous biological or behavioral measures pro­
vide predictive information382,383, although 
there is increasing recognition that such 
outcomes are only a small part of the many 
possible clinically relevant measures384, 
and that a comprehensive approach using 
complementary outcomes for prediction 
has been missing.

In a cue-reactivity study conducted a­
mong individuals with alcohol use disor­
der, fMRI activation in the ventral striatum 

during viewing of alcohol vs. neutral pic­
tures predicted a shorter time to relapse385, 
perhaps reflecting a heightened vulner­
ability to drug cues that culminates in drug-
seeking and drug-taking behavior during 
abstinence. Consistent with this, an EEG 
study was conducted in a cohort of indi­
viduals with cocaine use disorder who were 
subsequently subgrouped based on length 
of cocaine abstinence. Results showed that 
the EEG-measured late positive potential 
(LPP), acquired in response to viewing co-  
caine images (and previously linked to crav-  
ing386), showed a quadratic (inverted U-  
shaped) pattern as a function of abstinence 
length387. These results were interpreted as 
potentially reflecting an objective biological 
marker of craving “incubation”, where drug-  
cue reactivity is counterintuitively potenti­
ated after short- and medium-term absti­
nence388,389.

In cue-reactivity research, one poten­
tially important consideration is the con­
trast examined. While many studies have 
historically tested a standard drug vs. a 
neutral contrast, a drug vs. a pleasant con­
trast may be more ecologically valid390,391. 
This latter contrast better reflects diagnos­
tic criteria, for example as specified in the 
DSM-5, where time, effort and resources 
need to be allocated toward the pursuit and 
consumption of the addictive drug at the 
exclusion of other activities392,393. They also 
better tap into theories of addiction that 
emphasize a shift in salience and hedonic 
value from pleasant reinforcement to drug 
reinforcement394,395.

Beyond cue-reactivity, other studies have  
reported that reduced functional resting-
state connectivity within the executive con­
trol network, and between the executive and  
salience networks, could serve as a marker 
of relapse risk396. There may also be impor­
tant clinical outcome predictive effects of 
brain areas involved in inhibitory control, 
such as the inferior frontal gyrus, dorsal 
anterior cingulate cortex, and dorsolateral 
prefrontal cortex397, as well as brain areas 
involved in stress reactivity, such as the 
ventromedial prefrontal cortex and ventral 
striatum398. For stress reactivity, a recent 
study of patients with alcohol use disorder 
first found case-control differences (i.e., 
ventromedial prefrontal cortex and ventral 
striatal hypoactivity to stressful, threaten­

ing images) (Study 1), and then found that 
these same imaging phenotypes predicted 
a faster relapse to drinking in a new sample 
(Study 2)399. The finding of clinical impli­
cations in a new sample lends support to 
this imaging phenotype as a target for bio­
marker development into the future.

An alternate, but related strategy has 
been to examine functional and structural 
correlates of sustained abstinence400. A re-  
cent systematic review concluded that drug  
abstinence tracked with increased gray mat-  
ter volume in multiple cortical regions span­
ning the frontal, temporal, parietal and oc-  
cipital lobes. There were also volumetric in-  
creases in the insula, cerebellum, hippocam-  
pus and thalamus, though not the striatum400.

Functional studies were relatively less 
clear, though some evidence indicates 
changes in subcortical areas such as the mid-  
brain and striatum. For example, an earlier  
study scanned individuals with cocaine use  
disorder using a drug-Stroop task that incor­
porated monetary payouts for correct per­
formance. Results showed that midbrain 
activation during this rewarded cognitive 
control task increased from baseline to six-
month follow-up, during which participants 
were abstinent and/or treatment-seeking. 
Furthermore, the more the midbrain task 
activation increased from baseline to follow-
up, the greater was the reduction in scores 
on a simulated drug-seeking task401 that 
itself has been associated with real-world 
drug use/severity402,403 and dopamine D2-
type receptor availability404.

The finding of midbrain activation en­
hancement to monetary reward in cocaine 
addiction was since independently repli­
cated: relative to pre-treatment measure­
ments, post-treatment was associated with 
increased activity in anticipation of reward 
in the midbrain, thalamus and precuneus; 
and increased activity in midbrain corre­
lated with one-year cocaine abstinence, 
while an increase in ventral striatal activ­
ity during loss anticipation correlated with 
fewer negative urine screens405. Insula func­
tioning may also play a role, depending on  
the task: in one examplary study with meth­
amphetamine-addicted individuals in early 
abstinence, insula fMRI activation during 
risky decision-making predicted relapse 
with greater sensitivity and specificity than 
standard clinical variables (e.g., days since 
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last use)406. Studies like these highlight the 
utility of imaging phenotypes as comple­
mentary markers of relapse prediction, but 
further development and validation needs 
to occur before they may be deployed as clin­
ically-actionable biomarkers.

The application of rigorous machine learn-  
ing approaches to avoid overfitting has pro­
vided evidence that it should be possible  
to use markers for disease stage prediction.  
In a recent review, a state-of-the-art approach  
was proposed to develop predictive bio­
markers within the context of relapse, which  
entailed computing connectivity patterns  
that generated out-of-sample predictions  
of outcomes369. For example, in one of the 
studies383, cocaine abstinence was predicted  
by increased connectivity between frontopa-  
rietal and medial frontal networks; increased 
connectivity among salience, motor/sensory  
and subcortical networks; and decreased 
connectivity between these two systems. Im­
portantly, the results were replicated in an 
external sample, providing some predictive  
validity. Such studies and perspectives pro­
vide a blueprint for addiction biomarker 
research into the future.

Summary of substance use disorder 
biomarker research

The development of biomarkers for ad-  
diction has been impeded by multiple dif­
ficulties. First, as this field is still maturing, 
study designs have been largely limited to  
case-control or longitudinal follow-up ap-  
proaches, and even most longitudinal stud­
ies predicting substance use outcomes have 
not provided additional data or methodolo­
gies confirming the predictive value of the 
measurements. Randomized intervention 
trials, such as neurostimulation approaches 
that directly modulate addiction-related 
neural signatures407, will be important to 
use prospectively in order to examine the 
utility of these markers.

Second, addiction describes the com­
pulsive use of different classes of substances 
that, while usually acting upon a largely 
common final neural substrate, have fun­
damental differences in their mechanisms 
of action and treatment approaches – even 
for different classes of “stimulants”, encom­
passing cocaine and methamphetamine408. 

This substance heterogeneity also compli­
cates the search for genetic biomarkers in 
addiction. For example, as much as 38% of 
the variation in opioid addiction may be due 
to genetic factors specific to opioids (i.e., not 
shared with other substances)409,410.

Third, different biomarkers may be more  
appropriate depending on a person’s cur­
rent stage of addiction trajectory. For exam-   
ple, a large body of preclinical work has  
shown that initial drug-taking may be large-  
ly mediated by ventral striatal (“reward”) 
pathways, whereas later-stage addiction 
may be largely mediated by dorsal striatal 
(“habit”) pathways, and some human neu­
roimaging work has revealed a similar pat­
tern of results411-413.

Fourth, arguably more than in other psy-  
chiatric disorders, environmental exposure  
is important, as someone can never be-  
come addicted if he/she never tries a par­
ticular substance. As an illustrative exam­
ple, estimates have suggested that as much 
as 62% of the variance in cannabis misuse 
was shared with cannabis initiation412,414, 
highlighting the importance of substance 
availability for the eventual addiction phe­
notype. It should be noted that one excep­
tional counterexample is the alcohol dehy­
drogenase genes protecting against alcohol 
consumption and dependence415.

Fifth, SUDs do not exist in isolation, but  
frequently co-occur with other behaviors  
and mental health conditions that are like-  
ly to have a profound influence on various  
biological markers. For example, most clini-  
cal studies of SUDs, by necessity, allow some  
amount of commonly occurring psychiatric 
comorbidity, such as depression or PTSD. 
Such constraints argue against the utility of 
potentially accessible, scalable and afford­
able – but largely non-specific – biomarkers 
such as genetic or blood-based measures, 
because these kinds of non-specific assays 
may be difficult to interpret mechanisti­
cally.

In this vein, recent work suggests that 
extracellular vesicle-associated miR-29a-3p 
plays a crucial role in methamphetamine 
use disorder and might be used as a poten­
tial blood-based biomarker for detecting 
chronic inflammation and synaptic dam­
age416. However, blood-based measures 
indicating substance-induced metabolic or 
inflammatory changes417 may be addition­

ally influenced by poor lifestyle (e.g., lack 
of exercise, poor diet and disrupted sleep) 
and other mental health conditions (e.g., 
comorbid mood or anxiety disorders), and 
so specificity remains a concern.

Nevertheless, an objective marker of sub-  
stance use severity, not unlike a blood glu­
cose or hemoglobin A1c measurement, 
might help to facilitate evaluation of treat­
ment need (among clinicians) and treatment 
acceptance (among patients), and could be  
a low-hanging fruit in the search for biomark­
ers in SUDs if an appropriate biomarker could  
be devised and confirmed for efficacy.

GENERAL DISCUSSION AND 
RECOMMENDATIONS

A review of candidate biomarkers for 
predicting diagnosis and treatment respon­
sivity in ASD, schizophrenia, anxiety disor­
ders and PTSD, MDD and BD, and SUDs, 
encompassing genetic, molecular, neuro­
imaging and/or peripheral phenotypes, re­
veals that most are in the very early stages of  
development and validation, and, for this 
reason, an assessment of their clinical utility 
is premature.

The immature state of the biomarker de-  
velopment in mental disorders is unsur­
prising, given its many challenges. One of 
the most fundamental challenges to over­
come is that psychiatry research to date has 
most often relied on case-control designs, 
contrasting behavioral and/or biological 
assays between patients with chronic ill­
ness and healthy comparison participants. 
This is even the case for large-scale imaging 
datasets such as ENIGMA and similar con­
sortia. Such consortia have been, and will 
likely continue to be, important for summa­
rizing statistically robust group differences 
and associations in patients and controls, 
and will have the power to illuminate novel 
brain-behavior findings that might other­
wise remain hidden. Nevertheless, con­
sortia data built from case-control studies 
are unlikely to deliver clinically applicable 
biomarkers for relevant clinical indications 
understood in terms of the FDA, because 
the constituent case-control studies them­
selves generally lack an actionable bio­
marker target (i.e., not diagnosis, but rather 
susceptibility or treatment response).
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Our perspective is that studies should be  
designed from the outset to have as their 
designated end goal the development of a 
biomarker for a particular indication, in the 
right population for that indication (e.g., 
CHR for conversion, drug-naive adoles­
cents to predict development of SUD, acute 
unmedicated psychotic patients to predict 
response to first-line treatments). In this 
way, psychiatry as a field can begin to move 
away from pursuing large studies relying 
on non-specific big-data approaches, and 
instead pivot toward designing a pipeline 
for a given target in a manner more akin to 
drug development. The Adolescent Brain  
and Cognitive Development (ABCD) study  
418 has the potential to drive new biomark­
er knowledge on SUD susceptibility, for ex­
ample. The PRONIA consortium has the 
potential to advance biomarker develop­
ment for CHR for psychosis. Even then, it 
is not the case that massively large datasets 
are necessarily required for biomarker de­
velopment; smaller studies could suffice, 
provided that a particular biomarker pro­
duces sufficiently high discrimination ac­
curacy for its indication.

Another fundamental challenge for bio­
marker development in psychiatry is the 
heterogeneity of the disorders themselves. 
The diagnostic criteria for psychiatric con­
ditions continue to rely on constellations 
of symptoms and signs that group patients 
together even if they exhibit very different 
illness presentations. For example, there 
are ~1,500 combinations of symptoms that 
result in a diagnosis of MDD419. Therefore, 
the cohorts of individuals we study are 
necessarily heterogeneous, and samples in 
which biomarkers are developed may not 
be representative of the larger population of 
patients who meet criteria for a given diag­
nosis. While newer diagnostic and classifi­
cation systems, which are more quantitative 
and/or biologically-based420,421, may help 
address this concern to some degree, a fun­
damental impediment to progress pertains 
to our insufficient knowledge of the human  
brain, and this likely can only be fully address-  
ed with novel technologies that fundamen­
tally increase the precision of measurement. 
Moreover, biomarkers will still be subject to 
potential confounds – including medication  
status, age and gender, among others – which  
threaten internal validity. For neuroimaging 

in particular, there are even more factors to 
consider, such as variability stemming from 
the processing pipeline422.

Despite these formidable challenges, sev-  
eral strategies and recommendations – either  
considered individually or in combination –   
may improve sensitivity and specificity in  
the search for biomarkers of pathogenesis,  
treatment response, and safety in psychiatric  
disorders. First, adequately powered col­
laborative (epi)genetic studies are needed, 
involving mega-samples of patients who are 
deeply phenotyped for clinical course and  
treatment response, thereby allowing for the  
generation of poly(epi)genic risk in com­
bination with poly-environmental scores. 
PRS have been developed for many forms of  
psychopathology, but must continue to be  
updated and refined as more GWAS data  
become available; other psychopathologies 
would similarly benefit from the creation  
and validation of PRS and related tools. 
Collaborative efforts would also further  
allow for the inclusion of biosystems beyond  
genetics and neuroimaging, such as prote­
omics, metabolomics423 or blood transcrip­
tomics424, as well as potentially integrating 
some or all of these markers together in a 
multimodal framework to improve person­
alization and prediction.

Second, as alluded to above, alternate 
forms of classification and diagnosis may 
be useful for conceptualizing and testing 
potential biomarkers. This includes the 
investigation of intermediate phenotypes, 
which are related to the disorders but are 
more narrowly defined and putatively more 
proximal to the underlying neurobiological 
mechanisms (e.g., for anxiety disorders, 
the Research Domain Criteria “negative 
valence systems” traits425).

Third, long-term and cohort study de­
signs are needed in order to evaluate the lon­
gitudinal course of disorder and remission/
relapse after treatment, which may be more 
promising for biomarker development than 
diagnosis, being a clearer and more action­
able target. Mechanistic confirmation may 
be achieved via experimental approaches 
that can demonstrate causality (by modify­
ing the neural substrates thought to drive the 
disease states), such as neuromodulation 
techniques426 or translational approaches 
incorporating animal models427.

Fourth, studies could include online re-  

mote acquisition of selected measures in 
a naturalistic setting using mobile health 
(mHealth) tools (e.g., ecological momen­
tary assessment of physiological data428,429). 
The identification of multimodal and mul­
tivariate signatures can be accomplished 
by means of mathematical modeling using 
artificial intelligence (e.g., machine learn­
ing, pattern recognition methods) in a 
systems biology approach430,431. Finally, 
a priori stratification approaches may be 
employed to clinically test preventive and 
therapeutic strategies individually tailored 
to the individual person’s biological risk 
factor constellation.

In conclusion, although the general con-  
sensus is that we do not yet have clinically 
actionable biomarkers in psychiatry, consid-  
erable efforts and investments have fostered  
useful developments over the last couple of 
decades. We have reviewed some substan­
tial advances made during this time, while 
also describing the additional work and 
complications that need to be addressed in 
order to accelerate and finalize the devel­
opment and eventual roll out of candidate 
biomarkers into clinical settings. In doing  
so, some shifts in priorities may be neces­
sary, particularly moving from diagnostic 
biomarker studies, which are currently 
overrepresented in the literature84, to tar­
geting questions for which biomarkers may 
be most clinically actionable.

Recent examples highlight difficulties 
yielding highly accurate classifiers even 
when rich datasets and strong incentives 
for biomarker development are available432, 
and have specifically emphasized issues 
with external validation and robustness to 
sample-specific factors. For a biomarker 
to be actionable, however, it will need to 
be clinically predictive at the individual-
person level. It will also need to be econom-  
ically viable, which includes non-prohibi-  
tive cost and the ability to deliver unique in-  
formation that cannot be gleaned with tra­
ditional, less expensive alternatives.

These needs will evolve in parallel to 
the development of novel therapeutics and  
technologies, and so the menu of biomarker  
possibilities in psychiatry is likely to expand 
in the future. Even with the current state of af-  
fairs, though, suboptimal biomarker-based  
predictions may still be helpful for high-
stakes applications if they improve upon 
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what is possible when relying on clinical in-  
formation alone, in ways that substantively 
decrease the individual and societal burden 
of mental illness. Setting specific bench­
marks for well-defined target applications 
that can be used today where possible, in 
conjunction with developing appropriate 
funding and partnership mechanisms for 
end-to-end biomarker development into 
the future, will be critical to ultimately reap 
the societal benefits of this critical scientific 
and clinical endeavor.
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