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Abstract 22 

Immune checkpoint inhibitors (ICIs), now mainstays in the treatment of cancer treatment, show great 23 

potential but only benefit a subset of patients. A more complete understanding of the immunological 24 

mechanisms and pharmacodynamics of ICI in cancer patients will help identify the patients most 25 

likely to benefit and will generate knowledge for the development of next-generation ICI regimens. 26 

We set out to interrogate the early temporal evolution of T cell populations from longitudinal single-27 

cell flow cytometry data. We developed an innovative statistical and computational approach using a 28 

Latent Dirichlet Allocation (LDA) model that extends the concept of topic modeling used in text 29 

mining. This powerful unsupervised learning tool allows us to discover compositional topics within 30 

immune cell populations that have distinct functional and differentiation states and are biologically 31 

and clinically relevant. To illustrate the model’s utility, we analyzed ~17 million T cells obtained 32 

from 138 pre- and on-treatment peripheral blood samples from a cohort of melanoma patients treated 33 

with ICIs.  We identified three latent dynamic topics: a T-cell exhaustion topic that recapitulates a 34 

LAG3+ predominant patient subgroup with poor clinical outcome; a naive topic that shows 35 

association with immune-related toxicity; and an immune activation topic that emerges upon ICI 36 

treatment. We identified that a patient subgroup with a high baseline of the naïve topic has a higher 37 

toxicity grade. While the current application is demonstrated using flow cytometry data, our approach 38 

has broader utility and creates a new direction for translating single-cell data into biological and 39 

clinical insights.  40 

Introduction 41 

Cancer immunotherapies with immune checkpoint inhibitors (ICIs) are revolutionizing cancer 42 

treatment1.  ICIs, given as monotherapy or in combination, have proven efficacious in multiple types 43 

of cancer and it is estimated that approximately 44% of cancer patients in the United States are 44 

eligible to receive ICIs2. However, patient tumor response and toxicity under different treatment 45 

regimens are highly heterogeneous. Patients with melanoma who receive CTLA-4 and PD-1 46 

combination blockade have a higher response rate but are more likely to experience immune-related 47 
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adverse events (irAEs) compared to monotherapy3–5. Thus, it is crucial to gain a deeper understanding 48 

of the immune mechanisms and pharmacodynamics of ICIs to personalize treatment options, and 49 

improve therapeutic benefit while minimizing toxicity for patients6.  50 

Flow cytometry analysis has become an important tool to study tumor microenvironment as well as 51 

patients’ peripheral blood samples in the context of immunotherapy. Several biomarkers examining 52 

functional cell types have been identified to predict treatment response or define resistance 53 

mechanisms to ICIs7–9. These analyses commonly focus on a limited number of pre-specified cell 54 

types determined from prior domain knowledge, potentially overlooking important unmined 55 

subpopulations. Furthermore, recent advances in flow and mass cytometry have significantly 56 

improved the throughput allowing 30-50 markers measured simultaneously at single-cell resolution10, 57 

that allows for the exploration of a much larger number of possible cell subsets. Such high-parameter 58 

flow cytometry data when performed on longitudinally collected samples are exceedingly complex 59 

and pose a great analytical challenge to delineate cell type composition from millions of single cells 60 

and map the temporal evolution of cell types over time. Sophisticated statistical and computational 61 

tools are needed to fully leverage the complexity and richness of high-parameter single-cell data in 62 

order to expedite biomarker discovery in cancer immunotherapy.  63 

In recent years, there have been consorted efforts to advance the development of cutting-edge 64 

computational methods for flow cytometry including visualization, clustering, and lineage tracing of 65 

cell populations as reviewed in Aghaeepour et al.11. The current state-of-the-art approach allows 66 

refined cell type classification and visualization. However, it remains a challenge to link such output 67 

with the clinical outcomes due to the lack of a framework to quantify cell type composition and 68 

associated functional states at the individual sample level. In addition, methods to address temporal 69 

evolution using flow cytometry data are lacking.  70 

To fill this gap, we present a novel statistical and computational framework that is inspired by works 71 

developed in monitoring temporal dynamics of bacterial strains12,13. We adapt the Latent Dirichlet 72 

Allocation (LDA) model14 to investigate the pharmacodynamics of T cell compositions in peripheral 73 
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blood of ICI-treated cancer patients early after treatment initiation. LDA is a generative statistical 74 

model for the identification of hidden structures in large data and is widely applied for topic discovery 75 

in text mining analysis. Here we present a novel application of LDA to understand the temporal 76 

evolution of T cells in flow cytometry data to track early pharmacodynamic changes after exposure to 77 

ICIs (Fig. 1a). In an unsupervised fashion, LDA explores the hidden structure and identifies latent 78 

topics with interpretable features relating to biologically relevant function states (Fig. 1b), allowing 79 

for the discovery of potential biomarkers of clinical relevance. This approach can be used to predict 80 

outcomes and quantify the pharmacodynamics of immunotherapy. 81 

Results 82 

Method Overview 83 

We present a topic model approach for mining large-scale high-dimensional flow cytometry data from 84 

longitudinally collected patient samples. Motivated by the similarities between text data mining and 85 

flow cytometry analysis, LDA considers cells as words, cell types as terms, patient samples as 86 

documents, and biological processes as topics (Fig. 1c). It assumes each cell in a patient sample arises 87 

from a mixture of topics, each of which is distributed over cell types. The cell types can be obtained 88 

through a graph-based clustering of single cells from pooled samples (Fig. 1b). Then cell type-by-89 

sample count matrix is decomposed by LDA into three matrices:  90 

(1) cell type-by-topic matrix, B, for topic content 91 

(2) topic-by-sample matrix, , for topic prevalence 92 

(3) vector of cell counts N. 93 

The cell type-by-topic matrix represents topics as different discrete distributions over cell types, thus 94 

facilitating the linkage between topics and cell types. Each topic is a weighted combination of a 95 

specific set of cell types that may be functionally related. Within each topic, cell types that show 96 

similar abundance patterns across patient samples are likely to be involved in the same biological 97 

process. In contrast to the traditional approach of assessing one cell type at a time, LDA provides a 98 
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unified approach to systematically evaluate all cell types simultaneously and gain insight into the 99 

underlying biological processes through their co-occurring patterns. 100 

The topic-by-sample matrix displays topic proportions estimated within each sample. This allows us 101 

to characterize and quantify topic composition at the individual sample level and track the topic 102 

evolution over time (Fig. 1d). Patients with similar topic composition and temporal dynamics may 103 

share the similar clinical outcomes and pharmacodynamic profiles as we will describe in detail in 104 

Methods. Below, we illustrate how LDA deconvolutes the longitudinal flow cytometry data to 105 

characterize topics with novel biological insights using a data example.  106 

Data 107 

The large-scale flow cytometry dataset we analyzed contains ~17 million T cells from a cohort of 51 108 

melanoma patients (138 samples) treated with a combination of anti-CTLA-4 and anti-PD-1 ICI as 109 

part of a phase II clinical trial (NCT03122522)15. The clinical outcome data (response, overall 110 

survival (OS), progression-free survival (PFS), toxicity) of the cohort have been previously reported15 111 

and are shown in Supplementary Data File S1. Based on pre-treatment peripheral blood samples, our 112 

prior work on a large cohort has classified patients into three ‘immunotypes’ (LAG+/LAG-/PRO) that 113 

are correlated to survival and response16, which we also include in the analysis. Nearly half of patients 114 

(45%) experienced severe (>= grade 3) immune-related adverse events (irAEs) and 61% of patients 115 

responded (Complete Response, CR or Partial Response, PR) to the ICI treatment (Fig. 1a). Flow 116 

cytometry was performed using an X50 panel that measures 29 markers for each single cell (a 117 

complete list of markers described in Methods), including checkpoint blockade biomarkers (e.g. PD1, 118 

CTLA4, LAG3) and T cell lineage markers (e.g. CD45RA, CCR7, CD27, CD28). Staining was 119 

performed on the cryo-banked peripheral blood mononuclear cells (PBMCs) collected at three time 120 

points for each patient: week 0 (pre-treatment), week 3 and 6 (post-treatment). 121 

Identification of T cell types and composition across patient samples 122 

Before applying the LDA model, we first identified T cell types via the Louvain algorithm, a popular 123 

data-driven graph-based clustering method17, after pooling viable CD3+ cells from all patient samples 124 

at all time points together to allow the comparison of consistent T cell clusters across multiple 125 
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samples. The optimal clustering resolution was determined based on average Silhouette scores18 and 126 

manual evaluation (See details in Methods). The 20 main T cell clusters with relative abundance > 127 

0.1% are displayed in the Uniform Manifold Approximation and Projection (UMAP) (Fig. 2a), where 128 

CD4 and CD8 T cells are separated into two distinct parts (Fig. 2b). The marker expression profile in 129 

the T cell clusters is shown in Fig. 2c. Based on the lineage marker CD45RA and CCR7 (Fig. 2d), we 130 

are able to further identify T cell clusters with different differentiation states, including the naïve T 131 

cell clusters (Tn, CCR7+CD45RA+), central and effector memory T cell clusters (Tcm, 132 

CCR7+CD45RA-, and Tem, CCR7-CD45RA-), and CD45RA+ effector memory T cell clusters 133 

(Temra, CCR7-CD45RA+). Moreover, we identified two clusters, one CD4 Tcm cluster (cluster 8) 134 

and one CD8 Tem cluster (cluster 12), that highly express KI67, a proliferation marker recognized in 135 

previous studies9 (Fig. 2d). 136 

Latent Dirichlet Allocation reveals hidden structures in flow cytometry data 137 

The T cell clusters we identified are inter-correlated as governed by the underlying functional and 138 

differentiation states. We applied LDA and uncovered K = 3 latent topics, which capture the major 139 

patterns underlying the data. The determination of the number of topics K is described in Methods.  140 

We first evaluate each topic by visualizing the weights  for every single topic, where a topic is 141 

represented as a distinct probability distribution over the T cell clusters (Fig. 3a). Based on the pattern 142 

of this distribution we define three topics as activation topic, naïve topic and exhaustion topic based 143 

upon domain knowledge. The activation topic is mainly contributed by memory T cell clusters 144 

(Tcm/em), and later we will show that these clusters capture the major pattern of T cell expansion 145 

after ICI. The naïve topic has high probability weights over the naïve T cell clusters (Tn) while the 146 

exhaustion topic consists of exclusively terminally differentiated T cell clusters (Temra).  147 

The lift19 metric (Fig. 3b, Supplementary Fig. S1),  the log ratio of the estimated weight of a T cell 148 

cluster v in topic k  over its empirical frequency, was used to formally rank the importance of 149 

individual T cell clusters that characterize each single topic. The biological significance of each topic 150 

will be interpreted in the next section, based on their representative clusters with top lift.  151 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


7 

Each sample can be represented as a mixture of the three topics. The topic-by-sample matrix 152 

provides the estimated topic proportions within each sample. Fig. 4a shows the topic fraction across 153 

patients and over time. As described earlier, the activation topic mainly captures the expansion of 154 

Tcm/em upon treatment. For most patients, the proportion of the activation topic is near zero (dark 155 

blue) in pre-treatment samples (week 0). This topic emerges on-treatment as seen by the increase of 156 

topic proportions in weeks 3 and 6 samples. At baseline (week 0), most of the patient samples are 157 

characterized by a strong presence of the naïve topic. The naïve topic proportion subsequently 158 

decreases after ICI treatment as cells transition into more “activated” states. In contrast, a small 159 

subgroup of patient samples has a low proportion of the naïve topic, but a high fraction of the 160 

exhaustion topic presented at week 0. There is no visible reduction in the exhausted T cell population 161 

after ICI treatment.  162 

We identified four patient subgroups by hierarchical clustering on patient topic proportions, while 163 

each subgroup exhibits distinct dynamic patterns within the three interpretable topics (Fig. 4b). 164 

Patients in groups 1 and 2 both have inferior increases in activation topic. Group 1 has the highest 165 

proportion of the exhaustion topic and group 2 has the highest naïve topic across time. Patients in 166 

group 3 have the highest increase in the activation topic compared to other groups and are 167 

accompanied by the highest decrease in the naïve topic fraction. Group 4 has a high proportion of the 168 

naïve topic at week 0 and a moderate increase in the activation topic. Patients in group 4 are more 169 

likely to experience severe ICI-related toxicity compared to other groups: 73.1% (19/26) vs 37.5% 170 

(9/24) (P = 0.025, Chi-squared test). There is a trend that patients in group 4 have higher response 171 

rates: 69.2% (18/26) vs 54.2% (13/24) and better survival outcomes (Supplementary Fig. S2), 172 

although not reaching statistical significance.  173 

Activation topic reveals T cell expansion after ICI treatment 174 

The activation topic captures the pattern of T cell expansion in peripheral blood after ICI treatment, 175 

as seen by the increase of cells in the representative clusters highlighted in Fig. 5a. The five 176 

representative clusters we identified include two CD4 T cell clusters (clusters 8 and 4), one CD8 T 177 
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cell cluster (cluster 12), one Treg cluster (cluster 9), and one CD4-CD8- T cell cluster (cluster 16) 178 

(Fig. 5b). Upon treatment at week 3, the five representative clusters dramatically increased for the 179 

entire patient cohort (Fig. 5c), which was captured by the increase in topic proportions (P = 1.3e-33) 180 

(Fig. 5d). It might be of clinical interest that most immunological change happens just after the first 181 

dose (from baseline to week 3). The comprehensive pharmacodynamics of all 20 clusters are provided 182 

in Supplementary Fig. S3-5. 183 

The KI67+ CD8 T cell subset has been established as a T cell reinvigoration biomarker for cancer 184 

immunotherapy9,20,21. Such a KI67+ CD8 population was independently identified as cluster 12 in our 185 

analysis. In addition, cluster 12 also shows high expression of PD1, TIM3, and LAG3 (Fig. 5b), 186 

consistent with previous findings that the increase in KI67 expression was most prominent in the 187 

PD1+CD8 T cells9. In addition to cluster 12, there are two other clusters in our cohort with high KI67 188 

expression: cluster 8 (CD4) and cluster 16 (CD4-CD8-), but distinct in other marker expression 189 

profiles (Fig. 5b and 5e). Moreover, we detected an increase in Treg (cluster 9), as observed in 190 

another study9, with a small fraction of cells expressing KI67 (Fig. 5e). The activation topic presents a 191 

novel combination of all these T cell subsets, which can be used as a complex pharmacodynamic 192 

index to monitor patients’ immune responses during treatment. 193 

Naïve topic is associated with ICI-related toxicity 194 

The second topic is a naïve topic, with all naïve T cell clusters serving as representative clusters 195 

highlighted in Fig. 6a. The four representative clusters we identified include two naïve CD4 clusters 196 

(clusters 0 and 2), one naïve CD8 cluster (cluster 6), and one native Treg cluster (cluster 11) (Fig. 6b). 197 

The abundances of the four representative clusters, as well as the proportions of the naïve topic, 198 

decrease slightly after treatment (P = 5.1e-17 for the difference in proportions across time) (Fig. 6c 199 

and 6d), indicating the differentiation of naïve T cells during the immune response. The four 200 

representative clusters shared a high level of marker expression in CCR7, CD45RA, and CD27, which 201 

are key markers of naïve T cell lineage (Fig. 6b). Interestingly, individuals that experience severe ICI-202 

related toxicity (grade 3-4) have a higher proportion of the naïve topic at baseline week 0 (P = 0.029) 203 
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(Fig. 6e), while there is no significant difference in changes over time between patients with/without 204 

severe toxicity (P = 0.095 for the interaction effect). In contrast, we failed to identify the association 205 

between each individual cluster and toxicity (Supplementary Tab. S1), probably due to lack of power 206 

after the multiple test correction. 207 

Exhaustion topic is related to LAG+ immunotype. 208 

The exhaustion topic includes four representative clusters (Fig. 7a): two CD8 Temra clusters (clusters 209 

3 and 5), one CD4 Tem cluster (cluster 14), and one CD4-CD8- cluster (cluster 13). The 210 

representative clusters in this topic highly express LAG3, T cell exhaustion marker. Besides LAG3, 211 

the four representative clusters also highly express TBET, GZM-B, and EOMES, markers for 212 

functional cytotoxic T cells (Fig. 7b).  Compared to the other two topics, the topic proportions of the 213 

exhaustion topic, as well as the abundances of its four representative clusters, are not significantly 214 

changing over time (P = 0.14 for the difference in proportions across time) (Fig. 7c and 7d), but show 215 

great heterogeneity in pre-treatment samples (Fig. 4a). For better illustration, we compared pre-216 

treatment samples from two patients (LAG+ vs LAG- immunotype) with four representative clusters 217 

highlighted (Fig.7a). The LAG+ patient sample is dominated by the exhaustion topic ( ) 218 

while the LAG- patient sample is not ( ). We observed substantial differences in 219 

abundances of clusters 3, 5, and 14 comparing the two patients.  220 

The exhaustion topic is highly related to the LAG+ immunotype, which has been linked to poorer 221 

clinical outcomes in the earlier study16. The previous study classified three immunotypes (LAG-, 222 

LAG+, and PRO) on peripheral blood samples using a four-marker classifier (%LAG3+CD8+, 223 

%KI67+CD8+, %TIM3+CD8+, %ICOS+CD8+). According to Shen et al., LAG+ patients with high 224 

levels of LAG3+CD8+ cells prior to treatment are more likely to have a poor response, particularly 225 

with anti-PD-1 regiments16. The exhaustion topic provides novel insights into the underlying T cell 226 

composition of LAG+/LAG- immunotype. Moreover, we show the ratio of CD8 Temra/Tn 227 

(abundances of cluster 3 and cluster 5/ abundance of cluster 6) might be a better biomarker (stable 228 

across time and not limited to pre-treatment samples) for distinguishing between LAG- and LAG+ 229 
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immunotype (Fig. 7e), with P = 0.006 for the immunotype main effect and P = 2e-5 for the interaction 230 

effect between time and immunotype. This can be explained by the fact that the majority of 231 

LAG3+CD8+ cells are Temra cells (in clusters 3 and 5) in pre-treatment samples.  232 

Discussion 233 

Immune cells are highly heterogeneous, containing a mixture of signals from all unknown ongoing 234 

biological processes. Here, we addressed the problem of deciphering hidden structures from 235 

longitudinal flow cytometry data in patients treated with ICI. We adopted the LDA model from text 236 

analysis and presented a novel computational framework for investigating potentially clinically 237 

relevant pharmacodynamical characteristics underlying the data. We demonstrated that LDA is 238 

effective in deconvoluting noisy flow cytometry data and can characterize topics that provide novel 239 

biological insights. With LDA, T cell subsets can be distilled into topics, which reveal patient 240 

subgroups with distinct dynamics.  241 

Our method was inspired by the application of LDA in the longitudinal microbiome analysis12,13, 242 

where it was able to decipher the temporal changes in microbe composition. Alternative models to 243 

monitor dynamics of T cell compositions include the fitness model22 from population genetics, and 244 

the Lotka-Volterra model (known as the predator-prey model)23. However, these models require more 245 

time points for model fitting and/or assume no differentiation between cell types. The LDA model on 246 

the other hand allows analysis of data from patients with limited time points and was demonstrated to 247 

work well on the longitudinal flow cytometry data. 248 

LDA can be further extended and embedded in more complex models for inference. Firstly, 249 

incorporating covariates in the topic model could further extend the model application on flow 250 

cytometry data, especially under complex experimental design. The Structural Topic Model (STM), 251 

for example, allows us to incorporate patient/sample metadata into the model. The metadata can be 252 

added as covariates associated with topic prevalence (parameters ) or topic content (parameters B) 253 

with a log link24, and a variational Expectation-Maximization algorithm can be implemented for 254 
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model inference25. Secondly, in a setting where long-term monitoring of treatment effects is of interest 255 

with a large number of samples collected over time, a dynamic topic model26 can be more powerful 256 

with a more complex modeling of the temporal relationship across samples.  Finally, incorporating 257 

additional constraints, e.g. sparsity constraint on cell-type-by-topic matrix B, may further improve the 258 

efficiency of the model27.  259 

The application of LDA is not limited to flow cytometry analysis. For future work, we can further 260 

extend LDA to explore the tumor microenvironment in multiplexed imaging data28. Spatial 261 

information can be incorporated into the model to investigate the tumor and immune cell interactions. 262 

Moreover, LDA can also be applied for multi-omics data analysis29,30, integrating data from multiple 263 

assays to better understand the cancer heterogeneity and predict patient clinical outcomes. 264 

 265 

  266 
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Methods 267 

Flow cytometry data 268 

The study includes melanoma patients (n = 51) in a cohort receiving combined immune checkpoint 269 

blockade (Anti PD1/CTLA4) therapy from 2017 to 2019 at the Memorial Sloan Kettering Cancer 270 

Center in a phase II clinical trial study (NCT03122522)15. For each patient, blood samples were 271 

collected at three different time points at week 0 (pre-treatment), and at weeks 3 and 6 (post-272 

treatment) after the first dose. Best Overall Response (BOR) [partial response (PR), complete 273 

response (CR), stable disease (SD), and progression of disease (PD)], survival, PFS, and toxicity 274 

grade [grade 1-2 (N), grade 3-4 (Y)] were determined and reported for each patient. The clinical data 275 

for this cohort has been previously described15.  We also included patient immunotype defined based 276 

on the 11-color panel flow cytometry data of pre-treatment samples in our previous study16. 277 

The goal of the study is to identify the characteristics of peripheral blood T cells that are related to 278 

clinical outcomes (response, toxicity). Flow cytometry with an X50 panel was performed on the 279 

collected peripheral blood mononuclear cells (PBMCs) as previously described31,32. Our own X50 280 

panel uses a cocktail of antibodies for the following markers: CD45RA-BUV395, CD4-BUV496, 281 

ICOS-BUV563, CD25-BUV615, TIM3-BUV661, CD27-BUV737, CD8-BUV805, CD57-BV421, 282 

CXCR5-BV480, Live/Dead-FVS510, CD14-BV570, CD19-BV570, CCR4-BV605, CCR7-BV650, 283 

HLA-DR-BV711, CD3-BV750, CD28-BV786, PD1-BB515, LAG3-BB660, CD127-BB700, CD38-284 

BB790, TIGIT-PE, EOMES-PE-CF594, CTLA4-PE-Cy5, FOXP3-PE-Cy5.5, GITR-PE-Cy7, TBET-285 

APC, KI67-AF700, GZMB-APC-Fire750. Samples with very poor quality were pre-identified by the 286 

flow specialist (M.A.) and were not included in the analysis.  287 

Pre-gating analysis and quality control 288 

Each Flow Cytometry Standard (FCS) file acquired from the flow cytometry experiments was 289 

independently preprocessed using our in-house automated gating pipeline (built with R 4.1.3). The 290 

main preprocessing steps include (Supplementary Fig. S6): (1) compensation with matrices exported 291 

from FlowJo v10.8.0 software (BD Life Sciences), (2) biexponential transformation on all marker 292 
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channels with parameters extra negative decades = 0.5, width basis = -30, positive decades = 4.5, (3) 293 

quality control via the R package flowAI (v1.22.0)33, and (4) pre-gating up to CD3+ T cells via the R 294 

package openCyto (v2.4.0)34. The pre-gating strategy is detailed in Supplementary Table S2: a 295 

modified version of the T cell gating template originally provided in the openCyto R package. 296 

For each marker, we carefully checked the consistency of transformed intensity values across all 297 

patient samples, for evaluating the possible batch effects. We downsampled 10k cells from each 298 

sample and performed UMAP visualization and clustering analysis on the downsampled data, the 299 

same procedure as described in the following clustering analysis section. We visually assessed the 300 

UMAP plots and observed no significant batch effect in this cohort. Three samples were excluded in 301 

the following analysis due to a lack of cells (<10k cells) for accurate clustering and frequency 302 

calculations. 303 

Clustering analysis 304 

UMAP visualization (min.dist = 0.1)  and clustering analysis were performed via seurat R package 305 

(v4.0)35  on pre-gated T cells (CD1419-, CD3+) pooled from all samples. The expression of each 306 

marker was scaled to mean 0 and variance 1 before visualization and clustering analysis. Both UMAP 307 

and clustering analysis were conducted based on the 26 principal components, using the transformed 308 

intensity values of all 27 markers as input. We used the Louvain algorithm, a graph-based clustering 309 

method that identifies cell clusters or modules from a Shared-Nearest Neighbor (SNN) graph, a 310 

variant of the K-Nearest Neighbor (KNN) graph. We set K = 5 for constructing the SNN graph since 311 

it is computationally feasible for over 10 million cells. We ran the clustering algorithms with different 312 

resolutions (resolution = 0.5, 0.8, 1.0, 1.2, 1.5, 2, 2.5, 3) and obtained the best clustering result from 313 

10 random starts under each resolution.  314 

We chose the clustering solution under resolution 1.5 based on average Silhouette scores18 and 315 

manual check. Heatmap was used to show the average (scaled) marker expression of each individual 316 

cluster. Clusters of less than 0.1% abundance were not displayed in both UMAP and heatmap to 317 

increase the clarity of the figures. We did not include clusters with very low abundance since there is 318 
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not enough evidence to support that they are real and not generated by technical noises. Moreover, 319 

there is no evidence that the low-frequency T cell subpopulations show clinical or biological interests 320 

in our analysis. We manually annotated the 20 major T cell clusters (abundance > 0.1%) out of 35 321 

clusters in total. For better visualization, UMAP was rerun for each individual patient with different 322 

parameter settings (min.dist = 0.3). 323 

Latent Dirichlet Allocation 324 

 LDA is a generative model that helps to identify hidden structures that explain why some parts of the 325 

data are similar. We briefly describe the model and its application to the flow cytometry data below 326 

and refer readers to the original paper for more details14.  327 

The LDA models the clustered flow cytometry data by considering cells as words, flow samples as 328 

documents, and topics as biological profiles or processes. Suppose there are V T cell types (clusters) 329 

identified across M samples from S patients. Let  330 

represent the nth cell in the dth sample classified to the vth cell types (clusters). The LDA model 331 

assumes each sample has fractional membership across K underlying topics and word  in samples 332 

is generated from th topic, where  are latent variables. In LDA, each sample 333 

can be explained by the following generative process (Fig. 1e). 334 

For each sample d, 335 

a) Choose sample proportion . 336 

b) For each cell  in sample d: 337 

i) Choose a topic , 338 

ii) Choose a cell  conditional on the topic , . 339 

 are mixing proportions of sample d over K underlying topics and each topic is characterized as a 340 

distribution over V T cell types (clusters), where  denote the weights in the kth topic over V T cell 341 

types (clusters).  342 
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In practice, we use the formulation that marginalizes over the . Setting , the 343 

cell count of the vth cell type in the dth sample, the marginal distribution for each sample d is 344 

, 345 

where  denote weights of all topics. 346 

 347 

Model fitting 348 

Gibbs sampling implemented in R package topicmodels (v0.2-12)36 was used for inferring the two sets 349 

of parameters for the LDA model:  , a  matrix, and350 

, a  matrix. We used the following setting for Gibbs sampling: iter = 351 

1000, burnin = 1000, thin = 100 (1000 Gibbs sampling draws are made with the first 1000 iterations 352 

discarded and then every 100th iteration kept). To evaluate the model reproducibility, we repeated the 353 

algorithm ten times and the results of multiple runs are consistent (Supplementary Fig. S7). 354 

The number of topics K needs to be selected before running the algorithm and it is a model selection 355 

problem. There is no ``right’’ answer to the number of topics that are the most appropriate for data37. 356 

We failed to select the number of topics with a 10-fold cross-validation, likely a reflection of the size 357 

of the dataset (only 138 samples). Thus, we guided the choice of the number of topics based on what 358 

is most useful for scientific interpretation. In this study, we set K = 3 for the main result in the paper 359 

since a larger K is less meaningful for only 138 samples.  360 

Lift statistic 361 

We are interested in representatives, clusters that are primarily associated with a single topic. We use 362 

metric lift19, a popular metric for ranking words within single topics in text analysis, to select 363 

representative clusters with the following formula 364 

, 365 
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where  is the empirical frequency of the vth T cell type in data, with  being 366 

the size of the vth T cell type in the dth sample. The lift metric gives higher weights to cell types that 367 

appear less frequently in other topics. 368 

Statistical analysis 369 

For each cluster, we also tested its association to clinical outcomes (response, toxicity) and 370 

immunotypes via the nonparametric test in nparLD R package (v2.1)38, which is designed for 371 

longitudinal data in factorial experiments. The same method was used to test the association of the 372 

ratio (CD8 Temra/Tn), topic proportions to patient clinical outcomes or immunotypes. Only patients 373 

with all three time points (n= 37) were included since the package does not support missing data. We 374 

included p-values from ANOVA-type tests provided by the nparLD R package. For main effects (e.g. 375 

immunotypes, response, toxicity) involving only the whole-plot factors, p-values were provided with 376 

modified ANOVA-type tests with an adjusted degree of freedom. The Kaplan-Meier method was used 377 

for survival estimation and the log-rank test was used for comparisons with the help of survminer R 378 

package. Wilcoxon rank-sum test was performed when comparing topic proportions or cluster 379 

abundances at each single time point. All p-values from multiple comparisons were adjusted by the 380 

Benjamini-Hochberg method with a false discovery rate controlled at 5%. 381 

Identification of patient subgroups 382 

Patients were grouped by hierarchical clustering (hclust () function in R) on their estimated sample 383 

topic proportions . Heatmap was drawn to display the sample topic proportions for each patient, as 384 

well as clinical outcomes (response, toxicity) and immunotypes, using the ComplexHeatmap R 385 

package (v2.10.0)39. Boxplot was used to show the dynamics of sample proportions of the three topics 386 

within each patient group. One patient (17-162-08) with only one sample at time point A was 387 

excluded from the heatmap and the boxplot. Chi-squared tests were performed to test the association 388 

between patient subgroups and clinical outcomes (response, toxicity). 389 
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Data Availability 390 

Data file S1 contains all the clinical and correlative data (flow cytometry clusters) analyzed in this 391 

manuscript. Additional data for reproducing figures are available in the repository: 392 

https://github.com/xiyupeng/topic_modeling. 393 

Code Availability 394 

Analysis codes to reproduce this work are available in the repository: 395 

https://github.com/xiyupeng/topic_modeling. 396 

References 397 

1. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–398 

1355 (2018). 399 

2. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible 400 

for and respond to checkpoint inhibitor immunotherapy Drugs. JAMA Netw. Open 2, e192535 (2019). 401 

3. Hammers, H. J. et al. Safety and efficacy of Nivolumab in combination With Ipilimumab in 402 

metastatic renal cell carcinoma: the checkmate 016 study. J. Clin. Oncol. 35, 3851–3858 (2017). 403 

4. Sznol, M. et al. Pooled analysis safety profile of Nivolumab and Ipilimumab combination therapy 404 

in patients with advanced melanoma. J. Clin. Oncol. 35, 3815–3822 (2017). 405 

5. Larkin, J. et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N. 406 

Engl. J. Med. 373, 23–34 (2015). 407 

6. Signorelli, D. et al. Patients selection for immunotherapy in solid tumors: overcome the naïve 408 

vision of a single biomarker. BioMed Res. Int. 2019, e9056417 (2019). 409 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


18 

7. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in 410 

myeloid cells. Nature 539, 443–447 (2016). 411 

8. Kitano, S. et al. Computational algorithm-driven evaluation of monocytic myeloid-derived 412 

suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol. Res. 2, 812–821 413 

(2014). 414 

9. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. 415 

Nature 545, 60–65 (2017). 416 

10. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 417 

(2016). 418 

11. Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. 419 

Nat. Methods 10, 228–238 (2013). 420 

12. Sankaran, K. & Holmes, S. P. Latent variable modeling for the microbiome. Biostatistics 20, 599–421 

614 (2019). 422 

13. Woloszynek, S. et al. Exploring thematic structure and predicted functionality of 16S rRNA 423 

amplicon data. PLOS ONE 14, e0219235 (2019). 424 

14. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent dirichlet allocation. J Mach Learn Res 3, 993–1022 425 

(2003). 426 

15. Postow, M. A. et al. Adaptive dosing of Nivolumab + Ipilimumab immunotherapy based upon 427 

early, interim radiographic assessment in advanced melanoma (the ADAPT-IT study). J. Clin. Oncol. 428 

40, 1059–1067 (2022). 429 

16. Shen, R. et al. LAG-3 expression on peripheral blood cells identifies patients with poorer 430 

outcomes after immune checkpoint blockade. Sci. Transl. Med. 13, eabf5107 (2021). 431 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


19 

17. Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-based 432 

community detection. Eur. Phys. J. B 86, 471 (2013). 433 

18. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster 434 

analysis. J. Comput. Appl. Math. 20, 53–65 (1987). 435 

19. Matt Taddy. On estimation and selection for topic models. Proceedings of the Fifteenth 436 

International Conference on Artificial Intelligence and Statistics PMLR 22, 1184-1193 (2012).  437 

20. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors 438 

during chronic viral infection. Nat. Immunol. 10, 29–37 (2009). 439 

21. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant 440 

immune mechanisms in cancer. Nature 520, 373–377 (2015). 441 

22. Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. 442 

Nature 595, 585–590 (2021). 443 

23. Joseph, T. A., Shenhav, L., Xavier, J. B., Halperin, E. & Pe’er, I. Compositional Lotka-Volterra 444 

describes microbial dynamics in the simplex. PLOS Comput. Biol. 16, e1007917 (2020). 445 

24. Roberts, M. E., Stewart, B. M. & Airoldi, E. M. A model of text for experimentation in the social 446 

sciences. J. Am. Stat. Assoc. 111, 988–1003 (2016). 447 

25. Roberts, M. E., Stewart, B. M. & Tingley, D. stm: an R package for structural topic models. J. 448 

Stat. Softw. 91, 1–40 (2019). 449 

26. Blei, D. M. & Lafferty, J. D. Dynamic topic models. Proceedings of the 23rd international 450 

conference on Machine learning , 113–120 (2006).  451 

27. Wu, X., Wu, H. & Wu, Z. Penalized latent dirichlet allocation model in single-cell RNA 452 

sequencing. Stat. Biosci. 13, 543–562 (2021). 453 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


20 

28. Chen, Z., Soifer, I., Hilton, H., Keren, L. & Jojic, V. Modeling multiplexed images with spatial-454 

LDA reveals novel tissue microenvironments. J. Comput. Biol. 27, 1204–1218 (2020). 455 

29. Spakowicz, D. et al. Approaches for integrating heterogeneous RNA-seq data reveal cross-talk 456 

between microbes and genes in asthmatic patients. Genome Biol. 21, 150 (2020). 457 

30. Funnell, T. et al. Integrated structural variation and point mutation signatures in cancer genomes 458 

using correlated topic models. PLOS Comput. Biol. 15, e1006799 (2019). 459 

31. Segal, N. H. et al. Phase II single-arm study of Durvalumab and Tremelimumab with concurrent 460 

radiotherapy in patients with mismatch repair–proficient metastatic colorectal Cancer. Clin. Cancer 461 

Res. 27, 2200–2208 (2021). 462 

32. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 463 

and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021). 464 

33. Monaco, G. et al. flowAI: automatic and interactive anomaly discerning tools for flow cytometry 465 

data. Bioinformatics 32, 2473–2480 (2016). 466 

34. Finak, G. et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and 467 

automated, end-to-end flow cytometry data analysis. PLOS Comput. Biol. 10, e1003806 (2014). 468 

35. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 (2021). 469 

36. Grün, B. & Hornik, K. topicmodels: an R package for fitting topic models. J. Stat. Softw. 40, 1–30 470 

(2011). 471 

37. Grimmer, J. & Stewart, B. M. Text as data: the promise and pitfalls of automatic content analysis 472 

methods for political texts. Polit. Anal. 21, 267–297 (2013). 473 

38. Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD: an R software package for the 474 

nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50, 1–23 (2012). 475 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


21 

39. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in 476 

multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). 477 

 478 

 479 

Acknowledgments 480 

This work is supported in part by MSKCC Society, V foundation, Parker Institute for Cancer 481 

Immunotherapy, NIH P30 CA008748, and the MSK-MIND consortium. We thank computational 482 

support from MSK-MIND. We thank Jedd. D. Wolchok for help and support on this project. We also 483 

thank Nicole Rusk for reviewing and editing the manuscript. 484 

  485 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538095doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538095
http://creativecommons.org/licenses/by-nd/4.0/


22 

Figure Legends 486 

Fig. 1: Latent Dirichlet Allocation reveals hidden structures in flow cytometry data. a. Data overview. b. 487 

Deconvolution of flow cytometry data with Latent Dirichlet Allocation (LDA) model after pooled clustering 488 

analysis. c. The analogy between text analysis and flow cytometry analysis. d. Fractional membership of topics 489 

within each sample and its evolution over time. e. Graphic representation of LDA model. 490 

Fig. 2: Identification of T cell clusters in the X50 flow cytometry data. a. UMAP plot of T cell clusters. b. 491 

UMAP plot of T cells overlaid with the expression of CD4 and CD8. c. Heatmap displaying average marker 492 

expression (scaled) of markers in each cluster. d. UMAP plot of T cells overlaid with the expression 493 

of CD45RA, CCR7, and KI67. 494 

Fig. 3: LDA identifies three topics in flow cytometry data. a. Estimated weights (compositions) of clusters  495 

in single topics. b. Clusters with the top 10 highest lift for each topic. Clusters with top lift are identified as 496 

representative clusters for each topic. 497 

Fig. 4: LDA reveals patient subgroups with distinct pharmacodynamics. a. Heatmap showing the sample 498 

proportions ( ) for each single topic (patients, n = 50). Patient 17-162-08 has only one sample at week 0, thus 499 

it is not included. Missing samples were colored gray in the heatmap. b. Dynamics of sample proportions of the 500 

three topics in the four patient subgroups across time. 501 

Fig. 5: The activation topic. a. UMAP plots of T cells at three time points of patient 17-162-05 (PR, severe 502 

irAE), with five representative clusters of the activation topic highlighted. Each UMAP plot contains 20k 503 

random-sampled cells from each sample. b. Heatmap showing average marker expression (scaled) of the five 504 

representative clusters. c. Relative abundances (percentages of cells in each cluster out of total T cells) of the 505 

five representative clusters of the activation topic change over time. The clusters are ordered by lift. d. 506 

Activation topic proportions of each individual patient, paired with gray lines. e. Ridge plots of KI67 marker 507 

expression over the five representative clusters. 508 

Fig. 6: The naïve topic. a. UMAP plots of T cells at three time points of patient 17-162-EXT09 (PR, severe 509 

irAE), with four representative clusters of the naïve topic highlighted. Each UMAP plot contains 5k random-510 

sampled cells from each sample. b. The heatmap shows the average marker expression (scaled) of the four 511 

representative clusters. c. Relative abundances (percentages of cells in each cluster out of total T cells) of the 512 

four representative clusters of the naïve topic change over time. The clusters are ordered by lift. d. Naïve topic 513 

proportions of each individual patient, paired with gray lines. e. Sample proportions of the naïve topic between 514 
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patients experiencing severe/no severe irAE (Y/N). P-values were provided by Wilcoxon rank-sum test for each 515 

time point. 516 

Fig. 7: The exhaustion topic. a. UMAP plots of T cells of patients 17-162-05 (PR, severe irAE, LAG+ 517 

immunotype) and 17-162-27 (SD, severe irAE, LAG- immunotype) at time point A, each with 20k random-518 

sampled cells. The four representative clusters are highlighted. b. Heatmap of the average marker expression 519 

(scaled) of the four representative clusters of the exhaustion topic. c: Relative abundances (percentages of cells 520 

in each cluster out of total T cells) of the four representative clusters of the naïve topic change over time. The 521 

clusters are ordered by lift. d. Exhaustion topic proportions of each individual patient, paired with gray lines. e. 522 

The abundance ratio of CD8 Temra (cluster 3 and 5) to CD8 Tn (cluster 6) across different immunotypes (P = 523 

0.006 for immunotype main effect and P < 0.001 for the interaction effect between time and immunotype). The 524 

sample ratios of patient 17-162-EXT05 are extremely high (around ten times the second-highest), and thus are 525 

not shown in the boxplot. 526 

 527 

  528 
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The supplementary material pdf includes 529 

Figs. S1 to S7  530 

Caption for Data File S1 531 

Tables S1 and S2 532 

Other Supplementary Material for this manuscript includes the following:  533 

Data File S1 534 

 535 
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Fig. 1: Latent Dirichlet Allocation reveals hidden structures in flow cytometry data.

a. Data overview. b. Deconvolution of flow cytometry data with Latent Dirichlet Allocation (LDA) model after pooled 

clustering analysis. c. The analogy between text analysis and flow cytometry analysis. d. Fractional membership of topics 

within each sample and its evolution over time. e. Graphic representation of LDA model.
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T cell cluster

T cell cluster

a. UMAP plot of T cell clusters. b. UMAP plot of T cells overlaid with the expression of CD4 and CD8. c. Heatmap 

displaying average marker expression (scaled) of markers in each cluster. d. UMAP plot of T cells overlaid with the 

expression of CD45RA, CCR7, and KI67.

Fig. 2: Identification of T cell clusters in the X50 flow cytometry data.
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a. Estimated weights (compositions) of clusters       in single topics. b. Clusters with the top 10 highest lift for 

each topic. Clusters with top lift are identified as representative clusters for each topic.

Fig. 3: LDA identifies three topics in flow cytometry data.
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Activation: low

Naïve: high baseline, low
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Exhaustion: low

Group3

Activation: high
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b
Group1

Activation: low

Naïve: median baseline, low

decrease

Exhaustion: high
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Activation: median
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decrease
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Patient sample

Patient sample

Patient sample

Fig. 4: LDA reveals patient subgroups with distinct pharmacodynamics.

a. Heatmap showing the sample proportions (      ) for each single topic (patients, n = 50). Patient 17-162-08 has only one sample

at week 0, thus it is not included. Missing samples were colored gray in the heatmap. b. Dynamics of sample proportions of the 

three topics in the four patient subgroups across time. 
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Fig. 5: The activation topic.

a. UMAP plots of T cells at three time points of patient 17-162-05 (PR, severe irAE), with five representative clusters of the 

activation topic highlighted. Each UMAP plot contains 20k random-sampled cells from each sample. b. Heatmap showing 

average marker expression (scaled) of the five representative clusters. c. Relative abundances (percentages of cells in each 

cluster out of total T cells) of the five representative clusters of the activation topic change over time. The clusters are 

ordered by lift. d. Activation topic proportions of each individual patient, paired with gray lines. e. Ridge plots of KI67 

marker expression over the five representative clusters.
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a. UMAP plots of T cells at three time points of patient 17-162-EXT09 (PR, severe irAE), with four representative clusters of 

the naïve topic highlighted. Each UMAP plot contains 5k random-sampled cells from each sample. b. The heatmap shows the 

average marker expression (scaled) of the four representative clusters. c. Relative abundances (percentages of cells in each 

cluster out of total T cells) of the four representative clusters of the naïve topic change over time. The clusters are ordered by 

lift. d. Naïve topic proportions of each individual patient, paired with gray lines. e. Sample proportions of the naïve topic 

between patients experiencing severe/no severe irAE (Y/N). P-values were provided by Wilcoxon rank-sum test for each 

time point.

Fig. 6: The naïve topic.
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a. UMAP plots of T cells of patients 17-162-05 (PR, severe irAE, LAG+ immunotype) and 17-162-27 (SD, severe irAE, LAG-

immunotype) at time point A, each with 20k random-sampled cells. The four representative clusters are highlighted. b.

Heatmap of the average marker expression (scaled) of the four representative clusters of the exhaustion topic. c: Relative 

abundances (percentages of cells in each cluster out of total T cells) of the four representative clusters of the naïve topic change 

over time. The clusters are ordered by lift. d. Exhaustion topic proportions of each individual patient, paired with gray lines. e. 

The abundance ratio of CD8 Temra (cluster 3 and 5) to CD8 Tn (cluster 6) across different immunotypes (P = 0.006 for 

immunotype main effect and P < 0.001 for the interaction effect between time and immunotype). The sample ratios of patient 

17-162-EXT05 are extremely high (around ten times the second-highest ), and thus are not shown in the boxplot.

Fig. 7: The exhaustion topic.
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