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Abstract  
  
Objective: The performances of popular Genome-wide association study (GWAS) models haven’t 
been examined yet in a consistent manner under the scenario of genetic admixture, which introduces 
several challenging aspects such as heterogeneity of minor allele frequency (MAF), a wide spectrum 
of case-control ratio, and varying effect sizes etc.  
 
Methods: We generated a cohort of synthetic individuals (N=19,234) that simulates 1) a large sample 
size; 2) two-way admixture [Native American-European ancestry] and 3) a binary phenotype. We then 
examined the inflation factors produced by three popular GWAS tools: GMMAT, SAIGE, and Tractor. 
We also computed power calculations under different MAFs, case-control ratios, and varying ancestry 
percentages. Then, we employed a cohort of Peruvians (N=249) to further examine the performances 
of the testing models on 1) real genetic data and 2) small sample sizes. Finally, we validated these 
findings using an independent Peruvian cohort (N=109) included in 1000 Genome project (1000G).  
 
Results: In the synthetic cohort, SAIGE performed better than GMMAT and Tractor in terms of type-I 
error rate, especially under severe unbalanced case-control ratio. On the contrary, power analysis 
identified Tractor as the best method to pinpoint ancestry-specific causal variants, but showed 
decreased power when no adequate heterogeneity of the true effect sizes was simulated between 
ancestries. The real Peruvian data showed that Tractor is severely affected by small sample sizes, 
and produced severely inflated statistics, which we replicated in the 1000G Peruvian cohort.  
 
Discussion: The current study illustrates the limitations of available GWAS tools under different 
scenarios of genetic admixture. We urge caution when interpreting results under complex population 
scenarios.  
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Introduction  

Genome-wide association studies (GWASs) have successfully identified risk and protective loci in 
many complex human traits. Among these, binary traits have dominated the pool of explored 
outcomes, e.g., type 2 diabetes or Alzheimer’s disease (AD). Linear mixed models (LMM), 
extensively used in GWAS with binary traits, violate the assumption of constant residual variance, 
leading to inflated type I error. The generalized linear mixed model associated test (GMMAT) [1] builds 
logistic mixed models and constructs a score test for the binary traits in GWAS while accounting for 
population stratification and relatedness via a kinship matrix. Although GMMAT has been shown to be 
more robust than other LMM approaches with well-controlled type I error rates, it did not address 
other common limitations, such as imbalanced case-control ratios, a common scenario in the GWAS - 
especially in population-based studies where affected cases are usually far rarer than controls. Other 
limitations, such as rare variants, also lead to P-values inflation. To address such limitations, Zhou et 
al.[2] proposed the Scalable and Accurate Implementation of Generalized mixed model (SAIGE), 
which includes Saddlepoint approximation (SPA)[3] in the fitting of generalized linear mixed model 
(GLMM), in order to calibrate the score test accounting for imbalanced case-control ratios and rare 
variants. Through simulation study and real data analysis, SAIGE shows well-calibrated P values 
even under these extreme scenarios.  

Another pressing issue in GWAS is the under-representation of admixed populations, whose 
genomes contain segments inherited from multiple ancestral groups. Few GWAS tools have been 
specifically designed for such complex genetic architecture. Tractor[4], proposed by Atkinson et al., is 
a scalable framework that incorporates the genetic structure of admixed individuals into large-scale 
genomics efforts through local ancestry inference, which has been shown to be capable of detecting 
and modeling ancestry-specific effect sizes. The impact of the local ancestry on association models 
has also been investigated in a recent publication[5], where the authors compared the performances 
of Tractor vs. other methods based on the Armitage trend test. However, the latter are fixed-effect 
models that don’t consider random effects such as the genetic relatedness between individuals. The 
paper also didn’t account for imbalanced case control ratio, rare variants etc. Therefore, the 
performances of Tractor have yet to be systematically examined to their full extent. 

In general, there is a lack of standardized criterion for benchmarking popular GWAS methods and 
their results under a variety of key factors, such as minor allele frequency (MAF) heterogeneity, 
imbalanced case-control ratio, admixture, etc. In this study, we present a benchmark investigation 
that fills the gap by systematically examining the performances of three popular GWAS models, 
GMMAT, SAIGE and Tractor, conditional on the factors stated previously. We also applied these tools 
in an AD study of admixed participants, i.e., Peruvians from the “Genetics of Alzheimer’s disease In 
Peruvian Populations study” (GAPP) study. Finally, we validated the results using an independent 
cohort of Peruvians included in the 1000 Genome Project (1000G).   

Methods 
 

A. Data process 
 
We used a large synthetic dataset using HAPNEST[6], a recently developed software that  enabled 
the generation of a diverse synthetic datasets (using publicly-available reference datasets) of 
1,008,000 individuals of 6 ancestry groups. We used the Admixed American (AMR) group from 
HAPNEST and performed phasing using the 1000 Genome project[7] (1000G) as reference haplotype 
panel through Shapeit[8] (2.r837). We then used RFMix2[9] (v2.0.3), a discriminative approach that 
estimates both global and local ancestry using random forests, to inference local ancestry assuming a 
three-way admixed scenario, i.e., Native-American ancestry (NAA), European (EUR), and African 
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(AFR) through the reference panel Human Genome Diversity project (HGDP)[10]. We then filtered out 
the individuals with significant African global ancestry (i.e., greater than 10%) in order to retain a two-
way admixed sample. We again used RFMix2 to estimate local ancestry assuming a two-way 
admixture of NAA and EUR backgrounds on the remaining 19,234 individuals. We used 19,081 
independent genetic variants on Chromosome 20, limiting the analyses to variants with minor allele 
count (MAC)>10, so that we could investigate the performances of the testing methods to ultra-rare 
causal variants too. The kinship matrix was computed using PLINK (2.0). The major (i.e., EUR) and 
minor (NAA) ancestries of the synthetic dataset were modeled opposite to the real Peruvian data (i.e. 
NAA being the major ancestry and EUR the minor one), to examine a different combinations of 
admixture.  
 
To apply our methods and perform real-data analyses, we leveraged the GAPP study, a recently 
established cohort of Peruvian mestizos from Lima and indigenous groups from Southern Peru 
(Aymaras and Quechuas). Genotyping was conducted on the Infinium Global Screening Array-24 
BeadChip, which combines multi-ethnic genome-wide content, curated clinical research variants, and 
quality control (QC) markers for precision medicine research, extensively detailed in previous 
publications from our group [11]. We conduct the same procedure by first phasing the genetic data; 
then, for each individual, global ancestry (NAA, EUR, and AFR) were estimated using the HGDP as 
the reference panel. After excluding individuals with high African global ancestry, we again inferenced 
the local ancestry assuming a two-way admixture (NAA and EUR) on the remaining 249 individuals. 
Variants were filtered with a lower threshold of MAC>5. 
 
We validated the results obtained in the real-data analysis, we used an independent Peruvian cohort 
from the expanded 1000G[12], again with a two-way admixture profile (NAA and EUR). We filtered out 
the individuals with high African background and conduct the two-way admixture local ancestry 
inference (NAA and EUR) as previously discussed. We used 44,847 independent variants on 
chromosome 1 of the remaining 109 Peruvians using a lower threshold of MAC>10, which represents 
a more conservative threshold compared to what we implemented in GAPP, ultimately allowing us to 
investigate the impact of various rare-variant cut-off effect in small sample sized cohorts.  
 
 

B. Simulation setting 
 
We conducted a series of simulations to evaluate the performances of the testing methods regarding 
a variety of different factors within the synthetic cohort from HAPNEST. We evaluated the 
performances of the testing methods from two perspectives, i.e. the control of type I error rates and 
the empirical power for detecting the true effect sizes. 
 

1) Control of type I error. For testing the control of type I error rates, the binary phenotypes 
were generated by a logistic mixed model,  

�������� 	 
� � � � � � � � � � � , 
where G is the genotype, � is the genetic log odds ratio, and b is the random effect simulated 
from a normal distribution N (0, �) with the relatedness matrix �. Two covariates, �and �, 
were drawn from Bernoulli (0.5) and standard normal distribution, which represents the 
discrete and quantitative predictors. The intercept alpha was chosen to represent the 
corresponding probability of the disease. Under the scenario of the control of type I error, the 
phenotypes were simulated with � 	 0 . We also simulated three case-control ratios as 1:1, 1:9, 
and 1:99, denoted as “balance”, “imbalance”, and “extreme-imbalance” scenarios. We then 
computed and compared the inflation factor lambda for each testing method. We also 
computed the total numbers of the p-values smaller than the genome-wise significance (i.e., 5* 
10�� ) to examine the control of the type I error for each testing method.  
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2) Power analysis. Phenotypes were simulated under the alternative hypothesis, i.e., � of the 
causal variant is not equal to 0. To facilitate the admixture scenario, we simulated that the risk 
allele was only associated with the NAA ancestry. First, we randomly selected a risk variant 
conditional on the pre-determined thresholds of MAF. Then, we simulated the phenotype 
through the probability of disease, which is set to,  

�������� 	 
� � � � � � � � ���� � ���� , 
where ���� is the genotype matrix associated with the NAA ancestry, � and � are the 
discrete and continuous variables, and �  is the random effect. The intercept 
� was chosen to 
reflect the case-control ratios as previously illustrated. We simulated 100 datasets of the 
corresponding phenotypes for a given MAF and allelic risk effect size of the selected causal 
variant. The performances of the testing methods were measured through power, which is 
defined as the proportion of times for which the corresponding test of the causal variant is 
significant at a given threshold of p values. 

 
MAF. We categorized the results of the testing causal variants according to the corresponding MAF, 
such as “ultra-rare” (MAF<0.001), “rare” (0.001<MAF<0.01), “uncommon” (0.01<MAF<0.05), and the 
common (MAF>0.05).  
 
Varying effect size. We simulated 100 replicates of simulated genotypes with a logistic model for each 
allelic effect sizes of the causal ancestry NAA (����) set at 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0, 
whereas the effect size of the null ancestry EUR is 0 (��	
 	 0). 
 
Case-control ratio. We again consider three case-control ratios: 1:1, 1:9, and 1:99, denoted as 
“balance”, “imbalance”, and “extreme-imbalance” scenarios. 
 

3) Impact of heterogeneity of effect sizes between ancestries. To investigate the impact of 
the heterogeneity of effect sizes when the causal variants have non-zero causal effect sizes in 
both ancestries, we conduct a secondary analysis assuming ��	
 	 0.15 and �0.50 � ���� �

0.65 increasing by 0.05. The case-control ratio was set at 1:3, and the MAFs of the causal 
variants of both ancestries were set between 0.1 to 0.2. We measured the testing methods’ 
performance through power as defined previously in the Power analysis section.  

 
4) Replication using the Peruvian cohort from 1000G. To validate the results attained from 

GAPP, we simulated 100 datasets using Peruvians in 1000G with the same procedure 
described above and case-control ratio set to 1:3. We examined the total numbers of the 
variants with p-value smaller than the genome-wide significance.   

 
C. GWAS methods 

 
For simulations described in 1) and 2), we trained the three GWAS tools, GMMAT, SAIGE, and 
Tractor. We generated the genomic relatedness matrix (GRM) through PLINK/2.0[1] and provided it to 
GMMAT, whereas SAIGE creates a sparse relatedness matrix with a default threshold at 0.125 and 
Tractor does not include the relatedness matrix in its association test. We included the first three 
principal components to account for population structure. The simulated covariates, X1 and X2, were 
also provided to the testing models. Tractor fits a logistic regression model including the two ancestry-
specific genotypes (while accounting for covariates and local ancestry) then returns the estimated 
ancestry-specific p-values (in this experiment, we obtained two statistics for EUR and NAA).  
 
For simulations described in 3) and 4), we only trained and compared results from GMMAT and 
Tractor. In fact, given the case-control ratio being set at 1:3 and the causal variants set as common 
variants, we did not observe any difference between GMMAT and SAIGE (as expected - data not 
shown).  
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For the real-data analysis from GAPP, we again only trained and compared the performances of 
GMMAT and Tractor, since the case-control ratio was not simulated but derived from real diagnostic 
status, i.e. 1:3 (58 cases versus 190 controls). We also restricted our analyses to common variants. 
Therefore, GMMAT and SAIGE produced again overlapping results (data not shown). The first three 
principal components, age and sex were also used as fixed affects and the GRM as random effect. 
The local ancestry dosage generated by RFMix was used to implement Tractor as described 
previously.  

 
Results 
 

A. Global ancestries of the testing cohorts in the simulation and real data analysis. 
 
Figure 1 shows the global ancestry distribution for the three cohorts employed in this project, i.e., the 
synthetic admixed cohort from HAPNEST, the Peruvians from GAPP, and the Peruvians included in 
1000G. The major and minor ancestry of both Peruvian cohorts are NAA and EUR, respectively; the 
major and minor ancestry of HAPNEST are EUR and NAA, respectively.   
 
 

 
Figure 1. The global ancestries of the individuals included in the HAPNEST, GAPP Peruvian, and 
1000G Peruvian.  
 

B. Type I error rates. 
 
Given the large sample size of HAPNEST, all three methods attained acceptable inflation factors with 
a well-balanced case-control ratio (1:1, Figure 2). SAIGE showed well-calibrated inflation factors 
compared to GMMAT when the case-control ratio shifted to 1:3, whereas Tractor started to show 
decline in p-values calibration, especially for p-values associated with the minor local ancestry (i.e. 
NAA). SAIGE and GMMAT both exhibited small inflation in extremely imbalanced case-control ratio 
(1:99), whereas Tractor showed problematic p-values calibration with inflation factors considerably 
smaller than 1 for both major and minor global ancestries. As shown in Table 1, Tractor produced 
genome-wide significant results although there were no causal variants being simulated: this 
ultimately shows that Tractor has high false positive rate (FPR) when the case-control ratio is 
extremely unbalanced. Table 1 also reports the median MAFs for the variants associated with false 
positives results. False positive rates are strongly correlated with low MAFs, with GMMAT’s false 
positives associated with the ultra-rare variants, whereas Tractor’s false positives extend in the range 
of rare variants as well. On the other hand, SAIGE was the only method that did not produce false 
positives under any case-control scenario, and ultimately confirmed the conclusions reached by their 
authors in its published manuscript.  
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Figure 2. The density function of the inflation factors of the three testing methods over 100 replicates 
in the simulation scenario of type-I error control.   
 

100 replicates GMMAT SAIGE 
Tractor 

Major ancestry Minor ancestry 
# of GWV 0.66 0 1.36 3.80 
Median MAF 0.0009  NA 0.0034 0.0073 

Table 1. The table shows the average number of genome-wide significant variants (“GWV”, p-value 
≤5e-8) per 100 replicates, and the median MAF of these variants in the scenario of extremely 
imbalanced case-control ratio. The MAF of variants identified by Tractor is computed based on local 
ancestry dosage.  
 

C. Power analysis 
 
Under large sample sizes (such as the HAPNEST cohort, Figure 3), Tractor showed superior 
performance in terms of power, i.e., the proportion of causal variants attaining p-values smaller than 
the genome-wide significance, whereas the performances of GMMAT and SAIGE were virtually 
similar. For ultra-rare and rare causal variant, Tractor also performed better, although required large 
true effect sizes. When causal variants were uncommon or common, Tractor again performed better 
than GMMAT and SAIGE in identifying causal variants with smaller effect sizes under different 
scenarios of case-control ratio. Tractor also successfully identified the causal ancestry, i.e. the 
ancestry that the effect sizes are non-zero for simulating the phenotypes.   
Table 2 shows that under a balanced case-control ratio (1:1), Tractor controls well FPR as there was 
no false positive results associated with the null ancestry, i.e. the ancestry that is not associated with 
the phenotypes when simulating the data. However, when case-control ratio is extremely imbalanced, 
Tractor retrieved concerningly higher rates of false positives, compared to GMMAT and SAIGE. 
These false positives were again associated mainly with ultra-rare variants.  
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Figure 3. Power calculation of the three methods based on the 19,234 synthetic individuals from 
HAPNEST. The significance threshold of p-value is set at genome-wide significance (p<5e-8). The 
causal ancestry, i.e., the corresponding effect size is non-zero, is NAA. 
 
 

2,400 replicates GMMAT SAIGE 
Tractor 

Major/Null ancestry Minor/Causal ancestry 

Balanced 
# GWV  0.24 0.18 0 0.16 

Median MAF 0.033 0.033 NA 0.14 

Imbalanced 
# GWV  0.4 0.26 0.032 0.23 

Median MAF 0.04 0.034 0.00078 0.014 
Extremely 

imbalanced 
# GWV 1.18 0.2 2.03 4.93 

Median MAF 0.018 0.047 0.0026 0.0062 
Table 2. Average number of genome-wide significant variants (“GWV”, p-value ≤5e-8) (and their 
median MAF) averaging over all 2,400 replicates stratified by case-control ratio. The median MAF for 
variants identified by Tractor are computed based on local ancestry dosage. We excluded the true 
causal variants when computing numbers shown in this table.  
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D. Heterogeneity of effect sizes between ancestry.  
 
Figure 4 shows that GMMAT is consistently more powerful than Tractor when the effect sizes of the 
two ancestries are in same direction, i.e., with limited heterogeneity between major (EUR) and minor 
ancestry (NAA) effect sizes. On the other hand, when the effect sizes of the major and minor ancestry 
are in opposite directions, i.e., ��	
 	 0.15 while ���� � 0, GMMAT is less powerful due to the 
cancelation of opposite effect sizes. On the contrary, Tractor picks up the causal variants when, for 
example, the effect size associated with the minor ancestry is large enough to overcome the opposite 
effect size associated with the major ancestry.    
 

 
Figure 4. Impact of heterogeneity of the true effect sizes between ancestries on the testing methods. 
The effect size of the minor ancestry (����) ranges from -0.5 to 0.65 by 0.05, whereas the effect size 
of the major ancestry (��	
) is fixed at 0.15.  
 
 

E. Real data analysis. 
 
Figure 5a shows that no genome-wide significance results were achieved in GAPP using GMMAT, 
likely due to the relatively small sample size (N=249). On the other hand, as shown in Figure 5b,c 
and Table 3, Tractor retrieved 31 and 1557 genome-wide significant variants associated with the 
major (NAA) and minor ancestry (EUR), ultimately showing a severe inflation of p-values and FPR 
when cohorts have small sample sizes. Table 3 also shows the correlation between the false 
positives and MAF. 
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Figure 5. Manhattan plots of AD GWAS produced by GMMAT (a) and Tractor (b: NAA and c: EUR) 
in the GAPP cohort. The total number of tested variants is 4,492,989. 
 

 GMMAT 
Tractor 

Major ancestry Minor ancestry 
# GWV  0 31 1557 
Median MAF NA 0.031 0.014 

Table 3. Total numbers of genome-wide significant variants (“GWV”, p-value ≤5e-8) identified by 
GMMAT and Tractor in GAPP.  
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We replicated conclusion about Tractor’s false positives by leveraging the Peruvians from 1000G 
(N=109). Here, Tractor again returned worrisome results, i.e., 30 and 4,031 genome-wide significant 
variants for major (NAA) and minor ancestry (EUR) respectively, while no such variants were 
identified by GMMAT. Table 4 shows that, likely due to small sample size, the deconvolution of the 
genotypes by local ancestries creates not only rare variants but also monomorphic variants 
associated with the minor ancestry, even though all variants were filtered by MAF > 0.01 in the overall 
sample. 
 

 GMMAT 
Tractor 

Major ancestry Minor ancestry 
# GWV  0 30 4031 
Median MAF NA 0.056  0 

Table 4. Total numbers of genome-wide significant variants (“GWV”, p-value ≤5e-8) identified by 
GMMAT and Tractor in 1000G.  
 
 

Discussion 
 
In this study we employed large and small cohorts of synthetic and real-data admixed individuals, and 
benchmarked the results obtained by three popular GWAS methods, GMMAT, SAIGE, and Tractor 
under various scenarios.   
 
When power was investigated, we observed optimal performance by Tractor in identifying and 
modeling the causal effect sizes, compared to the GMMAT and SAIGE. The superiority of Tractor 
was particularly evident when large heterogeneity existed in terms of effect sizes between ancestries. 
Our conclusion is in line with results reported in the original paper[4] and the other benchmark paper 
comparing Tractor to the Armitage trend test[5]. However, the deconvolution of the genotype matrix is 
analogous to reducing the sample size, which ultimately leads to inferior performances of Tractor, 
especially when the heterogeneity across effect sizes is not large enough (Figure 4).  
 
 
When studying the type I error control, SAIGE generated well calibrated p-values even under extreme 
situations, such as rare variants and imbalanced case-control ratios. GMMAT showed small inflation 
of p-values and produced false positives only under extreme scenarios. Lastly, the calibrations of p-
values by Tractor, especially for the minor ancestry, were greatly affected by the imbalanced case-
control ratios, even when sample sizes are large - as is the case of the HAPNEST cohort.  
 
Given HAPNEST large sample size and balanced case-control ratio, Tractor shows well-controlled 
FPR, but produced substantial false positive results associated with the rare variants and extreme 
case-control ratio in both simulation studies (type I error control and power analysis). It must be 
emphasized that the simulation study of type I error control in HAPNEST included only 19,081 
variants from chromosome 1 leading to an average of 5.16 false positives across major and minor 
ancestries reported by Tractor. Hence, if Tractor was used for whole-genome association tests, we 
could expect thousands or tens of thousands of false positives. The mishandling of rare variants is 
further aggravated when the sample size is small, such as the case of real-data analysis (GAPP and 
1000G cohorts), because the deconvolution of the genotype matrix further creates rare variants in the 
local ancestry dosages. In fact, in an extreme scenario all minor alleles can be attributed to one 
ancestry, which leaves the other ancestry with monomorphic variants only, ultimately producing 
outstandingly false positive results. Further, it should be noted that Tractor may not be suitable for 
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analyzing related samples, as Tractor does not account for kinship, which could lead to inflated p-
values or false positives.  
 
In summary, we acknowledge the improvement achieved by Tractor in identifying ancestry-related 
causal variants, by leveraging the unique genetic structure of admixed populations. However, we 
want to caution the usage of Tractor under extreme circumstances, especially in small sample sizes 
and when the deconvolution of genotype matrix introduces additional issues in terms of allele 
frequency. This study demonstrates the importance of considering imbalanced case-control ratio, rare 
variants and sample size, and ultimately addresses the major challenges for the development of 
future GWAS methods in admixed populations.  
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