
Lightning Pose: improved animal pose estimation via
semi-supervised learning, Bayesian ensembling, and cloud-native

open-source tools

Dan Biderman1,†, Matthew R Whiteway1,†,
Cole Hurwitz1, Nicholas Greenspan1, Robert S Lee2, Ankit Vishnubhotla1,

Richard Warren1, Federico Pedraja1, Dillon Noone1, Michael Schartner3, Julia M Huntenburg4,
Anup Khanal5, Guido T Meijer3, Jean-Paul Noel6,

Alejandro Pan-Vazquez7, Karolina Z Socha8, Anne E Urai9,
The International Brain Laboratory, John P Cunningham1, Nathaniel B Sawtell1,

Liam Paninski1

†These authors contributed equally to this work.
1Columbia University, New York, USA, 2Work done while at Lightning.ai, New York, USA,

3Champalimaud Centre for the Unknown, Lisbon, Portugal,
4Max Planck Institute for Biological Cybernetics, Tübingen, Germany,

5University of California Los Angeles, Los Angeles, USA, 6New York University, New York, USA,
7Princeton University, Princeton, USA, 8University College London, London, United Kingdom,

9Leiden University, Leiden, The Netherlands
∗Correspondence: db3236@cumc.columbia.edu, m.whiteway@columbia.edu

Abstract

Contemporary pose estimation methods enable precise measurements of behavior via supervised
deep learning with hand-labeled video frames. Although effective in many cases, the supervised ap-
proach requires extensive labeling and often produces outputs that are unreliable for downstream anal-
yses. Here, we introduce “Lightning Pose,” an efficient pose estimation package with three algorithmic
contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos
and penalize the network whenever its predictions violate motion continuity, multiple-view geometry,
and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that
resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third,
we refine the pose predictions post-hoc by combining ensembling and Kalman smoothing. Together,
these components render pose trajectories more accurate and scientifically usable. We release a cloud
application that allows users to label data, train networks, and predict new videos directly from the
browser.

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

1 Introduction

Behavior is our window into the processes that underlie animal intelligence, ranging from early sensory pro-
cessing to complex social interaction [1]. Methods for automatically quantifying behavior from video [2–4]
have opened the door to high-throughput experiments that compare animal behavior across pharmacological
[5] and disease [6] conditions. Moreover, when behavior is carefully monitored, motor signals are revealed
in unexpected brain areas, even regions classically defined to be purely sensory [7, 8].

Pose estimation methods based on fully-supervised deep learning have emerged as a workhorse for be-
havioral quantification [9–13]. This technology reduces high-dimensional videos of behaving animals to
low-dimensional time series of their poses, defined in terms of a small number of user-selected keypoints
per video frame. Three steps are required to accomplish this feat. Users first create a training dataset by
manually labeling poses on a subset of video frames; typically hundreds or thousands of frames are labeled
to obtain reliable pose estimates. A neural network is then trained to predict poses that match user labels.
Finally, the network is run on a new video to predict a pose for each frame separately. This process of
labeling-training-prediction can be iterated until performance is satisfactory. The resulting pose estimates
are used extensively in downstream analyses including quantifying predefined behavioral features (e.g., gait
features such as stride length, or social features such as distance between subjects), estimation of neural
encoding and decoding models, classification of behaviors into discrete “syllables,” and closed-loop experi-
ments [14–19].

Although the supervised paradigm is effective in many cases, a number of critical roadblocks remain. To
start, the labeling process can be laborious, especially when labeling complicated skeletons on multiple
views. Even with large labeled datasets, trained networks are often unreliable: they output “glitchy” predic-
tions that require further manipulation before downstream analyses [20, 21], and struggle to generalize to
animals and sessions that were not represented in their labeled training set. Even well-trained networks that
achieve low pixel error on a small number of labeled test frames can still produce error frames that hinder
downstream scientific tasks. Manually identifying these error frames is like finding a needle in a haystack
[22]: errors persist for a few frames at a time whereas behavioral videos can be hours long. Automatic
approaches – currently limited to filtering low-confidence predictions and temporal discontinuities – can
easily miss scientifically critical errors.

To improve the robustness and usability of animal pose estimation, we present Lightning Pose, a solution at
three levels: modeling, software, and a cloud-based application.

First, we leverage semi-supervised learning, which involves training networks on both labeled frames and
unlabeled videos, and is known to improve generalization and data-efficiency [23]. On unlabeled videos,
the networks are trained to minimize a number of unsupervised losses that encode our prior beliefs about
moving bodies: poses should evolve smoothly in time, be physically plausible, and be localized consistently
when seen from multiple views. In addition, we leverage unlabeled frames in a Temporal Context Network
architecture, which instead of taking in a single frame at a time, processes each frame with its neighboring
(unlabeled) frames. Our resulting models outperform their purely supervised counterparts across a range of
metrics and datasets, providing more reliable predictions for downstream analyses.

We further improve our networks’ predictions using a general Bayesian post-processing approach, which
we coin the Ensemble Kalman Smoother: we aggregate (“ensemble”) the predictions of multiple networks –
which is known to improve their accuracy and robustness [24, 25] — and model those aggregated predictions
with a spatially-constrained Kalman smoother that takes their collective uncertainty into account.

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

We implemented these tools in a deep learning software package that capitalizes on recent advances in the
deep learning ecosystem. Open-source technologies allow us to outsource engineering-heavy tasks (such
as GUI development, or training orchestration), which simplifies our package and allows users to focus on
scientific modeling decisions. We name our package Lightning Pose, as it is based on the PyTorch Lightning
deep learning library [26]. Unlike most existing packages, Lightning Pose is video-centric and built for
manipulating large videos directly on the GPU, to support our semi-supervised training (and enable fast
evaluation on new videos). Our modular design allows users to quickly prototype new training objectives
and network architectures without affecting any aspects of training.

Finally, to make pose estimation tools accessible to the broader audience in life sciences, their adoption
should not depend on programming skills or access to specialized hardware. Therefore, we developed a
no-install cloud application that runs on the browser and allows users to perform the entire cycle of pose
estimation: uploading raw videos to the cloud, annotating frames, training networks, and diagnosing the
reliability of the results using our unsupervised loss terms.

2 Results

We first describe the dominant supervised approach to pose estimation and illustrate its drawbacks, espe-
cially when applied to new subjects and sessions. Next, we introduce our unsupervised losses and Tem-
poral Context Network architecture. We illustrate that these unsupervised losses can be used to identify
outlier predictions in unlabeled videos, and find that networks trained with these losses lead to more reli-
able tracking compared to purely supervised models. We then introduce the Ensemble Kalman Smoother
post-processing approach and show that it further improves tracking performance. We proceed to apply
our combined methods to the International Brain Lab datasets, and show that they improve pupil and paw
tracking, thereby improving neural decoding. Finally, we showcase our software package and cloud-hosted
application. Further details on our models, losses, and training protocol are provided in the Methods.

2.1 Supervised pose estimation and its limitations

The leading packages for animal pose estimation – DeepLabCut [9], SLEAP [10], DeepPoseKit [11], and
others – differ in architectures and implementation but all perform supervised heatmap regression on a
frame-by-frame basis (Fig. 1A). A standard model is composed of a “backbone” that extracts features for
each frame (e.g., a ResNet-50 network) and a “head” that uses these features to predict body part location
heatmaps. Networks are trained to match their outputs to manual labels.

Training supervised networks from a random initialization requires a large amount of labeled frames. Ex-
isting methods [9] circumvent this requirement by relying on transfer learning: pre-training a network on
one task (e.g., image classification on ImageNet, with over one million labeled frames), and fine-tuning it
on another task, in this case pose estimation, using far fewer labeled frames (∼100s-1000s). Typically, the
backbone is fine-tuned and the head is trained from a random initialization.

After training, a fixed model is evaluated on a new video by predicting pose on each frame separately.
Each predicted keypoint on each frame is accompanied by an estimate of the network’s confidence for that
prediction; often low-confidence estimates are dropped in a post-processing step to reduce tracking errors.

3

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Even when trained with many labeled frames, pose estimation network outputs may still be erroneous. We
highlight this point using the “mirror-mouse” dataset, which features a head-fixed mouse running on a wheel
and performing a sensory-guided locomotion task ([16]; see Methods). Using a camera and a bottom mirror,
the mouse’s side and underside are observed simultaneously, recorded at 250 frames per second. 17 body
parts are tracked, including all four paws in both views. We trained five DeepLabCut networks on 631
labeled frames (for each network, we used a different random seed to split the labeled frames into train and
test sets).

Figure 1B shows the time series of the estimated left hind paw position during one second of a running be-
havior for each of the five networks (in colors). Each time series exhibits the expected periodic pattern (due
to the running gait), but includes numerous “glitches,” some of which are undetected by the networks’ con-
fidence. This collection of five networks – also known as a “deep ensemble” [24] – outputs highly variable
predictions on many frames, especially in challenging moments of ambiguity or occlusion (Supplementary
Video 1). We will later use this ensemble variance as a proxy for frame “difficulty.”

2.2 Supervised networks need more labeled data to generalize

It is standard to train a pose estimator using a representative sample of subjects, evaluate performance on
held-out examples from that sample (“In Distribution” test set, henceforth InD), and then deploy the network
for incoming data. The incoming data may include new subjects, seen from slightly different angles and
lighting conditions (“Out of Distribution” test set, henceforth OOD). Differences between the InD and OOD
test sets are termed “OOD shifts”; building models that are robust to such shifts is a contemporary frontier
in machine learning research [27, 28].

We analyze five datasets: the “mirror-mouse” dataset introduced above [16], a freely swimming Mormyrid
fish imaged with a single camera and two mirrors (for three views total; “mirror-fish,” Supplementary Fig.
1), a resident-intruder assay (“CRIM13;” two camera views are available but we consider the top view only;
[29]), paw tracking in a head-fixed mouse (“IBL-paw;” three camera views are available but we only use
the two side cameras; [30]), and a crop of the pupil area in IBL-paw (“IBL-pupil;” we use just one camera
view). We split each labeled dataset into two cohorts of subjects, InD and OOD (see dataset and split details
in Methods and Supplementary Table 1).

We train supervised heatmap regression networks that use a pretrained ResNet-50 backbone, similar to
DeepLabCut (see Methods for architectural details) on InD data with an increasing number of labeled
frames. Ten networks are trained per condition, each on a different random subset of InD data. We evaluate
the networks’ performance on held-out InD and OOD labeled examples.

In Fig. 1C, we first replicate the observation that InD test-set error (blue curve) plateaus starting from ∼200
labeled frames [18]. From looking at this curve in isolation, it could be inferred that additional manual
annotation is unnecessary. However, the OOD error curve (orange) is both overall higher, and keeps steeply
declining as more labels are added. To obtain an OOD error comparable to InD, many more labels will be
needed. This larger label requirement is consistent with recent work showing that ∼50k labeled frames are
needed to robustly track ape poses [31], and that mouse face tracking networks need to be explicitly fine-
tuned on labeled OOD data to achieve good performance [32]. For scarce labels, we find the gap between
InD and OOD errors to be so large for some datasets that it renders prediction on new animals unusable for
many downstream analyses.

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supervised
loss

A
Supervised pose estimation architecure

B

In-distribution Out-of-distribution

Generalization in supervised modelsC

Unstable predictions in supervised models

0.9 conf
threshold

80 pixels

80 pixels

side view

underside view

Labeled frames Backbone Predicted keypoints Labeled keypoints

x
co

or
d

y
co

or
d

co
nf

id
en

ce

Mouse locomotion
(Warren et al., 2021)

Freely swimming mormyrid fish
(Pedraja et al.)

Mouse perceptual decision-making
(IBL 2023)

Pi
xe

l e
rro

r

Training frames

20

15

10

5

50 100 200 400 600

Training frames

20

15

10

5
50 100 200 280

Time (s)
102.0 102.5 103.0

200

100

150

100

1.0

0.0

20 pixels

Mouse pupil tracking
(IBL 2023)

Training frames

5

4

3

2

6

50 100 200 800 1600400

20 pixels

Training frames

15

10

5

50 100 200 800 1600400 3200

improves with more
labeled frames

plateaus at
≈200 frames

Head

Training frames
50 100 200 800 1600400 3200

100 pixels

Resident-intruder assay
(Burgos-Artizzu et al., 2012)

60

40

20

17 keypoints (2 views) 51 keypoints (3 views) 14 keypoints (2 animals) 4 keypoints 2 keypoints

different
seeds

Figure 1: Fully-supervised pose estimation often outputs unstable predictions and requires many labels to gener-
alize to new animals. A. Diagram of a typical pose estimation model trained with supervised learning, illustrated using
the mirror-mouse dataset [16]. A dataset is created by labeling keypoints on a subset of video frames. A convolutional
neural network, consisting of a “backbone” and a prediction “head,” takes in a batch of frames as inputs, and predicts a
set of keypoints for each frame. It is trained to minimize the distance from the labeled keypoints. B. Predictions from
five supervised DeepLabCut networks (trained with 631 labeled frames on the mirror-mouse dataset), for the left front
paw position (top view) during one second of running behavior. Top: x-coordinate; Middle: y-coordinate; Bottom:
confidence, applying a standard 0.9 threshold in a dashed line. The predictions demonstrate occasional discontinuities
and disagreements across the five networks, only some of which are flagged by low confidence (Supplementary Video
1). C. To generalize robustly to unseen animals, many more labels are required. Top row shows five example datasets.
Each blue image is an example taken from the in-distribution (InD) test set, which contains new images of animals
that were seen in the training set. The orange images are test examples from unseen animals altogether, which we call
the out-of-distribution (OOD) test set. Bottom row shows data-efficiency curves, measuring test-set pixel error as a
function of the training set size. InD pixel error is in blue and OOD in orange. Line plots show the mean pixel error
across all keypoints and frames ± standard error over n=10 random subsets of InD training data.

To address these limitations, we propose the Lightning Pose framework, comprising two components: semi-
supervised learning and a Temporal Context Network architecture, which we describe next.

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

2.3 Semi-supervised learning via spatiotemporal constraints

Most animal pose estimation algorithms treat body parts as independent in time and space. Moreover,
they do not utilize the vast amounts of available unlabeled videos for training the networks; instead, most
video data are used just at prediction time. These two observations offer an opportunity for semi-supervised
learning [23]. We thus train a network on both labeled frames (supervised) and large volumes of unlabeled
videos (unsupervised). During training, the network is penalized whenever its pose predictions violate
a set of spatiotemporal constraints on the unlabeled videos. We use “soft” constraints, i.e., the network is
penalized only for severe constraint violations (with a controllable threshold parameter ε). The unsupervised
losses are applied only during training and not during video prediction. As a result, after training, a semi-
supervised model predicts a video as quickly as its fully-supervised counterpart.

Our semi-supervised pose estimation paradigm is depicted in Fig. 2A. The top row, shaded in gray, is
simply the supervised pose estimation approach à la DeepLabCut. In each training iteration, the network
additionally receives an unlabeled video clip (selected at random from a queue of videos), and outputs
a time-series of pose predictions - one pose vector for each frame (bottom row). Those predictions are
subjected to our unsupervised losses. We describe these unsupervised losses next.

2.4 Temporal difference loss

The first spatiotemporal constraint we introduce is also one held by 4-month-old infants: objects should
move continuously [33] and not jump too far between video frames. We define the temporal difference
loss for each body part as the Euclidean distance between consecutive predictions in pixels. Similar losses
have been used by several practitioners to detect outlier predictions post-hoc [16, 32], whereas our goal
here, following [34], is to incorporate these penalties directly into network training to achieve more accurate
network output. Figure 2B illustrates this penalty: the cartoon in the left panel indicates a jump discontinuity
we would like to penalize. In the right panel we plot the loss landscape, evaluating the loss for every pixel in
the image. The paw’s previous predicted position is depicted as a white diamond. Observe a ball of zero-loss
values centered at the diamond with a radius of ε = 20 pixels which we set as the maximum allowed jump
for this dataset; ε can be set depending on the frame rate, frame size, the camera’s distance from the subject,
and how quickly or jerkily the subject moves. Outside the ball, the loss increases as we move farther away
from the previous prediction.

If our losses are indeed viable proxies for pose prediction errors, they should be correlated with pixel errors
in test frames for which we have ground-truth annotations. To test this, we trained a supervised model with
75 labeled frames, and computed the temporal difference loss on fully-labeled OOD frames. We anticipate
a mild correlation with pixel error: prediction errors may persist across multiple frames and exhibit low
temporal difference loss; in periods of fast motion, temporal difference loss may be high, yet keypoints may
remain easily discernible. Indeed, in the bottom left panel of Fig. 2B, we see that the temporal difference loss
is mildly correlated with pixel error on these frames (log-linear regression: Pearson r = 0.26, 95% CI =
[0.20, 0.32]; each point is the mean across all keypoints for a given frame). As a comparison, confidence is
a more reliable predictor of pixel error (Pearson r = −0.54, 95% CI = [−0.59,−0.49]).

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

2.5 Multi-view PCA loss

Our cameras see three-dimensional bodies from a two-dimensional perspective. It is increasingly common
to record behavior using multiple synchronized cameras, train a network to estimate pose independently in
each 2D view, and then use standard techniques post-hoc to fuse those 2D pose predictions into a 3D pose
[20, 35]. This approach has two limitations. First, to reconstruct 3D poses, one needs to calibrate each
camera, that is, to precisely infer where it is in the 3D world and carefully model its intrinsic parameters
such as focal length and distortion. This typically involves filming a calibration board from all cameras
after any camera adjustment; this adds experimental complexity and may be challenging or unreliable in
some geometrically constrained experimental setups built for small model organisms. Second, localizing
a body part in one view will constrain its allowed location in all other views [36], and we want to exploit
this structure during training to obtain a stronger network; the post-hoc 3D reconstruction does not take
advantage of this important structure to improve network training.

We use a “multi-view PCA" loss that constrains the predictions for unlabeled videos to be consistent across
views [37, 38], while bypassing the need for complicated camera calibration. Each multi-view prediction
(containing width-height coordinates for a single body part seen from multiple views) is compressed to three
dimensions via simple principal components analysis (PCA; see Methods), and then this three-dimensional
representation is linearly projected back into the original pixel coordinates (henceforth, “PCA reconstruc-
tion”). If the predictions are consistent across views and nonlinear camera distortion is negligible, no infor-
mation should be lost when linearly compressing to three dimensions. We define the multi-view PCA loss
as the pixel error between the original versus the PCA-reconstructed prediction, averaged across keypoints
and views.

This simple linear approach will not be robust to substantial nonlinear distortions coming either from the
lens or from a water medium. In both the mirror-mouse (two views) and mirror-fish (three views) datasets,
distortions were minimized by placing the camera far from the subject (∼ 1.1 and ∼ 1.7 meters respec-
tively). Indeed, in both cases, three PCA dimensions explain > 99.9% of the multi-view ground truth label
variance (Fig. 2C, bottom right).

Figure 2C (top left) provides a cartoon illustration of the idea we have just described: an inconsistent de-
tection by the left camera will result in high multi-view loss. In the top right panel we compute the loss
landscape for the left front paw on the top view, given its position in the bottom view. According to prin-
ciples of multiple-view geometry, a point identified in one camera constrains the corresponding point in
a second camera to a specific line, known as the “epipolar line” [36]. Indeed, the loss landscape exhibits
a line of low loss values (blue) that intersects with the paw’s true location. Finally, as we did for the
temporal difference loss, we compute the correlation between the multi-view loss and objective prediction
errors for a test-set of labeled OOD frames. The multi-view loss is strongly correlated with pixel error
(Pearson r = 0.88, 95% CI = [0.87, 0.90]), much more so than the temporal difference loss or confidence,
motivating its use both as a post-hoc quality metric and as a penalty during training.

7

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Error

image
plane

t-2

t-1

t+1
t+2

t

paw1

Supervised
loss Existing Paradigm

(e.g., DeepLabCut,
DeepPoseKit,

SLEAP)

paw1(x)
paw1(y)
tail1(x)

time

Error

pa
w

1(
x)

lo
ss

hi
gh

lo
w

implausible
configuration

Lightning Pose architecture

...

t-2 t-1 t+1 t+2t

paw2

Context head

Static head

Predicted t (static)

Backbone
Predicted t

(context)

A

B

Position heatmaps (implicit)

Te
m

po
ra

l d
iff

er
en

ce
lo

ss
 (p

ixe
ls

)

OOD Pixel error
lo

ss
hi

gh
lo

w

0.99

3 10 30

3

10

30

M
ul

ti-
vi

ew
 P

CA
lo

ss
 (p

ixe
ls

)

OOD Pixel error

r=0.26 [0.20, 0.32]

C

E

DTemporal difference loss Multi-view PCA loss Pose PCA loss

Po
se

PC
A

lo
ss

 (p
ixe

ls
)

mirror-mouse
mirror-fish

Number of PCs kept

0.7

0.8

1.0

0.9

1 2 3 4 5 6

Fraction of PCs kept
0.0 0.5 1.0

conceptual illustration loss landscape

correlation with error variance explained

mirror-mouse
(28D)
mirror-fish
(40D)
CRIM13 (28D)

0.99

Temporal Context Network (TCN) architecture

No
ground

truth

Unsupervised
losses

0.4

0.8

1.0

0.6

lo
ss

hi
gh

lo
w

Few labeled
frames

(expensive)

Many videos
(cheap)

Predicted keypoints Labeled keypoints

Backbone Head

Time series of
predicted keypoints

Image with
context frames

Bi-directional
CRNN

IBL-pupil (8D)
3 10 30

3

10

30 r=0.88 [0.87, 0.90]

OOD Pixel error
3 10 30

3

10

30
r=0.91 [0.90, 0.92]

Figure 2: Lightning Pose exploits unlabeled data in pose estimation model training. A. Diagram of our semi-
supervised model that contains supervised (top row) and unsupervised (bottom row) components. B. Temporal dif-
ference loss penalizes jump discontinuities in predictions. Top left: illustration of a jump discontinuity. Top right:
loss landscape for frame t given the prediction at t − 1 (white diamond), for the left front paw (top view). The loss
increases further away from the previous prediction, and the dark blue circle corresponds to the maximum allowed
jump, below which the loss is set to zero. Bottom left: correlation between temporal difference loss and pixel error
on labeled test frames. C. Multi-view PCA loss constrains each multi-view prediction of the same body part to lie on
a three-dimensional subspace found by Principal Component Analysis (PCA). Top left: illustration of a 3D keypoint
detected on the imaging plane of two cameras. The left detection is inconsistent with the right. Top right: loss land-
scape for the left front paw (top view; white diamond) given its predicted location on the bottom view. The blue band
of low loss values is an “epipolar line” on which the top-view paw could be located. Bottom left: multi-view PCA
loss is strongly correlated with pixel error. Bottom right: three PCs explain >99% of label variance on multi-view
datasets. D. Pose PCA loss constrains predictions to lie on a low-dimensional subspace of plausible poses, found by
PCA. Top left: illustration of a plausible and implausible poses. Top right: loss landscape for the left front paw (top
view; white diamond) given all other keypoints, which is minimized around the paw’s actual position. Bottom left:
Pose PCA loss is strongly correlated with pixel error. Bottom right: cumulative variance explained versus fraction
of PCs kept. Across four datasets, > 99% of the variance in the pose vectors can be explained with <50% of the
PCs. E. The Temporal Context Network processes each labeled frame with its adjacent unlabeled frames, using a
bi-directional convolutional recurrent neural network. It forms two sets of location heatmap predictions, one using
single-frame information and another using temporal context.

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

2.6 Pose PCA loss

Not all body configurations are feasible, and of those that are feasible, many are unlikely. Even diligent
yoga practitioners will find their head next to their foot only on rare occasions (Fig. 2D, top left). In other
words, in many pose estimation problems there are fewer degrees of freedom than there are body parts. The
Pose PCA loss constrains the full predicted pose (over all keypoints) to lie on a low-dimensional subspace
of feasible and likely body configurations. It is defined as the pixel error between an original pose prediction
and its reconstruction after low-dimensional compression (see Methods).

Our loss is inspired by the success of low-dimensional models in capturing biological movement [39],
ranging from worm locomotion [40] to human hand grasping [41]. We similarly find that across four of
our datasets, 99% of the pose variance can be explained with far fewer dimensions than the number of pose
coordinates (Fig. 2D, bottom right) – mirror-mouse: 14/28 components; mirror-fish: 8/40; CRIM13: 8/28;
IBL-pupil 3/8 (IBL-paw only contains four dimensions). The effective pose dimensionality depends on the
complexity of behavior, the keypoints selected for labeling, and the quality of the labeling. Sets of spatially-
correlated keypoints will have a lower effective dimension (relative to the total number of keypoints); label
errors tend to reduce these correlations and inflate the effective dimension.

Fig. 2D (top right) shows the Pose PCA loss landscape for the left hind paw location in the mirror-mouse
dataset (true location shown as a white diamond) given the location of all the other body parts. As desired,
the Pose PCA loss is lower around the paw’s true location and accommodates plausible neighbouring loca-
tions. Here too, the Pose PCA loss closely tracks ground truth pixel error on labeled OOD frames (Fig. 2D,
bottom left; Pearson r = 0.91, 95% CI = [0.90, 0.92]).

The Pose PCA loss might erroneously penalize valid postures that are not represented in the labeled dataset.
To test the prevalence of this issue, we took DeepLabCut models trained with abundant labels and com-
puted the Pose PCA loss on held-out videos. We collected 100 frames with the largest Pose PCA loss per
dataset. Manual labeling revealed that 85/100 (mirror-mouse; Supplementary Video 2), 87/100 (mirror-fish;
Supplementary Video 3), and 100/100 (CRIM13; Supplementary Video 4) of the frames include true errors,
indicating that in most cases, large Pose PCA losses correspond to pose estimation errors, rather than unseen
rare poses.

2.7 Temporal Context Network

Some frames are more challenging to label than others, due to occlusions or ambiguities between similar
body parts. In many cases, additional temporal context can help resolve ambiguities: e.g., if a keypoint
is occluded briefly we can scroll backwards and forwards in the video to help “fill in the gaps.” However,
this useful temporal context is not provided to standard frame-by-frame pose estimation architectures, which
instead must make guesses about such challenging keypoint locations given information from just one frame
at a time.

Therefore, we propose a Temporal Context network (TCN), illustrated in Fig. 2E, which uses a 2J+1 frame
sequence to predict the location heatmaps for the middle (i.e., J + 1) frame. As in the standard architecture,
the TCN starts by pushing each image through a neural network backbone that computes useful features
from each frame. Then, instead of predicting the pose directly from each of these individual per-frame
feature vectors, we combine this information across frames using a bi-directional convolutional recurrent
neural network (CRNN), and then use the output of the CRNN to form predictions for the middle frame.

9

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

The CRNN is lightweight compared to the backbone, and we only apply the backbone once per frame;
therefore the TCN runtime scales linearly with the number of total context frames. We have found that a
context window of 5 frames (i.e., J = 2) provides an effective balance between speed and accuracy and
have used this value throughout the paper. In practice, the output of the TCN and single-frame architectures
usually match on visible keypoints; rather, the TCN helps with more rare occlusions and ambiguities, where
predictions from a single-frame architecture might jump to a different region of the image.

2.8 Spatiotemporal losses enhance outlier detection

Before training networks with these spatiotemporal losses, we first assess whether violations of these losses
correspond to meaningful errors in video predictions, going beyond correlations with pixel errors on rela-
tively small labeled test sets (Fig. 2B,C,D). Practitioners often detect outliers using a combination of low
confidence and large temporal difference loss [16, 20, 32, 42]. Here we show that the standard approach can
be complemented by multi-view and Pose PCA, which capture additional unique outliers.

We start with an example video snippet from the mirror-mouse dataset, focusing on the left hind paw on
the bottom view (Fig. 3A,B). We analyze the predictions from a DeepLabCut model (trained as in Fig. 1B).
Fig. 3A shows that the x coordinate’s discontinuity in frames 290-294, for example, is a result of the network
switching back and forth between the similar-looking front and hind paws. These common “paw-switching”
errors are mostly missed by network confidence, which remains almost entirely above the >0.9 threshold.
The temporal difference loss does not detect these errors, due to two main issues: first, this loss spikes not
only when the network jumps to a wrong location (frame 291), but also when it jumps back to the correct
location (frame 292). Second, the temporal difference loss misses frames when the network lingers at the
wrong location (frame 294). On the other hand, the multi-view PCA loss trace correctly utilizes the top-view
prediction for this keypoint (white circle) to flag the error frames as inconsistent across views.

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

x-coord

paw1LH_bot

y-coord

Confidence

Temporal
difference
loss (pix)

Multi-view
PCA

loss (pix)

B

100

200

300

200

225

0.8

1.0

0

200

200 250 300 350 400

Frame number

0

100

0.9

0.6

0.8

1.0

A
U

R
O

C

p
aw

1L
H

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

D

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

75 train frames 631 train frames

p
aw

2L
F

p
aw

3R
F

p
aw

4R
H

Con
f

Te
m

po
ra

l d
iff

Pos
e

PCA

M
ult

i-v
iew

 P
CA

Con
f

Te
m

po
ra

l d
iff

Pos
e

PCA

M
ult

i-v
iew

 P
CA

Metric performance as outlier detector

A
U

R
O

C
A

U
R

O
C

A
U

R
O

C

A

True

Pred
Frame 290 Frame 291 Frame 292 Frame 293 Frame 294

Confidence: 0.99
Temporal diff: 2.18
Multi-view PCA: 1.28

Confidence: 0.98
Temporal diff: 143.77

Confidence: 0.99
Temporal diff: 141.50

Confidence: 1.00
Temporal diff: 140.35

Confidence: 1.00
Temporal diff: 0.60

Corresponding paw

Standard outlier detectors
Proposed outlier detectors

Top/bot horizontal
displacement: 0.41

Top/bot horizontal
displacement: 145.55

Top/bot horizontal
displacement: 3.33

Top/bot horizontal
displacement: 144.71

Top/bot horizontal
displacement: 147.90

Multi-view PCA: 79.12 Multi-view PCA: 2.95 Multi-view PCA: 78.66 Multi-view PCA: 80.23

Metric-defined inlier
Metric-defined outlier

20 pixels

20 pixels

C

75 train frames 631 train frames

Multi-view
PCA

18535 50533855

2217

3803 699

1912

34497
18558

8130

21338

12340 5792

5437

Confidence Temporal
difference

Unsupervised losses complement confidence for outlier detection

Pose PCA
Multi-view PCA

Multi-view
PCA

Confidence
Temporal
difference

Pose PCA Multi-view PCA

Outliers selected by
each metric

4262 193843814081 91343994

Outliers: 116k / 800k keypoints Outliers: 39k / 800k keypoints

Figure 3: Unsupervised losses complement model confidence for outlier detection. A. Example frame sequence
from the mirror-mouse dataset. Predictions from a DeepLabCut model (trained on 631 frames) are overlaid (magenta
×), along with the ground truth (green +). Open white circles denote the location of the same body part (left hind paw)
in the other (top) view; given the geometry of this setup, a large horizontal displacement between the top and bottom
predictions indicates an error. Each frame is accompanied with “standard outlier detectors,” including confidence,
temporal difference loss (shaded in blue), and “proposed outlier detectors,” including multi-view PCA loss (shaded in
red; Pose PCA excluded for simplicity). X© indicates an inlier as defined by each metric, and ×© indicates an outlier.
Confidence is high for all frames shown, and the temporal difference loss misses error frame 294 which does not
contain an immediate jump, and flags frame 292 which demonstrates a jump to the correct location. Multi-view PCA
captures these correctly. B. Example traces from the same video. Blue background denotes times where standard
outlier detection methods flag frames: confidence falls below a threshold (0.9) and/or the temporal difference loss
exceeds a threshold (20 pixels). Red background indicates times where the multi-view PCA error exceeds a threshold
(20 pixels). Purple background indicates both conditions are met. C. The total number of keypoints flagged as outliers
by each metric, and their overlap. D. Area under the receiver operating characteristic curve (AUROC) for each paw,
for DeepLabCut models trained with 75 and 631 labeled frames (left and right columns, respectively). AUROC=1
indicates the metric perfectly identifies all nominal outliers in the video data; 0.5 indicates random guessing. AUROC
values are computed across all frames from 20 test videos; boxplot variability is over n=5 random subsets of training
data. Boxes use 25th/50th/75th percentiles for min/center/max; whiskers extend to 1.5 * IQR (inter-quartile range).

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

We proceed to generalize the example and quantify the overlaps and unique contributions of the differ-
ent outlier detection methods on 20 unlabeled videos. We investigate two data regimes: “scarce labels”
(75), which mimics prototyping a new tracking pipeline, and “abundant labels” (631 for the mirror-mouse
dataset), i.e., a “production” setting with a fully trained network.

First, as we move from the scarce to the abundant labels regime, we find a 66% reduction in the outlier rate
– the union of keypoints flagged by confidence, temporal difference, and multi-view PCA losses – going
from 116k/800k to 39k/800k keypoints. This indicates that the networks become better and more confident.
The Venn diagrams in Fig. 3C show that multi-view PCA captures a meaningful number of unique outliers
which are missed by confidence and the temporal difference loss. (The Pose PCA includes both views and
thus is largely overlapping with multi-view PCA.)

The overlap analysis above does not indicate which outliers are true versus false positives. To analyze this
at a large scale, we restrict ourselves to a meaningful subset of the “true outliers” that can be detected
automatically, namely predictions that are impossible given the mirrored geometry. We define this subset
of outliers as frames for which the horizontal displacement between the top and bottom view predictions
for a paw exceeds 20 pixels, similar to [16]; the networks output 72k/800k such errors with scarce labels,
and 16k/800k with abundant labels. These spatial outliers should violate the PCA losses, but it is unknown
whether they are associated with low confidence and large temporal differences. Instead of setting custom
thresholds on our metrics as in Fig. 3B, we now estimate each metric’s sensitivity via a “Receiver Operating
Characteristic” (ROC) curve, which plots the true positive rate against the false positive rate (both between
0 and 1), across all possible thresholds. The area under the ROC curve (AUROC) is a single measure
summarizing the performance of each outlier detector: AUROC equals 1 for a perfect outlier detector,
0.5 for random guessing, and values below 0.5 indicate systematic errors. All metrics are above chance
in detecting “true outliers” (Fig. 3D); for this class of spatial errors, the PCA losses are more sensitive
outlier detectors than network confidence, and certainly more than the temporal difference loss (due to the
pathologies described above).

To summarize, the PCA losses identify additional outliers that would have been otherwise missed by stan-
dard confidence and temporal difference thresholding (see Extended Data Fig. 1 and Extended Data Fig. 2
for similar results on mirror-fish and CRIM13 datasets). It is therefore advantageous to include PCA losses
in standard outlier detection pipelines.

2.9 Both unsupervised losses and TCN boost tracking performance

Above we established that spatiotemporal constraint violations help identify network prediction errors. Next
we quantify whether networks trained to avoid these constraint violations achieve more accurate and reliable
tracking performance. As a “baseline” model for comparison, we implemented a supervised heatmap regres-
sion network that is identical to our more sophisticated model variants, but without semi-supervised learn-
ing or the TCN architecture. The baseline model matches DeepLabCut in performance across all datasets,
though it is not intended to exactly match it in implementation (see Methods). The baseline model is useful
because it eliminates implementation-level artifacts from model comparison. We quantify the networks’
performance both on an out-of-distribution labeled test set as well as on many unlabeled video frames. In
this section, we compare the networks’ raw predictions, without any post-processing, to focally assess the
implications of our architecture and unsupervised losses.

In Fig. 4A and Supplementary Video 5, we examine the mouse’s right hind paw position (top view) during
two seconds of running. We compare the raw video predictions from our full semi-supervised model (in

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

blue), including all supervised and unsupervised losses and a TCN architecture (henceforth, SS-TCN), to
the predictions generated by our supervised baseline model, both trained on 75 labeled frames. The SS-TCN
predictions are smoother (top two panels) and more confident (bottom panel), exhibiting a clearer periodic
pattern expected for running on a stationary wheel. While some of the baseline model’s discontinuities are
flagged by low confidence, some reflect a confident confusion between similar body parts, echoing Fig. 3A.
One such confident confusion is highlighted in gray shading, and further scrutinized in Fig. 4B, showing
that the baseline model (red) mistakenly switches to the left hind paw for two frames. The SS-TCN model
avoids paw switching first because each frame is processed with its context frames, and second, because
switching would have been heavily penalized by both the temporal difference loss and multi-view PCA loss.

We perform an ablation study to isolate the contributions of our semi-supervised losses, our TCN architec-
ture, and their combination. For each model type, we trained five networks with different random subsets of
InD data. As noted by [22, 43], simple pixel error is an incomplete summary of network performance, since
error averages may be dominated by a majority of “easy” keypoints, obscuring differences that may only
be visible on the minority of “difficult” keypoints. We found it informative to quantify the pixel error as a
function of keypoint difficulty, where we operationally define “difficulty” as the variance in the predictions
of a deep ensemble of (five) networks (averaged across all model types). When this variance is large, at least
one network in the ensemble must be in error; indeed, qualitatively, Fig. 1 and Supplementary Video 1 show
that ensemble variance tends to increase on occlusion frames.

As expected, for both scarce and abundant label regimes (Fig. 4C), OOD pixel error increases as a function
of ensemble standard deviation. With scarce labels, models struggle to resolve even “easy” keypoints, and
SS-TCN outperforms baseline and DeepLabCut models across all levels of difficulty. The TCN architecture
alone only mildly contributes to the improvements compared to semi-supervised learning in this dataset.
By training semi-supervised models with a single loss at a time, we identify that multi-view and Pose PCA
losses underlie most improvements (Extended Data Fig. 3). With abundant labels, all models accurately
resolve “easy” keypoints, and the trends observed in the scarce labels regime become pronounced only for
more “difficult” keypoints.

The above analysis was performed on a small set of 253 labeled OOD test frames. If we assess performance
on a much larger unlabeled dataset of 20 OOD videos, and compute each of our losses for every predicted
keypoint on every video frame, we observe similar trends (Fig. 4D): the SS-TCN model improves sample-
efficiency with scarce labels, and reduces rare errors with abundant labels. (Recall that the semi-supervised
models are explicitly trained to minimize these losses, and so these results on OOD data are consistent with
expectations.)

We find similar patterns for the mirror-fish (Extended Data Fig. 4, Supplementary Video 6) and CRIM13
(Extended Data Fig. 5, Supplementary Video 7) datasets.

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

x-
co

or
d

y-
co

or
d

C
on

f

A

B

D

100

200

50

100

0

1

1500 1600 1700 1800 1900 2000

Frame number

0

50

Frame 1548 Frame 1549 Frame 1550 Frame 1551

M
ul

ti-
vi

ew
P

C
A

Baseline
Semi-super TCN

Traces for paw4RH_top

10

20

40

O
O

D
 P

ix
el

 e
rr

or

100% 50% 20%

75 train frames

0 2 4

Ensemble std dev

10

20

40

100%
50%

5%

DeepLabCut
Baseline
TCN
SS
SS-TCN

631 train frames

O
O

D
 P

ix
el

 e
rr

or

% labels
in error
computation

"harder" keypoints

Unlabeled data metrics

75 train frames

631 train frames

Multi-view PCA loss (pix)

Multi-view PCA loss (pix)

Temporal difference loss (pix)

Temporal difference loss (pix)

Pose PCA loss (pix)

0

Ensemble std dev

Pose PCA loss (pix)

Lo
ss

 v
al

ue
Lo

ss
 v

al
ue

17150
keypoints

100% 50% 20%

2 4

100%

50%

5%

4

10

6

0

Ensemble std dev

2

6

10

100% 50% 20%

2 4

100%

50%

5%

4

2

6

10

4

0

Ensemble std dev

% frames
in loss
computation

200k frames
100% 50% 20%

2 4

100%

50%

5%

3

6

4

3

6

4

4

10

6

C

Baseline

Semi-super TCN

Figure 4: Unlabeled frames improve pose estimation (raw network predictions). A. Example traces from the
baseline model and the semi-supervised TCN model (trained with 75 labeled frames) for a single keypoint (right hind
paw; top view) on a held-out video (Supplementary Video 5). The semi-supervised TCN model is able to resolve the
visible glitches in the trace, only some of which are flagged by the baseline model’s low confidence. One erroneous
paw switch missed by confidence – but captured by multi-view PCA loss – is shaded in gray. B. A sequence of frames
(1548-1551) corresponding to the gray shaded region in panel A in which a paw switch occurs. The estimates from
both models are initially correct, then at Frame 1549 the baseline model prediction jumps to the incorrect paw, and
stays there until it jumps back at Frame 1551. C. We compute the standard deviation of each keypoint prediction
in each frame in the OOD labeled data across all model types and seeds (five random shuffles of training data). We
then take the mean pixel error over all keypoints with a standard deviation larger than a threshold value, for each
model type. Smaller standard deviation thresholds include more of the data (n=17150 keypoints total, indicated by
the “100%” vertical line; (253 frames) × (5 seeds) × (14 keypoints) - missing labels), while larger standard deviation
thresholds highlight more “difficult” keypoints. Error bands represent standard error of the mean over all included
keypoints and frames for a given standard deviation threshold. D. Individual unsupervised loss terms are plotted as a
function of ensemble standard deviation for the scarce (top) and abundant (bottom) label regimes. Error bands as in
panel C, except we first compute the average loss over all keypoints in the frame (200k frames total; (40k frames) ×
(5 seeds)). 14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

2.10 The Ensemble Kalman Smooter (EKS) enhances accuracy post-hoc

While our semi-supervised networks improve upon their fully-supervised counterparts, they still make mis-
takes. Recall that the spatiotemporal constraints are enforced during training but not at prediction time;
therefore, we now present a post-processing algorithm which uses these constraints to refine the predictions.
Successful post-processing requires identifying which predictions need fixing, that is, properly quantifying
uncertainty for each keypoint on each frame. As emphasized above, low network confidence captures some,
but not all, errors; conversely, constraint violations indicate the presence of additional errors within a set of
keypoints but do not identify which specific keypoint within a given constraint violation is in fact an error.

Fig. 4C demonstrates that the ensemble variance – which varies for each keypoint on every frame – is an
additional useful signal of model uncertainty [44, 45]. Hence, we developed a post-processing framework
that integrates this ensemble variance uncertainty signal with our spatiotemporal constraints, via a proba-
bilistic “state-space” model approach (Fig. 5A,B). Our model posits a latent “state” that evolves smoothly
in time, and is projected onto the keypoint positions to enforce our spatial constraints. For example, we
enforce multi-view constraints by projecting the three-dimensional true position of the body part (the “latent
state”) through two-dimensional linear projections to obtain the keypoints in each camera view. This proba-
bilistic state-space model corresponds to a Kalman filter-smoother model [46] and so we name the resulting
post-processing approach the “Ensemble Kalman Smoother” (EKS) (see Methods).

The EKS model output represents a Bayesian compromise between the spatiotemporal constraints (prior)
and the information provided by the ensemble observations (likelihood). Concretely, if a keypoint’s un-
certainty is low (i.e., all ensemble members agree) then this observation will be upweighted relative to the
spatiotemporal prior and will only be lightly smoothed. Conversely, when a keypoint’s uncertainty is high,
the spatiotemporal priors and other more-confident keypoints’ predictions will be used to interpolate over
these uncertain observations. Unlike previous approaches [16, 20, 22, 32, 42], EKS requires no manual
selection of confidence thresholds or (suboptimal) temporal linear interpolation separately for each dropped
keypoint. Moreover, the EKS post-processing approach is agnostic to the type of networks used to generate
the ensemble predictions.

We benchmark EKS on DeepLabCut models fit to the mirror-mouse dataset. EKS compares favorably to
other standard post-processors, including median filters and ARIMA models (which are fit on the outputs of
single networks), and the ensemble mean and median (computed using an ensemble of multiple networks;
Fig. 5C,D). EKS provides substantial improvements in OOD pixel errors with as few as m = 2 networks;
we find m = 5 networks is a reasonable choice given the computation-accuracy tradeoff (Fig. 5E,F), and
use this ensemble size throughout.

When applied to Lightning Pose semi-supervised TCN models, EKS provides additional improvements
across multiple datasets, particularly on “difficult” keypoints where the ensemble variance is higher (Ex-
tended Data Fig. 6). EKS achieves smooth and accurate tracking even when the models make errors due to
occlusion and paw confusion (Extended Data Fig. 6; Supplementary Video 8-12; Supplementary Figs. 2-4).

2.11 Improved tracking on International Brain Laboratory datasets

Next we turn to an analysis of large-scale public datasets from the International Brain Laboratory (IBL) [30].
In each experimental session, a mouse was observed by three cameras while performing a visually-guided
decision-making task. The mouse signaled its decisions by manually moving a rotary wheel left or right. We

15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

t=1 t=2 t=T

...

Dynamics model
temporal

constraints

Observation model
spatial / multiview

constraints

ensemble
means

latent
state

...

test video

...

ensemble
variances

Ensemble of pose estimation networks
(any network type)

network 1

network 2

network m

ensemble means

ensemble variances

individual models

A B

Mirror mouse labeled data (253 OOD frames)

Ensemble Kalman Smoother (EKS)

EC

Post processor comparison

paw1LH_top (x)

paw1LH_top (y)

...

paw1LH_top (x)

paw1LH_top (y)

10

30

P
ix

el
 e

rr
or

Ensemble median

Raw (DLC)
Median filter
ARIMA
Ensemble mean

EKS (temporal)
EKS (MV PCA)

Mirror mouse labeled data (253 OOD frames)

EKS (temporal) ensemble size analysis

FD

Median filter

paw1LH_top x position

ARIMA

Ensemble mean

Ensemble median

EKS (temporal)

EKS (MV PCA)

250 ms

paw1LH_top x velocity

50 pix/ms

Raw (DLC)
m = 2
m = 3
m = 4
m = 5
m = 6
m = 8

paw1LH_top x position paw1LH_top x velocity

m = 2

m = 3

m = 4

m = 5

m = 6

m = 8

Ensemble std dev

100 pix

0 2 4

100% 50% 5%

0 2 4

100%

50%

5%

Ensemble std dev

20

40

% labels
in error
computation

"harder" keypoints

10

30

P
ix

el
 e

rr
or

Ensemble std dev
0 2 4 0 2 4

Ensemble std dev

20

40

"harder" keypoints

75 train frames 631 train frames 75 train frames 631 train frames

100% 50% 5% 100%

50%

5%

% labels
in error
computation

Figure 5: The Ensemble Kalman Smoother (EKS) post-processor. Results are based on DeepLabCut models trained
with different subsets of InD data and different random initializations of the head. A. Deep ensembling combines the
predictions of multiple networks. The ensemble mean is potentially more accurate than single model predictions,
and the ensemble variance can be a useful measure of uncertainty that is complementary to single model confidence
values. B. EKS leverages the spatiotemporal constraints of the unsupervised losses as well as uncertainty measures
from the ensemble variance in a probabilistic state-space model. Ensemble means of the keypoints are modeled
with a latent linear dynamical system; temporal smoothness constraints are enforced through linear dynamics (yellow
arrows) and spatial constraints (Pose or multi-view PCA) are enforced through a fixed observation model that maps
the latent state to the observations (green arrows). Instead of learning the observation noise, we use the time-varying
ensemble variance (red arrows). EKS uses a Bayesian approach to weight the relative contributions from the prior and
observations. C. Post-processor comparison on OOD frames from the mirror-mouse dataset. We plot pixel error as
a function of ensemble standard deviation (as in Fig. 4). The median filter and ARIMA models act on the outputs of
single networks; the ensemble means, ensemble medians, and EKS variants act on an ensemble of five networks. EKS
(temporal) only utilizes temporal smoothness, and is applied one keypoint at a time. EKS (MV PCA) utilizes multi-
view information as well as temporal smoothness, and is applied one body part at a time (tracked by one keypoint in
each of two views). Error bands as in Fig. 4 (n=17150 keypoints at 100% line). D. Trace comparisons for different
methods (75 train frames). Gray lines show the raw traces used as input to the method, colored lines show the post-
processed trace. E. Pixel error comparison for the EKS (temporal) post-processor as a function of ensemble members
(m). Error bands as in panel C. F. Trace comparisons for varying numbers of ensemble members (75 train frames).

16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

analyze two of IBL’s video datasets. “IBL-pupil” contains zoomed-in videos of the pupil, where we track
the top, bottom, left, and right edges of the pupil. In “IBL-paw" we track the left and right paws.

Despite efforts at standardization, the data exhibit considerable visual variability between sessions and labs,
which presents serious challenges to existing pose estimation methods. Specifically, in IBL’s preliminary
data release we used DeepLabCut, followed by custom post-processing. As detailed in [30], this approach
fails in a majority of pupil recordings: the signal-to-noise ratio of the estimated pupil diameter is too low
for reliable downstream use, largely due to occlusions caused by whisking and infrared light reflections.
Paw tracking tends to be more accurate, but is contaminated by discontinuities especially when a paw is
retracted behind the torso. In this section, we report the results for IBL-pupil. The IBL-paw results appear
in Extended Data Fig. 7 and the Supplementary Information.

In Fig. 6, we evaluate three pose estimators: DeepLabCut with custom post-processing (DLC; left column
of example session), Lightning Pose’s semi-supervised TCN model with the same post-processing (LP;
middle column, using temporal difference and Pose PCA losses), and the pupil-specific EKS variant applied
to an ensemble of m = 5 LP models (LP+EKS; right column). The pupil-specific EKS uses a three-
dimensional latent state: pupil centroid (width and height coordinates) and a diameter. (It is straightforward
to construct an EKS version with separate horizontal and vertical diameters, but we found this extension
to be unnecessary for this dataset.) The latent state is then projected linearly onto the eight-dimensional
tracked pixel coordinates (width and height for top, bottom, left, and right edges; see Methods).

To directly compare our methods to the publicly released IBL DeepLabCut traces, we train on all available
data and evaluate on held-out unlabeled videos. We define several pupil-specific metrics to quantify the
accuracy of the different models and their utility for downstream analyses.

The first metric compares the “vertical” and “horizontal” diameters, i.e., top(y) - bottom(y) and right(x) -
left(x), respectively. The vertical and horizontal diameters should be equal (or at least highly correlated)
and, therefore, low correlations between these two values signal poor tracking. We compute this correlation
in an example session in Fig. 6C, and over 65 sessions in Fig. 6D. The LP model (Pearson’s r=0.88±0.01,
mean±sem) improves over the DeepLabCut model (r=0.36±0.03). (Since the pupil-specific EKS uses a
single value for both vertical and horizontal diameters, it enforces a correlation of 1.0 by construction.)

Scientifically, we are interested in how behaviorally-relevant events (such as reward onset) impact pupil
dynamics, as well as the correlation between pupil dynamics and neural activity. We expect that noise in our
estimates of pupil diameter would reduce the apparent consistency of pupil dynamics across trials and also
reduce any correlations between pupil diameter and neural activity; this is exactly what we observe (Fig. 6E-
H). In Fig. 6E, we align diameter estimates across multiple trials to the time of reward delivered at the end
of each successful trial. We define a second quality metric – trial consistency – by taking the variance of
the mean pupil diameter trace and dividing by the variance of the mean-subtracted traces across all trials.
This metric is zero if there are no reproducible dynamics across trials; it is infinity if the pupil dynamics
are identical and non-constant across trials (constant outputs will result in an undefined metric since both
numerator and denominator are zero). Although we expect some amount of real trial-to-trial variability in
pupil dynamics, any noise introduced during pose estimation will decrease this metric. The LP and LP+EKS
estimates show greater trial-to-trial consistency compared to the DeepLabCut estimates, both within a single
session (Fig. 6E) and across multiple sessions (Fig. 6F; DeepLabCut 0.35±0.06; LP 0.62±0.07; LP+EKS
0.74±0.08). Supplementary Video 13 shows pupil diameter traces in multiple trials, and demonstrates that
the increased trial-to-trial consistency does not compromise the model’s ability to track the pupil well within
individual trials.

After establishing the improved reliability of the pupil diameter signal, we now examine whether it is more

17

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

A

C

0 20 30
0

20

30

-4

-2

0

2

4

N
or

m
al

iz
ed

 d
ia

m
 (

pi
x)

Trial consistency = 0.26

Time (s)
-0.5 0.0 0.5 1.0 1.5

E

Trial consistency = 0.02 Trial consistency = 0.32

Pearson r = 0.15 Pearson r = 0.81 Pearson r = 1.00

-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5

DLC LP LP+EKS

-0.25

0.00

0.25

0.50

0.75

1.00

V
er

t v
s

H
or

iz
 d

ia
m

et
er

 r

D

F

T
ria

l c
on

si
st

en
cy

G H

0.0

0.2

0.4

0.6

1 pixel

1 s

Neural decoding of pupil diameter

LP+EKS

Neural prediction

p=1.2e-12

DLC LP LP+EKS

DLC LP LP+EKS

Time (s) Time (s)

B

65 sessions

Feedback onset

10

10

0 20 3010 0 20 3010

Reward delivery

DLC LP LP+EKS

Example session

10 pixels

Horizontal diameter Horizontal diameter Horizontal diameter

V
er

tic
al

 d
ia

m
et

er

...

10-2

100

10-1

Top
Bottom
Left
Right

D
ec

od
in

g
R

2

p=1.2e-12
p=1.2e-12

p=1.0e-11
p=2.3e-7

p=5.3e-10

p=5.4e-8
p=4.9e-5

p=1.3e-5

Figure 6: Lightning Pose models and EKS improve pose estimation on IBL pupil data. A. Sample frame overlaid
with a subset of pupil markers estimated from DeepLabCut (DLC; left), Lightning Pose using a semi-supervised TCN
model (LP; center), and a 5-member ensemble using semi-supervised TCN models (LP+EKS; right). B. Example
frames from a subset of 65 IBL sessions, illustrating the diversity of imaging conditions in the dataset. C. Empirical
distribution of vertical diameter measured from top and bottom markers scattered against horizontal pupil diameter
measured from left and right markers. These estimates should ideally be equal, i.e., the distribution should lie near
the diagonal line. Column arrangement as in panel A. The LP+EKS estimate imposes a low-dimensional model that
enforces perfectly correlated vertical and horizontal diameters by construction. D. Vertical vs horizontal diameter cor-
relation is computed across n=65 sessions for each model. The LP+EKS model has a correlation of 1.0 by construction.
E. Pupil diameter is plotted for correct trials aligned to feedback onset; each trial is mean-subtracted. DeepLabCut and
LP diameters are smoothed using IBL default post-processing (Methods), compared to LP+EKS outputs. We compute
a trial consistency metric (the variance explained by the mean over trials; see text) as indicated in the panel titles.
See Supplementary Video 13. F. The trial consistency metric computed across n=65 sessions. G. Example traces of
LP+EKS pupil diameters (blue) and predictions from neural activity (orange) for several trials using cross-validated,
regularized linear regression (Methods). H. Neural decoding performance across n=65 sessions. Panels D, F, and H
use a one-sided Wilcoxon signed-rank test; boxes use 25th/50th/75th percentiles for min/center/max, and whiskers
extend to 1.5 * IQR. See Supplementary Table 2 and main text for further quantification of boxes.18

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

correlated with neural data. This analysis serves to verify that the LP+EKS approach is not merely sup-
pressing pupil diameter fluctuations, but rather better capturing pupil signals that can be predicted from an
independent measurement of neural activity. We compute the accuracy of a ridge regression model from
neural data to pupil diameter (R2 on held-out trials; see Methods). Fig. 6H shows that across sessions, LP
and LP+EKS enhance decoding accuracy compared to DeepLabCut (DLC R2=0.27±0.02; LP 0.33±0.02;
LP+EKS 0.35±0.02).

2.12 The Lightning Pose software package and a cloud application

We open-source a flexible software package and an easy-to-use cloud application. Both are presented in
detail in the Methods, and we provide a brief overview here.

Extended Data Fig. 8A illustrates the design principles of the Lightning Pose package, which we built
to be 1) simple to use and easy to maintain: we aim to minimize “boilerplate” code (such as basic GUI
development or training loggers) by outsourcing to industry-grade packages; 2) video-centric: the networks
operate on video clips, rather than on a single image at a time; 3) modular and extensible: our goal is to
facilitate prototyping of new losses and models; 4) scalable: we support efficient semi-supervised training
and evaluation; 5) interactive: we offer a variety of tracking performance metrics and visualizations during
and after training, enabling easy model comparison and outlier detection.

The scientific adoption of deep learning packages like ours presents an infrastructure challenge. Labs need
access to GPU-accelerated hardware with a set of pre-installed drivers and packages. Often, developers
spend more time in hardware setup and installation than configuring, training, and evaluating pose tracking
models (see e.g. [25] for further discussion). We therefore developed a cloud application that supports the
full life cycle of animal pose estimation (Extended Data Fig. 8B), and is suitable for users with minimal
coding expertise and only requires internet access.

3 Discussion

We presented Lightning Pose, a semi-supervised deep learning system for animal pose estimation. Light-
ning Pose uses a set of spatiotemporal constraints on postural dynamics to improve network reliability and
efficiency. We further refine the pose estimates post-hoc, with the Ensemble Kalman Smoother (EKS) that
uses reliable predictions and spatiotemporal constraints to interpolate over unreliable ones.

Our work builds on previous semi-supervised animal pose estimation algorithms that use spatiotemporal
losses on unlabeled videos [34, 37]. Semi-supervised learning is not the only technique that enables im-
provements over standard supervised learning protocols. First, it has been suggested that supervised pose
estimation networks can be improved by pretraining them on large labeled datasets for image classification
[9] or pose estimation [47], to an extent that might eliminate dataset-specific training [48]. Other work
avoids pretraining altogether by using lighter architectures [10]. These ideas are complementary to ours:
any robust backbone obtained through these procedures could be easily integrated into Lightning Pose, and
further refined via semi-supervised learning.

Human pose estimation, like animal pose estimation, is most commonly approached using supervised
heatmap regression on a frame-by-frame basis [49]. Unlike the animal setting, human models are trained on
much larger labeled datasets containing either annotated images [50] or 3D motion capture [51]. Moreover,

19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

human models track a standardized set of keypoints, and some operate on a standard skinned human body
model [52]. In contrast, most animal pose estimation must contend with relatively scarce labels, lower qual-
ity videos, and bespoke sets of labels to track, varying by species and lab. Though human pose estimation
models can impressively track crowds of moving humans, doing downstream science using the keypoints
still presents several challenges [49] similar to those discussed in the Results. Lightning Pose can be ap-
plied to single-human pose estimation, by fine-tuning an off-the-shelf human pose estimation backbone to
specific experimental setups (such as patients in a clinic), while enforcing our spatiotemporal constraints (or
new ones). Future work could also apply EKS to the outputs of off-the-shelf human trackers.

Roughly speaking, two camps coexist in multi-view animal pose estimation [53]: those who use 3D infor-
mation during training [12, 37, 54, 55] and those who train standard 2D networks and perform 3D recon-
struction post-hoc [20, 56]. Either approach involves camera calibration, whose limitations we discussed
above. Lightning Pose can be seen as an intermediate approach: we train with 3D constraints without an
explicit camera calibration step (however, our current approach assumes the cameras have no distortion). At
the same time, Lightning Pose does not provide an exact 3D reconstruction of the animal, but rather a scaled,
rotated and shifted version thereof. Our improved predictions could be readily used as inputs to existing 3D
reconstruction pipelines. Some authors employed 3D convolutional networks that operate on 3D location
voxels instead of 2D heatmaps [12]. These architectures have been recently trained in a semi-supervised
fashion with temporal constraints [43] akin to to [34] and the current work. We note that, although 3D vox-
els are more computationally expensive than 2D heatmaps, they could be incorporated as strong backbones
for Lightning Pose.

A number of additional important directions remain for future work. One involves implementing richer
models of moving bodies as losses. Multiple approaches have been recently proposed for modeling pose
trajectories post-hoc. These include probabilistic body models [21, 57, 58], mechanical models [59], switch-
ing linear dynamical systems [19, 34, 60], and autoencoders [20]. These models could be made even more
effective by being integrated into network training in a so-called end-to-end manner. Any model of pose
dynamics, as long as it is differentiable, could be incorporated as an unsupervised loss.

Another important direction is to improve the efficiency of the EKS method. The advantages of ensembling
come at a cost: we need to train, store, and run inference with multiple networks. (Post-processing the
networks’ output with EKS is relatively computationally cheap.) One natural approach would be knowledge
distillation [61]: train a single network to emulate the full EKS output.

Finally, while the methods proposed here can currently track multiple distinguishable animals (e.g., a black
mouse and a white mouse), they do not apply directly to multi-animal tracking problems involving multiple
similar animals [18, 62], since to compute our unsupervised losses we need to be able to know which
keypoint belongs to which animal. Thus adapting our approaches to the general multi-animal setting remains
an important open avenue for future work.

Acknowledgments We thank Peter Dayan and Nick Steinmetz for serving on our IBL paper board, as
well as two anonymous reviewers whose detailed comments considerably strengthened our manuscript.
We are grateful to Natalie Biderman for productive discussions and help with visualization. We thank
Matteo Carandini and Jacob Portes for helpful comments; Taiga Abe, Kelly Buchanan, and Geoff Pleiss
for helpful discussions on ensembling; and Haotian Xiang for conversations on active learning and outlier
detection. Thanks to William Falcon, Luca Antiga, Thomas Chaton and Adrian Wälchi (Lightning AI)
for their technical support and advice on implementing our package and the cloud application. This work
was supported by the following grants: Gatsby Charitable Foundation GAT3708 (DB, MRW, CH, NRG,

20

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

AV, JPC, LP), German National Academy of Sciences Leopoldina (AEU), Irma T Hirschl Trust (NBS),
Netherlands Organisation for Scientific Research (VI.Veni.212.184) (AEU), NSF IOS-2115007 (NBS), NIH
K99NS128075 (JPN), NIH NS075023 (NBS), NIH U19NS123716 (MRW), NSF 1707398 (DB, MRW,
CH, NRG, AV, JPC, LP), Simons Foundation (MRW, MS, JMH, AK, GTM, JPN, APV, KZS), Wellcome
Trust 216324 (MS, MS, JMH, AK, GTM, JPN, APV, KZS). The funders had no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.

Author Contributions Statement Conceptualization: DB, MRW, LP; Software Package — core devel-
opment: DB, MRW, NRG; Software Package — contribution: CH, AV; Cloud Application — development:
MRW, DB, RL, AV; First draft — writing: DB, MRW, LP; First draft — editing: DB, MRW, CH, LP;
Data collection: DB, MS, JMH, AK, GTM, JPN, APV, KZS, AEU, RW, DN, FP; Funding — JPC, NS,
LP; Semi-supervised learning algorithms: DB, MRW, NRG, LP; Deep ensembling: DB, MRW, CH, LP;
Ensemble Kalman Smoothing: CH, LP; Temporal Context Network: CH, DB, MRW, LP; Diagnostic tools
and visualization: DB, MRW, AV; Neural network experiments and analysis: DB, MRW.

Competing Interests Statement Robert S. Lee assisted in the initial development of the cloud application
as a solution architect at Lightning AI in Spring-Summer 2022. He left the company in August 2022 and
continues to hold shares. The remaining authors declare no competing interests.

21

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

References

1. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience
needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

2. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in
large groups of Drosophila. Nature methods 6, 451–457 (2009).

3. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of freely
moving fruit flies. Journal of The Royal Society Interface 11, 20140672 (2014).

4. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135
(2015).

5. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion sequenc-
ing. Nature neuroscience 23, 1433–1443 (2020).

6. Luxem, K. et al. Identifying behavioral structure from deep variational embeddings of animal motion.
Communications Biology 5, 1267 (2022).

7. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics
are dominated by richly varied movements. Nature neuroscience 22, 1677–1686 (2019).

8. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364,
eaav7893 (2019).

9. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learn-
ing. Nature neuroscience 21, 1281–1289 (2018).

10. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nature methods 16, 117–
125 (2019).

11. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using
deep learning. Elife 8, e47994 (2019).

12. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and envi-
ronments. Nature methods 18, 564–573 (2021).

13. Chen, Z. et al. AlphaTracker: a multi-animal tracking and behavioral analysis tool. Frontiers in Be-
havioral Neuroscience 17, 1111908 (2023).

14. Jones, J. M. et al. A machine-vision approach for automated pain measurement at millisecond timescales.
Elife 9, e57258 (2020).

15. Padilla-Coreano, N. et al. Cortical ensembles orchestrate social competition through hypothalamic
outputs. Nature 603, 667–671 (2022).

16. Warren, R. A. et al. A rapid whisker-based decision underlying skilled locomotion in mice. Elife 10,
e63596 (2021).

17. Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised algorithm for identification and fast
prediction of behaviors. Nature communications 12, 5188 (2021).

18. Pereira, T. D. et al. SLEAP: A deep learning system for multi-animal pose tracking. Nature methods
19, 486–495 (2022).

19. Weinreb, C. et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.
bioRxiv, 2023–03 (2023).

20. Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell reports 36,
109730 (2021).

22

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

21. Monsees, A. et al. Estimation of skeletal kinematics in freely moving rodents. Nature Methods 19,
1500–1509 (2022).

22. Rodgers, C. C. A detailed behavioral, videographic, and neural dataset on object recognition in mice.
Scientific Data 9, 620 (2022).

23. Semi-Supervised Learning (eds Chapelle, O., Schölkopf, B. & Zien, A.) ISBN: 9780262033589 (The
MIT Press, 2006).

24. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. Advances in neural information processing systems 30 (2017).

25. Abe, T. et al. Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, re-
producible data analysis. Neuron 110, 2771–2789 (2022).

26. Falcon, W. et al. PyTorchLightning/pytorch-lightning: 0.7. 6 release. Zenodo: Geneva, Switzerland
(2020).

27. Recht, B., Roelofs, R., Schmidt, L. & Shankar, V. Do imagenet classifiers generalize to imagenet?
International conference on machine learning (2019), 5389–5400.

28. Tran, D. et al. Plex: Towards reliability using pretrained large model extensions. arXiv preprint arXiv:2207.07411
(2022).

29. Burgos-Artizzu, X. P., Dollár, P., Lin, D., Anderson, D. J. & Perona, P. Social behavior recognition
in continuous video 2012 IEEE conference on computer vision and pattern recognition (2012), 1322–
1329.

30. IBL. Data release - Brainwide map - Q4 2022. https://figshare.com/articles/preprint/
Data_release_-_Brainwide_map_-_Q4_2022/21400815 (Jan. 2023).

31. Desai, N. et al. OpenApePose, a database of annotated ape photographs for pose estimation. Elife 12,
RP86873 (2023).

32. Syeda, A. et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nature
Neuroscience, 1–9 (2023).

33. Spelke, E. S. Principles of object perception. Cognitive science 14, 29–56 (1990).

34. Wu, A. et al. Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose
tracking. Advances in Neural Information Processing Systems 33, 6040–6052 (2020).

35. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors.
Nature protocols 14, 2152–2176 (2019).

36. Hartley, R. & Zisserman, A. Multiple view geometry in computer vision (Cambridge university press,
2003).

37. Zhang, Y. & Park, H. S. Multiview supervision by registration Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (2020), 420–428.

38. He, Y., Yan, R., Fragkiadaki, K. & Yu, S.-I. Epipolar transformers Proceedings of the ieee/cvf confer-
ence on computer vision and pattern recognition (2020), 7779–7788.

39. Bialek, W. On the dimensionality of behavior. Proceedings of the National Academy of Sciences 119,
e2021860119 (2022).

40. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. From modes to movement in the behavior
of Caenorhabditis elegans. PloS one 5, e13914 (2010).

41. Yan, Y., Goodman, J. M., Moore, D. D., Solla, S. A. & Bensmaia, S. J. Unexpected complexity of
everyday manual behaviors. Nature communications 11, 1–8 (2020).

23

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://figshare.com/articles/preprint/Data_release_-_Brainwide_map_-_Q4_2022/21400815
https://figshare.com/articles/preprint/Data_release_-_Brainwide_map_-_Q4_2022/21400815
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

42. IBL et al. Video hardware and software for the International Brain Laboratory. en. figshare (2022).

43. Li, T., Severson, K. S., Wang, F. & Dunn, T. W. Improved 3D Markerless Mouse Pose Estimation
Using Temporal Semi-supervision. International Journal of Computer Vision, 1–17 (2023).

44. Beluch, W. H., Genewein, T., Nürnberger, A. & Köhler, J. M. The power of ensembles for active
learning in image classification Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), 9368–9377.

45. Abe, T., Buchanan, E. K., Pleiss, G., Zemel, R. & Cunningham, J. P. Deep ensembles work, but are
they necessary? Advances in Neural Information Processing Systems 35, 33646–33660 (2022).

46. Bishop, C. M. & Nasrabadi, N. M. Pattern recognition and machine learning 4 (Springer, 2006).

47. Yu, H. et al. Ap-10k: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv:2108.12617
(2021).

48. Ye, S. et al. SuperAnimal models pretrained for plug-and-play analysis of animal behavior. arXiv
preprint arXiv:2203.07436 (2022).

49. Zheng, C. et al. Deep learning-based human pose estimation: A survey. ACM Computing Surveys 56,
1–37 (2023).

50. Lin, T.-Y. et al. Microsoft coco: Common objects in context Computer Vision–ECCV 2014: 13th Eu-
ropean Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (2014), 740–
755.

51. Ionescu, C., Papava, D., Olaru, V. & Sminchisescu, C. Human3. 6m: Large scale datasets and predictive
methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and
machine intelligence 36, 1325–1339 (2013).

52. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G. & Black, M. J. Seminal Graphics Papers: Pushing
the Boundaries, Volume 2 851–866 (2023).

53. Marshall, J. D., Li, T., Wu, J. H. & Dunn, T. W. Leaving flatland: Advances in 3D behavioral measure-
ment. Current Opinion in Neurobiology 73, 102522. ISSN: 0959-4388. https://www.sciencedirect.
com/science/article/pii/S0959438822000071 (2022).

54. Günel, S. et al. DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in
tethered, adult Drosophila. Elife 8, e48571 (2019).

55. Sun, J. J. et al. BKinD-3D: self-supervised 3D keypoint discovery from multi-view videos Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023), 9001–9010.

56. Bala, P. C. et al. Automated markerless pose estimation in freely moving macaques with OpenMon-
keyStudio. Nature communications 11, 4560 (2020).

57. Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S. Animal pose estimation from video
data with a hierarchical von Mises-Fisher-Gaussian model International Conference on Artificial In-
telligence and Statistics (2021), 2800–2808.

58. Joska, D. et al. AcinoSet: a 3D pose estimation dataset and baseline models for Cheetahs in the wild
2021 IEEE International Conference on Robotics and Automation (ICRA) (2021), 13901–13908.

59. Biderman, D. et al. Inverse articulated-body dynamics from video via variational sequential Monte
Carlo (2020).

60. Whiteway, M. R. et al. Partitioning variability in animal behavioral videos using semi-supervised vari-
ational autoencoders. PLoS computational biology 17, e1009439 (2021).

24

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://www.sciencedirect.com/science/article/pii/S0959438822000071
https://www.sciencedirect.com/science/article/pii/S0959438822000071
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

61. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

62. Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature
Methods 19, 496–504 (2022).

25

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

4 Methods

All datasets used for the experiment were collected in compliance with the relevant ethical regulations. See
the following published papers for each dataset: mirror-mouse: [1], CRIM13: [2], and IBL datasets: [3].
All mirror-fish experiments adhere to the American Physiological Society’s Guiding Principles in the Care
and Use of Animals and were approved by the Institutional Animal Care and Use Committee of Columbia
University, protocol number AABN0557.

4.1 Datasets

We consider diverse datasets collected via different experimental paradigms for mice and fish. For each
dataset, we collected a large number of videos including different animals and experimental sessions, and
labeled a subset of frames from each video. We then split this data into two non-overlapping subsets (i.e., a
given animal and/or session would appear only in one subset). The first subset is the “in-distribution” (InD)
data that we use for model training. The second subset is the “out-of-distribution” (OOD) data that we use
for model evaluation. This setup mimics the common scenario in which a network is thoroughly trained on
one cohort of subjects, and is then used to predict new subjects. Supplementary Table 1 details the number
of frames for each subset per dataset, as well as the number of unique animals and videos those frames came
from.

Mirror-mouse. Head-fixed mice ran on a circular treadmill while avoiding a moving obstacle [1]. The
treadmill had a transparent floor and a mirror mounted inside at 45◦, allowing a single camera to capture
two roughly orthogonal views (side view and bottom view via the mirror) at 250 Hz. The camera was
positioned at a large distance from the subject (∼ 1.1 meters) to minimize perspective distortion. Frames
are (406×396) and reshaped during training to (256×256). 17 keypoints were labeled across the two views
including seven keypoints on the mouse’s body per view, plus three keypoints on the moving obstacle.

Mirror-fish. 19 wild-caught (age unknown) adult male and female Mormyrid fish (15-22 cm in length)
of the species Gnathonemus petersii were used in the experiment. Fish were housed in 60-gallon tanks in
groups of 5-20. Water conductivity was maintained between 60-100 microsiemens both in the fish’s home
tanks and during experiments.

The fish swam freely in and out of an experimental tank, capturing worms from a well. The tank had a side
mirror and a top mirror, both at 45◦, providing three different views seen from a single camera at 300 Hz
(Supplementary Fig. 1). Here too, the camera was placed∼ 1.7 meters away from the center of the fish tank
to reduce distortions. Frames are (384× 512) and reshaped during training to (256× 384).

17 body parts were tracked across all three views for a total of 51 keypoints. We pre-processed the labeled
dataset as follows. First, we identified labeling errors by flagging large values of the multi-view PCA loss.
We then fixed the wrong labels manually. Next, in the InD data only, we used a probabilistic variant of
multi-view PCA (PPCA) to infer keypoints that were occluded in one out of the three views, effectively
similar to the triangulation-reprojection protocols used for multi-view tracking by [4, 5]. This resulted in a
30% increase in the number of keypoints usable for training, with more occluded keypoints included in the
augmented label set.

CRIM13. The Caltech Resident-Intruder Mouse dataset (CRIM13) [2] consists of two mice interacting in
an enclosed arena, captured by top and side view cameras at 30 Hz. We only use the top view. Frames are

26

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

(480× 640) and reshaped during training to (256× 256). Seven keypoints were labeled on each mouse for
a total of 14 keypoints.

Unlike the other datasets, the InD/OOD splits do not contain completely non-overlapping sets of animals, as
we used the train/test split provided in the dataset. The (4) resident mice are present in both InD and OOD
splits; however, the intruder mouse is different for each session. Each keypoint in the CRIM13 dataset is
labeled by five different annotators. To create the final set of labels for network training, we took the median
across all labels for each keypoint.

IBL-paw. This dataset [3] comes from the International Brain Lab and consists of head-fixed mice perform-
ing a decision-making task [6, 7]. Two cameras – “left” (60 Hz) and “right” (150 Hz) – capture roughly
orthogonal side views of the mouse’s face and upper trunk during each session. The original dataset does not
contain synchronized labeled frames for both cameras, preventing the direct use of multi-view PCA losses
during training. Instead, we treat the frames as coming from a single camera by flipping the right camera
video. Frames were initially downsampled to (102 × 128) for labeling and video storage; frames were
reshaped during training to (128× 128). We tracked two keypoints per view, one for each paw. More infor-
mation on the IBL video processing pipeline can be found in [8]. For the large scale analysis in Extended
Data Fig. 7 we selected 44 additional test sessions that were not represented in the InD or OOD sessions
listed in Supplementary Table 1; these could be considered additional OOD data.

IBL-pupil. The pupil dataset also comes from the International Brain Lab. Frames from the right camera
were spatially upsampled and flipped to match the left camera. Then, a 100 × 100 pixel ROI was cropped
around the pupil. The frames were reshaped in training to (128× 128). Four keypoints were tracked on the
top, bottom, left and right edges of the pupil, forming a diamond shape. For the large scale analysis in Fig. 6
we selected left videos from 65 additional sessions that were not represented in the InD or OOD sessions
listed in Supplementary Table 1.

4.2 Problem formulation

Let K denote the number of keypoints to be tracked, and N the number of labeled frames. After manual
labeling, we are given a dataset:

Ds =
{
x(i),y(i)

}N

i=1
, x(i) ∈ RW×H , y(i) =

y1

y2
...

yK

 ∈ R2K , (1)

where x(i) is the i-th image and y(i) its associated label vector, stacking the annotated width-height pixel
coordinates for each of the K tracked keypoints.

It is standard practice to represent each annotated keypoint yk, k = 1, . . .K as a heatmap h
(i)
k ∈ RWs×Hs

with width Ws and height Hs, thus converting y(i) to a set of K heatmaps
{
h
(i)
k

}K

k=1
. This is done by

defining a bivariate Gaussian centered at each annotated keypoint with variance σ2 (a controllable param-
eter), and evaluating it at 2D grid points (for more details, see [9]). If y(i)

k lacks an annotation (e.g. if it is
occluded), we do not form a heatmap for it.

27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

We normalize the heatmaps
∑

l,m h
(i)
k (l,m) = 1, ∀i, k, which allows us to both evenly scale the outputs

during training and use losses that operate on heatmaps as valid probability mass functions. Then, the dataset

for training supervised networks is just frames and heatmaps D =
{
x(i), {h(i)

k }
K
k=1

}N

i=1
. To accelerate

training, the heatmaps are made 4 or 8 times smaller than the original frames.

4.3 Model architectures

4.3.1 Baseline

Our baseline model performs heatmap regression on a frame-by-frame basis, akin to DeepLabCut [10],
SLEAP [9], DeepPoseKit [11], and others. It has roughly the same architecture: a “backbone” network
that extract a feature vector per frame, and a “head” that transforms these into K predicted heatmaps. In
the results reported here, we use a ResNet-50 backbone network pretrained on the AnimalPose10K dataset
([12]; 10,015 annotated frames from 54 different animal species). For the mirror-fish dataset, we rely on
ImageNet pretraining (except for the sample efficiency experiments in Fig. 1). However, our package, like
others, is largely agnostic to backbone choices. Let B denote batch size, C = 3 the RGB color channels,
and r an “upscaling factor” by which we increase the size of our representations. The head includes a fixed
PixelShuffle(2) layer that reshapes the features tensor output by the backbone from (B,C × r2, H,W) to
(B,C,H × r,W × r) and a series of identical ConvTranspose2D layers that further double it in size (kernel
size (3 × 3), stride (2 × 2), input padding (1 × 1), and output padding (1 × 1)) [13]. The number of Con-
vTranspose2D layers is determined by the desired shape of the output heatmaps, and most commonly two
such layers are used. Each heatmap is normalized with a 2D spatial softmax with a temperature parameter
τ = 1. The supervised loss is a divergence between predicted heatmaps and labeled heatmaps. Here, we use

squared error for each batch element b and keypoint k: Ls =
∑

l,m

(
ĥ
(b)
k (l,m)− h(b)k (l,m)

)2
.

Once heatmaps have been predicted for each keypoint, we must transform these 2D arrays into estimates of
the width-height coordinates in the original image space. We first upsample each heatmap h

(i)
k ∈ RWs×Hs

to h̃
(i)
k ∈ RW×H using bicubic interpolation. We then compute a subpixel maximum akin to DeepPoseKit

[11]. A 2D spatial softmax renormalizes the heatmap to sum to 1, and we apply a high temperature parame-
ter (τ = 1000) to suppress non-global maxima. A 2D spatial expectation then produces a subpixel estimate
of the location of the heatmap’s maximum value. These two operations – spatial softmax followed by spatial
expectation – are together known as a soft argmax [14]. Importantly, this soft argmax operation is differen-
tiable (unlike the location refinement strategy employed in [10]), and allows the estimated coordinates to be
used in downstream losses. To compute the confidence value associated with the pixel coordinates, we sum
the values of the normalized heatmap within a configurable radius of the soft argmax.

4.3.2 Temporal Context Network

Many detection ambiguities and occlusions in a given frame can be resolved by considering some video
frames before and after it. The Temporal Context Network (TCN) uses a sequence of 2J + 1 frames to
predict the labeled heatmaps for the middle frame,

Ds =
{
{x(i)

m }2Jm=−2J , {h
(i)
k }

K
k=1

}N

i=1
, (2)

28

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

where x
(i)
0 is the labeled frame and, for example, x(i)

−1 is the preceding (unlabeled) frame in the video.

During training, batches of 2J+1 frame sequences are passed through the backbone to obtain 2J+1 feature
vectors. The TCN has two upsampling heads, one “static” and one “context-aware,” each identical to the
baseline model’s head. The static head takes the features of only the central frame and predicts location
heatmaps for that frame. The context-aware head generates predicted location heatmaps for each of the
2J + 1 frames (note, these are the same shape as the location heatmaps, but we do not explicitly enforce
them to match labeled heatmaps). Those heatmaps are passed as inputs to a bi-directional convolutional
recurrent neural network whose output is the context-aware predicted heatmap for the middle frame. We
then apply our supervised loss to both predicted heatmaps, forcing the network to learn the standard static
mapping from an image to heatmaps, while independently learning to take advantage of temporal context
when needed. (Recall Fig. 2E, which provides an overview of this architecture.)

The network described above outputs two predicted heatmaps per keypoint, one from each head, and applies
the computations described above to obtain two sets of keypoint predictions with confidences. For each
keypoint, the more confident prediction of the two is selected for downstream analysis.

4.4 Semi-supervised learning

We perform semi-supervised learning by jointly training on labeled dataset Ds (constructed as described
above) and an unlabeled dataset Du:

Dss ≡ Ds ∪ Du, (3)

where Du is constructed as follows.

Assume we have access to one or more unlabeled videos; we splice these into a set of U disjoint T -frame
clips (discarding the very last clip if it has fewer than T frames),

Du =
{
x(1)
u , . . . ,x(T)

u

}U

u=1
, (4)

where, typically, T = 32/64/96/128/256 with with smaller frame sizes freeing up memory for longer
sequences.

Now, assume we selected a mechanism (baseline model or TCN) for predicting keypoint heatmaps for a
given frame. At each training step, in addition to a batch of labeled frames drawn from Ds, we present the
network with a short unlabeled video clip randomly drawn from Du. The network outputs a time-series of
keypoint predictions (one pose for each of the T frames in the clip), which is then subjected to one or more
of our unsupervised losses.

All unsupervised losses are expressed as pixel distance between a keypoint prediction and the constraint.
Since our constraints are merely useful approximate models of reality, we do not require the network to
perfectly satisfy them. We are particularly interested in preventing, and having the network learn from,
severe violations of these constraints. Therefore, we enforce our losses only when they exceed a tolerance
threshold ε, rendering them ε-insensitive:

L(ε) = max(0,L − ε). (5)

The ε threshold could be chosen using prior knowledge, or estimated empirically from the labeled data, as
we will demonstrate below. L(ε) is computed separately for each keypoint on each frame, and averaged to

29

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

obtain a scalar loss to be minimized. Multiple losses can be jointly minimized via a weighted sum, with
weights determined by a parallel hyperparameter search, which is supported in Lightning Pose with no code
changes.

4.4.1 Temporal difference loss

Keypoints should not jump too far between consecutive frames. We measure the jump in pixels and ignore
jumps smaller than ε, the maximum jump allowed by user,

Lk,ttemporal(ε) = max (0, ||yk(t)− yk(t− 1)||2 − ε) , (6)

where ε could be determined based on image size, frame rate, and rough viewing distance from the subject.
We compute this loss for a pair of successive predictions only when both have confidence greater than a
configurable threshold (e.g. 0.9) to avoid artificially enforcing smoothness in stretches where the keypoint
is unseen. We average the loss across keypoints and unlabeled frames:

Ltemporal =
1

TK

T∑
t=1

K∑
k=1

Lk,ttemporal(ε), (7)

and minimizeLtemporal during training. Lightning Pose also offers the option to apply the temporal difference
loss on predicted heatmaps instead of the keypoints. We have found both methods comparable and focus on
the latter for clarity.

4.4.2 Multi-view PCA loss

Background. Let ȳk ∈ R3 be an unknown 3D keypoint of interest. Assume that we have V cameras and
that each v = 1, . . . , V camera sees a single 2D perspective projection of ȳk denoted as yk(v) ∈ R2, in pixel
coordinates. (Note that is standard to express ȳ and y(v) in “homogeneous coordinates”, i.e., appending
another element to each vector, yet we omit this for simplicity and for a clearer connection with our PCA
approach.) Thus, we have a 2V -dimensional measurement

(
yk(1)T · · · yk(V)T

)
of our 3D keypoint ȳk.

The multi-view geometry approach. It is standard to model each view as a pinhole camera [15]: such
a camera has intrinsic parameters (focal length and distortion) and extrinsic parameters (its 3D location
and orientation, a.k.a “camera pose”), that together specify where a 3D keypoint will land on its imaging
plane, i.e., the transformation from ȳ to y(v). This transformation involves a linear projection (scaling,
rotation, translation) followed by a nonlinear distortion. While one might know a camera’s focal length
and distortion, in general, both the intrinsic and extrinsic parameters are not exactly known and have to be
estimated. A standard way to estimate these involves “calibrating” the camera; filming objects with ground-
truth 3D coordinates, and measuring their 2D pixel coordinates on the camera’s imaging plane. Physical
checkerboards are typically used for this purpose. They have known patterns that can be presented to the
camera and detected using traditional computer vision techniques. Now with a sufficient set of 3D inputs
and 2D outputs, the intrinsic and extrinsic parameters can be estimated via (nonlinear) optimization.

Multi-view PCA on the labels (our approach). We take a simpler approach which does not require camera
calibration or, in the mirrored datasets considered in this paper, explicit information about the location of the
mirrors. Our first insight is that the multi-view (2V -dimensional) labeled keypoints could be used as key-
point correspondences to learn the geometric relationship between the views. We approximate the pinhole

30

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

camera as a linear projection (with zero distortion), and estimate the parameters of this linear projection by
fitting PCA on the labels (details below), and keeping the first three PCs, since all we are measuring from
our different cameras is a single 3D object. Fig. 2C (bottom right) confirms that our PCA model can explain
> 99% of the variance with the first three PCs in several multi-view experimental setups, indicating that our
linear approximation is suitable at least for the mirror-mouse and mirror-fish datasets, in which the camera
is relatively far from the subject. We do anticipate cases where our linear approximation will not be suffi-
ciently accurate (e.g., strongly distorted lenses, or highly zoomed in); the more general epipolar geometry
approach of [16, 17] could be applicable here. Note that our three-dimensional PCA coordinates do not
exactly match the 3D width-height-depth physical coordinates of the keypoints in space; instead, these two
sets of three-dimensional coordinates are related via an affine transformation.

Before training: fitting multi-view Principal Component Analysis (PCA) on the labels. Our goal is to
estimate a projection from 2V dimensions (width-height pixel coordinates for V views) to three dimensions,
which we could use to relate the different views to each other. Given the indices of matching keypoints
across views, we form a tall and thin design matrix by vertically stacking all the 2V -dimensional multi-view
labeled keypoints. We denote this matrix as YMV ∈ RNK×2V ,

YMV =

y1
1(1)T · · · y1

1(V)T

y1
2(1)T · · · y1

2(V)T

...
...

...
yN
K(1)T · · · yN

K(V)T

 , (8)

where yn
k (v) ∈ R2 represents the width-height coordinates on frame n for keypoint k in camera v. To

reiterate, each row contains the labeled coordinates for a single body part seen from V views. The rows
of this matrix contain examples from all available labeled keypoints, which are all used for learning the
3D projection. We exclude rows in which a body part is missing from one or more views. The number of
examples used to estimate PCA is, as desired, always much larger than the label dimension (NK >> 2V).
We perform PCA on YMV and keep the first three PCs, which we denote as P =

(
P1 P2 P3

)
∈

R2V×3 and the data mean µ ∈ R2V . The three PCs form three orthogonal axes in 2V dimensions, and
projecting the 2V -dimensional labels on them will provide width-height-depth-like coordinates. These 3D
coordinates are related to the “real-world” 3D coordinates (relative to some arbitrary “origin” point) by an
affine transformation (they need to be rotated, stretched and translated), but critically, we do not need these
“real-world” coordinates to apply the multi-view constraints during network training, as described below.

During training: Penalizing the unlabeled data for PCA reconstruction errors.

Let ŷt
k =

(
ŷt
k(1)T · · · ŷt

k(V)T
)
∈ R2V be the network’s prediction for the k-th body part on the t-

th unlabeled video frame, on all V views (as before, this requires specifying the indices of corresponding
keypoints across views). The prediction’s multi-view PCA reconstruction is given by projecting it down to
3 dimensions and then back up to 2V dimensions:

ȳt
k = (ŷt

k − µ)PP> + µ. (9)

When the prediction ŷt
k is consistent across views, i.e., on the 3D hyperplane specified by P, we will get

ȳt
k = ŷt

k, a perfect reconstruction. The loss is defined as the average pixel distance between each 2D
predicted keypoint ŷt

k(v) and its multi-view PCA reconstruction ȳt
k(v):

Lk,t,vMV-PCA(ε) = max
(
0,
∣∣∣∣ŷt

k(v)− ȳt
k(v)

∣∣∣∣
2
− ε
)
. (10)

31

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

The loss encourages the predictions to stay within the fixed 3D hyperplane estimated by PCA, and thus be
consistent across views. In training, we minimize its average across views, body parts, and frames

LMV-PCA =
1

TKV

∑
t,k,v

Lk,t,vMV-PCA(ε). (11)

We choose ε by computing the PCA reconstruction errors (in pixels) for each of the labeled keypoints, and
taking the maximum. This represents the maximal multi-view inconsistency observed in the labeled data.

We note that the multi-view PCA loss does not require any modifications to network architecture. Each
view is processed independently by the network. As mentioned above, all that is required is specification of
which keypoints from which views correspond to the same body part. The mirrored datasets considered in
this paper are handled similarly: the single frame containing all available views is processed by the network,
and different keypoints are linked to the same body part via an entry in the model configuration file.

4.4.3 Pose PCA loss

There are certain things that bodies cannot do. We might track 2K pose coordinates but it does not mean
that they can all move independently and freely. Indeed, there is a long history of using low-dimensional
models to describe animal movement [18–20]. Here, we extend the PCA approach to full pose vectors, and
constrain the 2K-dimensional poses to lie on a low-dimensional hyperplane of plausible poses, which we
estimate from the labels.

Before training: fitting Pose PCA on the labels. This approach is identical to multi-view PCA, with
the following exceptions. First, our observations are full pose vectors and not single keypoints seen from
multiple views. The design matrix of labels is therefore shorter and wider YP-PCA ∈ RN×2K ; it has as many
rows as labeled frames, and each row contains the entire pose vector. Rows (poses) with missing bodyparts
are discarded from this matrix. The number of examples available for PCA estimation is now simply the
number of non-discarded labeled frames, Ntrain, which is not allowed to be smaller than the number of pose
coordinates, i.e., Ntrain ≥ 2K. A second exception is that instead of keeping three PCs, we keep as many
PCs needed to explain 99% of the pose variance, denoted asR << 2K. We collect the kept PCs as columns
of a (2K × R) matrix P =

(
P1 · · · PR

)
. Each of the PCs represents an axis of plausible whole-body

movement, akin to previous approaches [19, 21]. Figure 2D shows that the number of kept PCs is usually
less than half of the observation dimensions. We now keep P and µ ∈ R2K to be used in training. For
multi-view setups, it is possible to form an even wider (N × 2KV) design matrix, appending all V views,
to jointly enforce the multi-view PCA loss. We have done so in the mirror-mouse and mirror-fish datasets.

During training: penalizing for implausible poses. As in Eq. 9, we project the full predicted poses down
to the low-dimensional hyperplane, then back up to 2K dimensions, to form their Pose PCA reconstructions.
Then, for each 2D keypoint on each unlabeled video frame, we define the loss as the pixel error between the
raw prediction ŷt

k and its reconstruction ȳt
k:

Lk,tP-PCA(ε) = max
(
0,
∣∣∣∣ŷt

k − ȳt
k

∣∣∣∣
2
− ε
)
. (12)

This loss tells us how many pixels are needed to move the predicted keypoint onto the hyperplane of plausi-
ble poses. During training, we minimize the average loss across keypoints and frames,

LP−PCA =
1

TK

∑
t,k

Lk,tP-PCA(ε). (13)

32

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Here too, ε is chosen by reconstructing the labeled pose vectors, computing the pixel error between each 2D
labeled keypoint and its PCA reconstruction, and taking the maximum value.

4.5 Training

Batch sizes are determined based on image size and GPU memory constraints (see Supplementary Table
3 for the batch sizes of the experiments reported in this paper). In general, denote a labeled batch size of
B frames, a context window of 2J + 1 frames, and a short unlabeled clip of T frames (typically tens to
hundreds) randomly drawn from a much longer video. The batch sizes will be B for a supervised model,
B+T for a semi-supervised model, (2J +1)B for a TCN model, and (2J +1)B+T for a semi-supervised
TCN model. In our TCN experiments we use J = 2. To efficiently use unlabeled clips for TCN models, we
push the full clip through the backbone once, then discard predictions from the first and last J frames, which
do not have sufficient context. To make our experiments controlled and reproducible across GPU types, we
explicitly chose small labeled batch sizes, such that each of our model variants trains with an equal number
of labeled frames per batch (the semi-supervised and TCN models see many more unlabeled frames per
batch, which can become memory-prohibitive).

We use an Adam optimizer [22] with an initial learning rate of 0.001, halving it at epochs 150, 200, and 250.
In the experiments reported here, the ResNet50 backbone was kept frozen for the first 20 epochs. We trained
our models for a minimum number of 300 training epochs and a maximum number of 750 epochs. During
training we split the InD data into training (80%), validation (10%), and test (10%) sets. We performed early
stopping by checking the heatmap loss on validation data every five epochs and exiting training if it does
not improve for three consecutive checks.

During training we apply standard image augmentations to labeled frames including geometric transforms
(e.g. rotations and crops), color space manipulations (e.g. histogram equalization) and kernel filters (e.g.
motion blur), following [10]. A different random combination of augmentations is used for each frame in
a batch. For the TCN architecture, the same augmentation combination is used for a labeled frame and its
associated context frames. For the semi-supervised models, we apply augmentations to unlabeled video
frames using DALI. A single random combination of augmentations is used for all video frames in a batch.
Because the PCA losses are sensitive to geometric transforms, once the width-height coordinates have been
inferred using the soft argmax described above we apply the inverse geometric transform before computing
unsupervised losses.

While our package includes well-tested default hyperparameters for the unsupervised losses described in this
paper, users implementing a new “bespoke” loss are advised to perform hyperparameter searches for this
loss’s weight, which of course multiplies the amount of compute by the number of tested weights. However,
hyperparameter searches can be run in parallel, and our Hydra scripts enable users to launch and log these
jobs without additional custom scripts.

4.6 Diagnostics and model selection

4.6.1 Constraint violations as diagnostic metrics

After training, we evaluate the network on the the labeled frames and on unlabeled videos. We then compute
our individual loss terms (defined in Eq. 6, 10, 12) for each predicted keypoint, on each frame, and on each

33

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

view for a multi-view setup, and use them as diagnostic metrics. For labeled frames, we compute the
Euclidean pixel error. All metrics are measured as pixel distances on the full-sized image.

4.6.2 Model selection based on pixel errors and constraint violations

Our loss factory requires users to select among different applicable losses, and for each loss, determine
its weight (note that we offer robust default values in our package). We start by fitting a baseline model
to the data (typically with three random seeds). Then, for each of the applicable losses, we search over
4 − 8 possible weights (between values of 3.0 and 7.0). We then compare the diagnostic metrics specified
above on a held-out validation set (ignoring errors below a tolerance threshold). We pick the weight that
exhibits the minimal loss across the majority of our diagnostics. Supplementary Table 4 displays the optimal
weight chosen for each loss in each dataset using non-TCN models. We used the same weights for the TCN
networks.

4.7 Sample efficiency experiments

The sample efficiency experiments in Fig. 1C demonstrate model performance on InD and OOD data as a
function of training frames. For a given network trained with N frames, we actually need to select N∗ =
ceiling(1.25N) frames to account for additional validation frames used for early stopping, as well as InD
test frames (the train/val/test split was 80%/10%/10%). To mimic a realistic labeling scenario, we randomly
selected a video from all the InD data. If the number of frames in this first video (call this M1) was greater
than or equal to N∗, then we stopped here. If M1<N∗ we continued to randomly select a video and add
all labeled frames from that video to the labeled data pool. Once

∑k
i=1Mi >= N∗, we randomly selected

10% of the frames in the pool for validation, 10% for testing, and of the remaining 80% we chose exactly
N frames for training. Training was performed with supervised Lightning Pose models as described above.
After training we computed InD pixel error on the 10% of test frames, and OOD pixel error on held-out
videos that were never considered for the labeled data pool. We repeated this procedure 10 times for each
value of N .

4.8 Ablation study showing the effects of individual losses

The goal of this analysis is to quantify the relative contribution of the individual unsupervised losses in the
mirror-mouse, mirror-fish, and CRIM13 datasets. We focus on the scarce label regime (75 train frames),
where the semi-supervised improvements are most pronounced. We train semi-supervised models with
either temporal, multi-view PCA, or Pose PCA losses, and compare these to a supervised baseline and
a semi-supervised model that combines all loss types. For each condition, we train three networks with
different random seeds controlling the data presentation order. To simplify this analysis, we analyze pixel-
error averages. The results indicate that across datasets, most pixel error savings were driven by the multi-
view and Pose PCA losses (Extended Data Fig. 3). A combination of all losses always performs the best.

4.9 DeepLabCut Training

For DeepLabCut experiments (version 2.2.3), we use their default parameters: an ImageNet-pretrained back-
bone, training for 50k “iterations” (batches) independent of the labeled dataset size, using the Adam opti-

34

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

mizer [22] with a learning rate schedule that starts from 1e-4 and is reduced to 5e-5 at iteration 7500 then
to 1e-5 at iteration 12000. We select the training frames to exactly match those used for the Lightning Pose
models in all analyses with the mirror-mouse, mirror-fish, and CRIM13 datasets. For the IBL datasets, we
use the same number of training frames but do not try to match them exactly. For differences between the
baseline and DeepLabCut models, see the Supplementary Information.

4.10 Ensembling

To perform ensembling, we need a collection of models that output a diverse set of predictions. This can be
achieved through various means. For the EKS analyses in Extended Data Fig. 6 we chose to study a single
split of the data, and achieved diversity by randomly initializing the head of each model, as well the order
in which the data was sent to the model during training. Despite these seemingly minor differences, the
ensemble of models produced a variety of outputs (Extended Data Fig. 6B,D,F). For the other figures and
videos related to ensembling (Figs. 5, 6, Extended Data Fig. 7; Supplementary Video 8-14; Supplementary
Figs. 2-4) we achieved diversity by training each model with a different subset of training data (in line with
the analyses performed in, e.g., Fig. 4).

4.11 Post-processor comparison

For the post-processor comparisons in Fig. 5 we used the following baselines:

Median filter. We used the medfilt function from the SciPy package [23] using the default settings from
the DeepLabCut package (kernel_size=5).

ARIMA. We used a Seasonal Autoregressive Integrated Moving-Average with eXogenous regressors (SARI-
MAX) model using the default settings from the DeepLabCut package (pcutoff=0.001, alpha=0.01,
ARdegree=3, MAdegree=1).

Ensemble mean/median. We computed the mean/median over the ensemble members, independently for
the x and y coordinates. We did not threshold by confidence.

4.12 Ensemble Kalman Smoother

The Ensemble Kalman Smoother (EKS) begins with the output of the ensemble of pose-estimation networks,
an m × 2KV × T tensor, for m ensemble members (here, m ≈ 5), K keypoints, V views, and T video
frames. EKS performs probabilistic inference to denoise the ensemble predictions to obtain more accurate
and robust pose estimates. To be more specific, we compute the mean and variance for each keypoint across
the ensemble to obtain the 2KV × T ensemble mean M and variance C matrices.

We first define the general state-space model, then discuss its useful special cases in the following sections.
We specify a latent state variable qt, a linear Gaussian Markov dynamics model for this state variable of the
form

qt = Atqt−1 + et, et ∼ N(0, Et), (14)

and a linear Gaussian observation model describing the relationship between the latent state variable qt and
the observed data Ot,

Ot = Btqt + nt, nt ∼ N(µ,Qt), (15)

35

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

for some appropriate (potentially time-varying) system parameters At, Bt, Et, Qt, µ.

4.12.1 Single-keypoint, single-camera case

This is the simplest case to consider: imagine that we want to denoise each keypoint individually, and we
only have observations from a single camera. Here the latent state qt is the true two-dimensional position of
the keypoint on the camera. Now our model is

qt = qt−1 + et, et ∼ N(0, sI) (16)

Ot = qt + nt, nt ∼ N(0, (1/m)Dt). (17)

Comparing these equations to the general dynamics and observations equations above, we see that At =
Bt = I here.

In the observation equation, Ot is the 2 × 1 keypoint vector, and Dt is a 2 × 2 diagonal matrix specifying
the ensemble confidence about each observation. We use the t-th column of the ensemble mean M to fill
in the observation Ot, and the covariance from the t-th frame of the ensemble covariance C to fill in the
observation variance Dt (note that larger values of Dt correspond to lower confidence in the corresponding
observation Ot). The factor of (1/m) in the observation variance follows from the fact that Ot is defined as
a sample mean over m ensemble members.

Finally, s is an adjustable smoothing parameter: larger s leads to less smoothing. This smoothness parameter
could be selected by maximum likelihood (e.g., using the standard expectation-maximization algorithm for
the Kalman model) but can be set manually for simplicity.

Now, given the specified dynamics and observation model, we can run the standard Kalman forward-
backward smoother to obtain the posterior mean state Q given the observations O (i.e., all the states qt
given all the observations Ot). The smoother will “upweight” high-confidence observations Ot (i.e., small
Dt), and “downweight” low-confidence observations (large Dt), e.g., from occlusion frames.

Note that this Kalman approach is the Bayesian optimal estimator under the assumption that the model in
Eqs. 16-17 is accurate. In reality, this model holds only approximately: in general, neither the observation
noise nor the state dynamics are exactly Gaussian. Therefore the Ensemble Kalman Smoother should be
interpreted as an approximation to the optimal Bayesian estimator here. Generalizations (to handle multi-
modal observation densities, or switching or stochastic volatility dynamics models) are left for future work.

4.12.2 Single-keypoint, multi-camera, synchronized cameras case

Given multiple cameras, we can estimate the true three-dimensional position of each keypoint. So letting
the state vector qt be the three-dimensional vector qt = (xt, yt, zt), we have the model

qt = qt−1 + et, et ∼ N(0, E) (18)

Ot = Bqt + nt, nt ∼ N(0, (1/m)Dt). (19)

B is 2V × 3 where V is the number of camera views; this maps the three-dimensional state vector qt onto
the V camera coordinates (assuming linear observations here; this can be generalized but was not necessary
for the data analyzed here). Ot is 2V ×1 andDt is block-diagonal with 2×2 blocks. As above, observations

36

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Ot with high Dt (low confidence) will be downweighted by the resulting Ensemble Kalman Smoother: in
practice, this means that cameras with an unobstructed view on a given frame (small Dt) can help to correct
frames that are occluded in other camera views (resulting in larger ensemble variance Dt). We remark that
in poorly trained models, the opposite can also (on rarer occasions) be true: the ensemble in one camera
view can make “confident mistakes” on some frames, in which all ensemble members output the same
wrong estimate (with corresponding small Dt, i.e., high ensemble confidence) and induce errors in the other
camera views after running the Ensemble Kalman Smoother. These errors can be detected as deviations
between the Kalman smoother output and the original ensemble outputs; the training label set can then be
augmented to correct these confident mistakes, followed by network ensemble retraining.

We initialize our estimates by restricting to confident frames and computing PCA to estimate B; then we
take temporal differences of the resulting PCA projections and compute their covariance to initialize E.

Finally, note that this simple Kalman model does not output the true 3d location here, because the model is
non-identifiable; instead we learn qt up to a fixed invertible affine transformation.

4.12.3 Pupil EKS

For the IBL-pupil dataset, we track K = 4 keypoints arranged in a diamond shape around the perimeter
of the pupil. Therefore, at each frame we have 2K = 8 observations which are are constrained to lie in
a three-dimensional subspace defined by the pupil center (denoted as (xt, yt)) and diameter dt. Given the
state variable qt = (dt, xt, yt), we can (linearly) predict the location of each of the 4 diamond corners.

In addition, we have strong prior information about the dynamics of the state variable: we know that the
diameter dt is a smooth function of time t, while the pupil center (xt, yt) can change more abruptly, due to
saccades and rapid face movements that move the eye as well.

Together, these assumptions lead to the model

qt = Aqt−1 + et, et ∼ N(0, E), (20)

Ot = Bqt + nt, nt ∼ N
(

(µd, 0, 0), (1/m)Dt

)
. (21)

In the observation equation above, µd denotes the mean diameter, Ot is the 8 × 1 keypoint vector, B is a
fixed 8× 3 matrix that translates the state variable qt into the keypoints, and Dt is a diagonal matrix whose
diagonal entries include the ensemble confidence about each observation.

In the dynamics model above, A and E are both diagonal. This means that we model the priors for dt, xt,
and yt using independent autoregressive (AR(1)) processes. (The posteriors for these variables will not be
independent, due to the non-separable structure of the observation model in Eq. 21.) We want to choose
the diagonal values diag(A) and diag(E) so that these processes have the desired variance and time con-
stant. The variance in a stationary AR(1) model with noise variance e and autoregressive parameter a is
e/(1 − a2). We can crudely estimate the marginal mean and variance of xt, yt, and dt from the ensembled
meanM , and match the AR(1) marginal mean and variance accordingly. This leaves us with just two autore-
gressive parameters to choose: A(1, 1) and A(2, 2) (with A(3, 3) set equal to A(2, 2)). The time constant
corresponding to A(1, 1) should be meaningfully larger than the time constant corresponding to A(2, 2),
since as noted above the diameter dt varies much more smoothly than the center (xt, yt).

37

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

4.12.4 Single-keypoint, multi-camera, asynchronous cameras case

In some datasets (e.g. the IBL-paw dataset) frames from different cameras may be acquired asynchronously,
perhaps with different frame rates. The Kalman model can be easily adapted to handle this case. Define
the sampling times and camera ID for the i-th frame as: {ti, vi}, where ti denotes the time the frame was
acquired, and vi denotes the camera that took the i-th frame. Again the state vector qt is the true three-
dimensional location of the keypoint, qt = (xt, yt, zt). We have the model

qti = qti−1 + ei, ei ∼ N(0, E(ti − ti−1)) (22)

Oi = Bviqti + ni, ni ∼ N(0, (1/m)Di), (23)

where now Bvi is 2 × 3; this tells us how the latent 3d coordinates are mapped into the vi’th camera. Oi is
a 2× 1 vector, and Di is a 2× 2 matrix. Here the Kalman Smoother is run only at frame acquisition times
{ti}, but if desired we can perform predictions / interpolation at any desired time t.

4.12.5 Pose PCA case

Let qt represent the “compressed pose,” the R × 1 vector obtained by projecting the true pose into the
R-dimensional Pose PCA subspace. Here we have the model

qt = qt−1 + et, et ∼ N(0, E) (24)

Ot = Bqt + nt, nt ∼ N(0, (1/m)Dt). (25)

B is 2K × R; this maps the R-dimensional state vector qt onto the 2K camera coordinates. Ot is 2K × 1
and Dt is block-diagonal with 2 × 2 blocks. As in the synchronous multi-camera setting, we initialize
our estimates by restricting to confident frames and computing PCA to estimate B; then we take temporal
differences of the resulting PCA projections and compute their covariance to initialize E.

The output of this smoother is useful for diagnostic purposes, but we do not recommend using this model to
generate the final tracking output, since rare (but real) poses may lie outside the Pose PCA subspace, while
the output of this smoother is restricted to lie within this subspace (the span of B) by construction.

4.13 Canonical correlations analysis (CCA)

In Supplementary Fig. 2 and Supplementary Fig. 4 we use canonical correlations analysis to compute the
directions of motion that should match in the left and right cameras and top and bottom cameras, respec-
tively. (These canonical correlations directions are orthogonal to the epipolar lines familiar from multiple
view geometry [15].) In this subsection we provide details of this computation.

Let Ôt = Bq̂t be the output of the multi-camera Ensemble Kalman Smoother at time step t, projected
back onto the camera planes. We can further decompose Ôt as Ôt = {Ôv1

t , Ô
v2
t }, where Ôv1

t is the two-
dimensional prediction for the first camera and Ôv2

t is the two-dimensional prediction for the second camera.
Now, we compute CCA(Ôv1 , Ôv2) to find the one-dimensional linear projection of the outputs for each
camera that maximizes their correlation. Since Ôt is generated from a lower-dimensional set of latents qt,
the projection of Ôv1 and Ôv2 onto the first canonical component will be perfectly correlated. We can then
project the original model predictions for each camera onto the first canonical component for each camera.

38

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Any frames where the two camera-views do not have the same projected value will most likely be outliers.
This can be seen in Supplementary Figs. 2 and 4, where outlier frames due to paw switching and paw
occlusions cause the model predictions for the two camera views to have different CCA projections.

4.14 Neural decoding

We performed neural decoding using cross-validated linear regression with L2 regularization (the Ridge
module in scikit-learn [24]), following [25]. The decoding targets – pupil diameter or paw speed – are
binned into non-overlapping 20 ms bins. For each successful trial, we select an alignment event – reward
delivery for pupil diameter and wheel movement onset for paw speed – and decode the target starting 200
ms before and ending at 1000 ms after the alignment event. We bin spike counts similarly using all recorded
neurons in each session. The target value for a given bin (ending at time t) is decoded from spikes in a
preceding (causal) window spanning R bins (ending at times t, . . . , t-R+1). Therefore, if decoding from
N neurons, there are RN predictors of the target variable in a given bin. In practice we use R = 10.

To improve decoding performance, we smoothed the target variables. For pupil diameter, both the DeepLab-
Cut (DLC) and Lightning Pose (LP) predictions of pupil diameter were smoothed using a Savitzky-Golay
filter that linearly interpolates over low-confidence time points (confidence <0.9). The filter window is set
to 31 frames (500 ms) for the left video (we did not decode pupil diameter from the lower-spatial-resolution
right video). For more details of this method, see [3]. We did not apply additional smoothing to the output
of the Ensemble Kalman Smoother (LP+EKS) model. For paw speed, small errors in the paw position will
be magnified when taking the derivative. To compensate for this we lightly smoothed the paw position esti-
mates using a Savitzky-Golay filter after linearly interpolating over low-confidence time points (confidence
<0.9), and then computed paw speed. The right video filter window is set to 13 frames (87 ms) and the
left is set to 7 frames (117 ms). This smoothing was applied to the outputs of all three models (DLC, LP,
LP+EKS).

All decoding results use nested cross-validation. Each of five cross-validation folds is based on a train-
ing/validation set comprising 80% of the trials and a test set of the remaining 20% of trials. Trials are
selected at random (in an “interleaved” manner). The training/validation set of a fold is itself split into five
sub-folds using an interleaved 80%/20% partition. A model is trained on the 80% training set using vari-
ous regularization coefficients ({10−5, 10−4, 10−3, 10−2, 10−1, 100, 101}, denoted as input parameter α by
scikit-learn), and evaluated on the held-out validation set. This procedure is repeated for all five sub-folds.
The coefficient which achieves the highest R2 value, averaged across all five validation sets, is selected
as the “best” coefficient and used to train a new model across all trials in the 80% training/validation set.
The model is then used to produce predictions for each trial in the 20% test set. This train/validate/test
procedure is repeated five times, each time holding out a different 20% of test trials such that, after the five
repetitions, 100% of trials have a held-out decoding prediction. The final reported decoding score is the
R2 computed across all held-out predictions. Code for performing this decoding analysis can be found at
https://github.com/int-brain-lab/paper-brain-wide-map.

4.15 Lightning Pose software package

We built Lightning Pose with the following philosophy. To begin with, computer vision is a vast field,
of which animal pose estimation is a small part. The thriving deep learning software ecosystem offers

39

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://github.com/int-brain-lab/paper-brain-wide-map
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

well-engineered and well-tested solutions for every stage of the pose estimation pipeline. We can therefore
outsource code to these frameworks to a large degree, leaving us with a smaller code base to maintain.

We start with Lightning Pose’s core components, which are depicted in the innermost purple box in Extended
Data Fig. 8A.

First, an algorithmic signature of Lightning Pose is training with two data streams, labeled images and
unlabeled videos (as depicted in Fig. 2A), which have to be loaded and “augmented” in tandem. This re-
quirement led us to develop a generic class of so-called “data modules” supporting flexible semi-supervised
training.

Most computer vision systems are built to ingest images, not videos; raw videos are rarely used during
training. The standard approach converts raw videos into formatted (“augmented”) images using CPUs.
The CPU approach is inefficient and may cause the network to spend most of its time idly waiting for
data instead of predicting or training (“data bottleneck”; [26]). Therefore, we built high-performance video
readers using NVIDIA’s data loading library (DALI; https://github.com/NVIDIA/DALI; leftmost box
inside innermost purple box in Extended Data Fig. 8A). DALI uses the native capabilities of Graphics
Processing Units (GPUs) to both read (“decode”) and augment videos (resize, crop, scale, etc) to greatly
accelerate video handling at training and prediction time.

Moreover, Lightning Pose decouples network architectures from datasets and training losses (center and
right boxes, respectively, inside innermost purple box in Extended Data Fig. 8A). As part of our own ex-
periments, we realized that users need flexibility to compose a set of supervised and unsupervised losses
without making any code changes. We therefore built a “loss factory” that enables developers to experiment
with existing losses easily and also quickly prototype new losses. Losses can be applied at any level of
representation in the network, ranging from the time series of predicted keypoints, through heatmaps, to
hidden network features. New losses require minimal extra code, are automatically logged during training,
and can contain their own trainable parameters and even trainable sub-networks.

Having established how we handle data, design networks, and select losses, we still need a procedure for
training networks. We offload this task to PyTorch Lightning ([27]; middle box in Extended Data Fig. 8A),
which is an increasingly popular wrapper around the PyTorch deep learning framework [13]. This enables us
to use the latest strategies for training models, logging the results, and distributing computation across mul-
tiple GPUs, without having to modify any of our core modules described above as new training techniques
emerge.

In addition, we use Hydra [28] to configure, launch, and log network training jobs (Extended Data Fig. 8A,
outermost purple box). This eliminates a substantial amount of “boilerplate” code while increasing the
reproducibility of training, which often depends on choices of random number generator, batch sizes, etc.

Finally, we developed a suite of interactive training diagnostics and model comparison tools, facilitating
hyperparameter sensitivity analyses (Extended Data Fig. 8A, right gray box). During training, we provide
online access to TensorBoard (https://www.tensorflow.org/tensorboard) to monitor the individual
losses. After training, we use a Streamlit (https://streamlit.io) user interface to visualize per-keypoint
diagnostics for both labeled frames and unlabeled videos. We also use a FiftyOne user interface (https:
//voxel51.com) for viewing images and videos along with multiple models’ predictions, enabling users to
filter body parts and models, and browse moments of interest in predicted videos.

40

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://github.com/NVIDIA/DALI
https://www.tensorflow.org/tensorboard
https://streamlit.io
https://voxel51.com
https://voxel51.com
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

4.16 A cloud-hosted application for pose estimation as a service

More and more laboratories have access to the accelerated computers needed for running deep learning
pipelines. But unfortunately, installing, executing, and maintaining deep learning pipelines on them remains
a hurdle even for experienced software developers.

We built a browser application that uses cloud computers and allows users with no coding expertise to esti-
mate animal pose using any computer with access to internet. Our app (Extended Data Fig. 8B) supports the
full life cycle of animal pose estimation, from data annotation via LabelStudio (https://labelstud.io)
to model training to video prediction and diagnostic visualization (via the open-source ecosystem intro-
duced above). When launched by a user, the app starts a number of cloud machines equipped with the
necessary hardware and software, which will turn off when idle. Our app is built on Lightning.ai’s (https:
//lightning.ai) infrastructure for cloud-hosted deep learning applications, removing technical obstacles
related to resource provisioning, secure remote access, and software dependency management.

To conclude, as argued in [29], the cloud-centric approach we take serves to democratize analysis tools,
improving scalability, code maintenance requirements, and computation time and cost. Our app enables de-
velopers who have created new losses or network architectures within the Lightning Pose software package
to easily make these advances available to the broader audience through the cloud-based app. This abil-
ity significantly accelerates the process of moving model development from the prototyping to production
stage.

For up-to-date installation instructions and a walk-through of the app, we refer the reader to the app’s
documentation website (https://pose-app.readthedocs.io).

5 Data availability

We have made all labeled data used in this manuscript publicly available.

mirror-mouse
https://figshare.com/articles/dataset/Lightning_Pose_dataset_mirror-mouse/24993315

mirror-fish
https://figshare.com/articles/dataset/Lightning_Pose_dataset_mirror-fish/24993363

CRIM13
https://figshare.com/articles/dataset/Lightning_Pose_dataset_CRIM13/24993384

IBL-paw
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_
Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.
zip

IBL-pupil
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_
Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.
zip

41

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://labelstud.io
https://lightning.ai
https://lightning.ai
https://pose-app.readthedocs.io
https://figshare.com/articles/dataset/Lightning_Pose_dataset_mirror-mouse/24993315
https://figshare.com/articles/dataset/Lightning_Pose_dataset_mirror-fish/24993363
https://figshare.com/articles/dataset/Lightning_Pose_dataset_CRIM13/24993384
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

All of the model predictions on labeled frames and unlabeled videos are available at
https://figshare.com/articles/dataset/Lightning_Pose_results_Nature_Methods_2024/25412248.
These results, along with the labeled data, can be used to reproduce the main figures of the paper.

To access the IBL data analyzed in Figs. 6 and Extended Data Fig. 7, see the documentation at https://
int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release
and use the tag 2023_Q1_Biderman_Whiteway_et_al. This will provide access to spike sorted neural ac-
tivity, trial timing variables (stimulus onset, feedback delivery, etc.), the original IBL DeepLabCut traces,
and the raw videos.

6 Code availability

The code for Lightning Pose is available at https://github.com/danbider/lightning-pose under the
MIT license. The repository also contains a Google Colab tutorial notebook that trains a model, forms
predictions on videos, and visualizes the results. From the command-line interface, running pip install
lightning-pose will install the latest release of Lightning Pose via the Python Package Index (PyPI).

The code for the Ensemble Kalman Smoother is available at https://github.com/paninski-lab/eks
under the MIT license. The repository contains the core EKS code as well as scripts demonstrating how to
use the code on several example datasets.

The code for the cloud-hosted application is available at https://github.com/Lightning-Universe/
Pose-app under the Apache-2.0 license. This code enables launching our app locally or on cloud resources
by creating a Lightning.ai account.

Code for reproducing the figures in the main text is available at https://github.com/themattinthehatt/
lightning-pose-2024-nat-methods under the MIT license. This repository also includes a script for
downloading all required data from the proper repositories.

The hardware and software used for IBL video collection is described in [8]. The protocols used in the
mirror-mouse and mirror-fish datasets (both have the same video acquisition pipeline) is described in [1].

We used the following packages in our data analysis: CUDA toolkit (12.1.0), cuDNN (8.5.0.96), deeplab-
cut (2.3.5 for runtime benchmarking, 2.2.3 for everything else), ffmpeg (3.4.11), fiftyone (0.23.4), h5py
(3.9.0), hydra-core (1.3.2), ibllib (2.32.3), imgaug (0.4.0), kaleido (0.2.1), kornia (0.6.12), lightning (2.1.0),
lightning-pose (1.0.0), matplotlib (3.7.5), moviepy (1.0.3), numpy (1.24.4), nvidia-dali-cuda120 (1.28.0),
opencv-python (4.9.0.80), pandas (2.0.3), pillow (9.5.0), plotly (5.15.0), scikit-learn (1.3.0), scipy (1.10.1),
seaborn (0.12.2), streamlit (1.31.1), tensorboard (2.13.0), torchvision (0.15.2)

42

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://figshare.com/articles/dataset/Lightning_Pose_results_Nature_Methods_2024/25412248
https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release
https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release
https://github.com/danbider/lightning-pose
https://github.com/paninski-lab/eks
https://github.com/Lightning-Universe/Pose-app
https://github.com/Lightning-Universe/Pose-app
https://github.com/themattinthehatt/lightning-pose-2024-nat-methods
https://github.com/themattinthehatt/lightning-pose-2024-nat-methods
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

References

1. Warren, R. A. et al. A rapid whisker-based decision underlying skilled locomotion in mice. Elife 10,
e63596 (2021).

2. Burgos-Artizzu, X. P., Dollár, P., Lin, D., Anderson, D. J. & Perona, P. Social behavior recognition
in continuous video 2012 IEEE conference on computer vision and pattern recognition (2012), 1322–
1329.

3. IBL. Data release - Brainwide map - Q4 2022. https://figshare.com/articles/preprint/
Data_release_-_Brainwide_map_-_Q4_2022/21400815 (Jan. 2023).

4. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and envi-
ronments. Nature methods 18, 564–573 (2021).

5. Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding of episodic memories in the
hippocampus of a food-caching bird. bioRxiv, 2023–05 (2023).

6. IBL et al. Standardized and reproducible measurement of decision-making in mice. Elife 10, e63711
(2021).

7. IBL et al. Reproducibility of in-vivo electrophysiological measurements in mice. bioRxiv (2022).

8. IBL et al. Video hardware and software for the International Brain Laboratory. en. figshare (2022).

9. Pereira, T. D. et al. SLEAP: A deep learning system for multi-animal pose tracking. Nature methods
19, 486–495 (2022).

10. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learn-
ing. Nature neuroscience 21, 1281–1289 (2018).

11. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using
deep learning. Elife 8, e47994 (2019).

12. Yu, H. et al. Ap-10k: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv:2108.12617
(2021).

13. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019).

14. Wu, A. et al. Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose
tracking. Advances in Neural Information Processing Systems 33, 6040–6052 (2020).

15. Hartley, R. & Zisserman, A. Multiple view geometry in computer vision (Cambridge university press,
2003).

16. Jafarian, Y., Yao, Y. & Park, H. S. Monet: Multiview semi-supervised keypoint via epipolar divergence.
arXiv preprint arXiv:1806.00104 (2018).

17. Zhang, Y. & Park, H. S. Multiview supervision by registration Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (2020), 420–428.

18. Tresch, M. C. & Jarc, A. The case for and against muscle synergies. Current opinion in neurobiology
19, 601–607 (2009).

19. Yan, Y., Goodman, J. M., Moore, D. D., Solla, S. A. & Bensmaia, S. J. Unexpected complexity of
everyday manual behaviors. Nature communications 11, 1–8 (2020).

20. Bialek, W. On the dimensionality of behavior. Proceedings of the National Academy of Sciences 119,
e2021860119 (2022).

43

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://figshare.com/articles/preprint/Data_release_-_Brainwide_map_-_Q4_2022/21400815
https://figshare.com/articles/preprint/Data_release_-_Brainwide_map_-_Q4_2022/21400815
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

21. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality and dynamics in the
behavior of C. elegans. PLoS computational biology 4, e1000028 (2008).

22. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

23. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature meth-
ods 17, 261–272 (2020).

24. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research
12, 2825–2830 (2011).

25. IBL et al. A Brain-Wide Map of Neural Activity during Complex Behaviour. bioRxiv, 2023–07 (2023).

26. Zolnouri, M., Li, X. & Nia, V. P. Importance of data loading pipeline in training deep neural networks.
arXiv preprint arXiv:2005.02130 (2020).

27. Falcon, W. et al. PyTorchLightning/pytorch-lightning: 0.7. 6 release. Zenodo: Geneva, Switzerland
(2020).

28. Yadan, O. Hydra-a framework for elegantly configuring complex applications. Github 2, 5 (2019).

29. Abe, T. et al. Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, re-
producible data analysis. Neuron 110, 2771–2789 (2022).

44

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

7 Extended Data Figures

45

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

x-coord

caudal_d_right

y-coord

Confidence

Temporal
difference
loss (pix)

Multi-view
PCA

loss (pix)

B

A
U

R
O

C

h
ea

d

D

75 train frames 354 train frames

m
id

ta
il_

n
ec

k

Metric performance as outlier detector

A
U

R
O

C
A

U
R

O
C

A

Frame 1232 Frame 1233 Frame 1234 Frame 1235 Frame 1236

Confidence: 0.91

Multi-view PCA: 13.94

Confidence: 0.92
Temporal diff: 0.10

Confidence: 0.96
Temporal diff: 129.78

Confidence: 0.97
Temporal diff: 0.46

Confidence: 0.98
Temporal diff: 0.32

True

Pred

Standard outlier detectors
Proposed outlier detectors

Multi-view PCA:14.04 Multi-view PCA: 39.79 Multi-view PCA: 39.95 Multi-view PCA: 40.10

Metric-defined inlier
Metric-defined outlier

0.6

0.8

1.0

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.8

1.0

0.6
0.6

0.8

1.0

Con
f

Te
m

po
ra

l d
iff

Pos
e

PCA

M
ult

i-v
iew

 P
CA

Con
f

Te
m

po
ra

l d
iff

Pos
e

PCA

M
ult

i-v
iew

 P
CA

Temporal diff: 3.68

350

400

450

250

275

300

325

0.75

1.00

0

100

0 500 1000 1500 2000
Frame number

0

25

C

75 train frames 354 train frames

Unsupervised losses complement confidence for outlier detection

Outliers selected by
each metric

Multi-view
PCA

Confidence

Temporal
difference

Pose PCA

Multi-view PCA

Multi-view
PCA

Confidence

Temporal
difference

Pose PCA

Multi-view PCA

9389
74311

515

2144
60

241

10154

205

405

4011

10901
122

735 2830 2729336575 7415695

Outliers: 29k / 329k keypoints Outliers: 14k / 329k keypoints

Extended Data Figure 1: Unsupervised losses complement model confidence for outlier detection on mirror-fish
dataset. Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained on 354 frames)
on held-out videos. Conventions for panels A-D as in Fig. 3. A: Example frame sequence. B: Example traces
from the same video. C: Total number of keypoints flagged as outliers by each metric, and their overlap. D: Area
under the receiver operating characteristic curve for several body parts. We define a “true outlier” to be frames
where the horizontal displacement between top and bottom predictions or the vertical displacement between top and
right predictions exceeds 20 pixels. AUROC values are only shown for the three body parts that have corresponding
keypoints across all three views included in the Pose PCA computation (many keypoints are excluded from the Pose
PCA subspace due to many missing hand labels). AUROC values are computed across frames from 10 test videos;
boxplot variability is over n=5 random subsets of training data. The same subset of keypoints is used for panel C.
Boxes in panel D use 25th/50th/75th percentiles for min/center/max; whiskers extend to 1.5 * IQR.

46

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

x-coord

y-coord

Confidence

Temporal
difference
loss (pix)

Pose PCA
loss (pix)

B

Frame number Frame number

black_mouse_base_of_tail
video: 031309_A29_Block14_BCfe1_t

Standard outlier detectors Proposed outlier detectors Metric-defined outlierMetric-defined inlier

Confidence: 0.95

Pose PCA:18.71

Confidence: 0.94

Pose PCA:127.96

Confidence: 0.98

Pose PCA: 20.48

Confidence: 0.95
Temporal diff: 4.74
Pose PCA:18.65

A

bl
ac

k_
m

ou
se

ba
se

_o
f_

ta
il

Confidence: 0.96
Temporal diff: 16.70
Pose PCA: 16.52

Confidence: 0.91
Temporal diff: 308.08
Pose PCA: 235.09

Confidence: 0.97
Temporal diff: 332.20
Pose PCA: 43.67

Confidence: 0.92
Temporal diff: 332.33
Pose PCA: 272.55

Frame 1007 Frame 1008 Frame 1009 Frame 1010

True

Pred

Temporal diff: 2.86 Temporal diff: 197.19 Temporal diff: 196.93

bl
ac

k_
m

ou
se

le
ft_

re
ar

_k
ne

e

Frame 1863 Frame 1864 Frame 1865 Frame 1866

200

400

600

200

300

400

0.9

1.0

0

500

1800 1850 1900 1950 2000
0

250

black_mouse_left_rear_knee
video: 110508_A24_Block4_castBCma1_t

400

500

600

200

300

400

0.9

1.0

0

200

950 1000 1050 1100 1150
0

100

C

75 train frames

Unsupervised losses
complement confidence
for outlier detection

Confidence

Temporal
difference

Pose PCA

Confidence

Temporal
difference

Pose PCA

Outliers:
1.096M / 2.52M
keypoints

403264
72029

116407

167765

191196 35935

109453

242306

71929
63070

88300

69649 18849

43878

800 train frames
Outliers:
598k / 2.52M
keypoints

Extended Data Figure 2: Unsupervised losses complement model confidence for outlier detection on CRIM13
dataset. Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained on 800 frames)
on held-out videos. Conventions for panels A-C as in Fig. 3. A: Example frame sequence. In the first row, note that
the second prediction jumps to the cage wall with high confidence, but is flagged as problematic by the Pose PCA
loss. In the second row, the prediction again jumps back and forth between the mouse and the cage wall, and only the
Pose PCA metric properly captures which predictions are outliers across all frames. B: Example traces from the same
video. Because the size of CRIM13 frames are larger than those of the mirror-mouse and mirror-fish datasets, we use
a threshold of 50 pixels instead of 20 to define outliers through the unsupervised losses. C: Total number of keypoints
flagged as outliers by each metric, and their overlap. Outliers are collected from predictions across frames from 18
test videos and across predictions from five different networks trained on random subsets of labeled data.

47

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

0 5 10

P
ix

el
 e

rr
or

Unsupervised losses

None (supervised)

Temporal

Multi-view PCA

Pose PCA

Combined

0 2 4

Ensemble std dev

mirror-mouse

30

% labels
in error
computation

"harder" keypoints

mirror-fish CRIM13

Ensemble std dev Ensemble std dev

100%
50%

20% 100%
50%

15% 100%
50%

15%

20

10

30

20

10

40
80

40

20

0 10 20

Extended Data Figure 3: PCA-derived losses drive most improvements in semi-supervised models. For each
model type we train three networks with different random seeds controlling the data presentation order. The models
train on 75 labeled frames and unlabeled videos. We plot the mean pixel error and 95% CI across keypoints and OOD
frames, as a function of ensemble standard deviation, as in Fig. 4. At the 100% vertical line, n=17150 keypoints for
mirror-mouse, n=18180 for mirror-fish, and n=89180 for CRIM13.

48

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

x-
co

or
d

y-
co

or
d

A

B

D

C
on

f
M

ul
ti-

vi
ew

P
C

A

Traces for fork_main

354 train frames

350

400

450

250

300

0.9

1.0

1800 1900 2000 2100 2200
Frame number

0

50

Frame 1871 Frame 1872 Frame 1873

Baseline

Semi-super TCN

O
O

D
 P

ix
el

 e
rr

or

75 train frames

Ensemble std dev

DeepLabCut
Baseline
TCN
SS
SS-TCN

354 train frames

O
O

D
 P

ix
el

 e
rr

or

% labels
in error
computation

"harder" keypoints

10

20

30

100% 50% 20%

0 5 10

10

20

30
100%

50%

5%

Unlabeled data metrics
75 train frames

100%

50%

20%

Multi-view PCA loss (pix)

0 5 10

Ensemble std dev

100%
50%

5%

Multi-view PCA loss (pix)

10

20

30

10

20

30

100%

50%

20%

Temporal difference loss (pix)

0 5 10

Ensemble std dev

100%
50%

5%

Temporal difference loss (pix)

10

20

30

10

20

30

100%

50%

20%

Pose PCA loss (pix)

Pose PCA loss (pix)

0 5 10

Ensemble std dev

100%
50%

5%

10

20

10

20

Lo
ss

 v
al

ue

% frames
in loss
computation

Lo
ss

 v
al

ue

18180
keypoints

=109.5k frames

C

Baseline

Semi-super TCN

Extended Data Figure 4: Unlabeled frames improve pose estimation in mirror-fish dataset. Conventions as in
Fig. 4. Also see Supplementary Video 6.

49

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

A

B

D

x-
co

or
d

Traces for white_mouse_right_ear

y-
co

or
d

C
on

f

Frame number

P
os

e
P

C
A

Frame 1151 Frame 1152 Frame 1153

250

500

300

400

0.75

1.00

800 900 1000 1100 1200

0

100 Baseline
Semi-super TCN

O
O

D
 P

ix
el

 e
rr

or

75 train frames

Ensemble std dev

DeepLabCut
Baseline
TCN
SS
SS-TCN

800 train frames

O
O

D
 P

ix
el

 e
rr

or

% labels
in error
computation

"harder" keypoints

10

20

40

60

100% 50% 20%

0 10 20
10

20

40

60

100%
50%

5%

Unlabeled data metrics

Lo
ss

 v
al

ue

100% 50% 20%

75 train frames

Temporal difference loss (pix)

0 10 20

Ensemble std dev

100%
50%

5%

800 train frames

100% 50% 20%

Pose PCA loss (pix)

Pose PCA loss (pix)

0 10 20

Ensemble std dev

100%
50%

5%

10

20

30

30

10

20

10

20

30

40

10

20

30

40

% frames
in loss
computation

Lo
ss

 v
al

ue

89180
keypoints

180k frames

C

Temporal difference loss (pix)

Baseline

Semi-super TCN

Extended Data Figure 5: Unlabeled frames improve pose estimation in CRIM13 dataset. Models in panel A use
800 training frames. Remaining conventions as in Fig. 4. Also see Supplementary Video 7.

50

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

100%
50%

5%

C

P
ix

el
 e

rr
or

Labeled data (253 OOD frames)

Ensemble std dev

x-
co

or
d

0 10 20 30 40 50

BA

Time (frames)
0 10 20 30 40 50

Time (frames)

Example 1
paw2LF (top view)

y-
co

or
d

Example 2
paw4RH (top view)

EKS
Individual models

Ground truth

200

240

280

320

90

100

80

120

160

70

90

110

Mirror-mouse dataset Mirror-mouse dataset

Labeled data (94 OOD frames)
x-

co
or

d

0 10 20 30 40 50

Time (frames)
0 10 20 30 40 50

Time (frames)

Example 1
caudal_d (right view)

y-
co

or
d

Example 2
chin_tip (right view)

EKS
Individual models

Ground truth

Mirror-fish dataset Mirror-fish dataset
D

455

465

475

300

305

310

315

332

336

340

344

256

260

264

268

E

Labeled data (1274 OOD frames)

x-
co

or
d

0 10 20 30 40 50

Time (frames)
0 10 20 30 40 50

Time (frames)

Example 1
white_mouse_top_of_neck

y-
co

or
d

Example 2
white_mouse_left_rear_knee

EKS
Individual models

Ground truth

CRIM13 dataset CRIM13 dataset
F

500

520

540

220

260

300

520

540

560

580

180

220

260

0 1 2 3 4 5

75 train frames 631 train frames

Ensemble std dev
0 1 2 3 4 5

102

101

2x101

4x101

1x101

6x101

2x101

4x101

1x101

6x101

P
ix

el
 e

rr
or

P
ix

el
 e

rr
or

354 train frames

75 train frames 800 train frames

Ensemble std dev
0 2 4 6 8

Ensemble std dev

Ensemble std dev
0 10 20

Ensemble std dev

Ensemble mean

EKS (temporal)

Semi-super context
(different seeds)

EKS (MV PCA)

Ensemble mean

EKS (temporal)

Semi-super context
(different seeds)

EKS (MV PCA)

Ensemble mean

EKS (temporal)

Semi-super context
(different seeds)

% labels
in error
computation

"harder" keypoints

75 train frames

0 2 4 6 8

100%
50%

10% 100%
50%

5%

% labels
in error
computation

100%
50%

10% 100%
50%

5%

% labels
in error
computation

0 10 20

100%
50%

5%

Extended Data Figure 6: The Ensemble Kalman Smoother improves pose estimation across datasets. We trained
an ensemble of five semi-supervised TCN models on the same training data. The networks differed in the order of data
presentation and in the random weight initializations for their “head.” This figure complements Fig. 5 which uses an
ensemble of DeepLabCut models as input to EKS, illustrating the flexibility of our method. A. Mean OOD pixel error
over frames and keypoints as a function of ensemble standard deviation (as in Fig. 4). When the ensemble predictions
disagree more strongly, EKS increasingly outperforms individual ensemble members and their mean. B. Time series
of predictions (x and y coordinates on top and bottom, respectively) from the five individual semi-supervised TCN
models (75 labeled training frames; blue lines) and EKS-temporal (brown lines). Ground truth labels are shown as
green dots. C,D. Identical to A,B but for the mirror-fish dataset. E,F. Identical to A,B but for the CRIM13 dataset.

51

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

0.0

0.6

0.2

0.4

A

C

E

DLC LP LP+EKS

0.4

0.6

1.0

C
C

A
 p

ro
je

ct
io

n
co

rr
 (
r)

D

F

T
ria

l c
on

si
st

en
cy

G H

0.1

0.2

0.4

0.5

D
ec

od
in

g
R

2100 pixels/s

1 s

Neural decoding of right paw speed

LP+KS Neural prediction

DLC LP LP+EKS

DLC LP LP+EKS

B

44 sessions

DLC LP LP+EKS

Example session

Left view

Right view

10 pixels

-2 0 2

Left video CCA proj

-2

0

2

R
ig

ht
 v

id
eo

 C
C

A
 p

ro
j

0.5 0.0 0.5 1.0 1.5

Time (s)

0

100

200

Trial consistency = 0.00

Right paw

Pearson r = 0.39

Left video CCA proj Left video CCA proj
-2 0 2 -2 0 2

Pearson r = 0.97 Pearson r = 1.00

Trial consistency = 0.03 Trial consistency = 0.08

P
aw

 s
pe

e
d

(p
ix

/s
) Movement onset

0.5 0.0 0.5 1.0 1.5

Time (s)
0.5 0.0 0.5 1.0 1.5

Time (s)

Right paw Left paw

0.0

0.4

0.2

DLC LP LP+EKS

0.8

DLC LP LP+EKS

0.5

0.6

1.0

0.8

0.9

0.7

0.0

0.2

0.4

0.6

DLC LP LP+EKS

0.3

Right
paw

Left
paw

...

p=5.7e-14
p=5.7e-14

p=3.3e-3

p=5.7e-14
p=5.7e-14

p=1.8e-4

p=5.7e-14
p=5.7e-14

p=0.43

p=1.4e-7
p=1.3e-5

p=0.18

p=2.1e-6
p=6.3e-12

p=0.55

p=8.7e-11
p=7.3e-5

p=6.1e-4

Extended Data Figure 7: Lightning Pose models and ensemble smoothing improve pose estimation on IBL paw
data. A. Sample frames from each camera view overlaid with a subset of paw markers estimated from DeepLabCut
(left), Lightning Pose using a semi-supervised TCN model (center), and a 5-member ensemble using semi-supervised
TCN models (right). B. Example left view frames from a subset of 44 IBL sessions, illustrating the diversity of
imaging conditions in the dataset. C. As discussed in Supplementary Fig. 4, the right paw position in the right view
should be highly correlated with right paw position in the left view; the 1D subspace of maximal correlation is found
with canonical correlation analysis (CCA). Panel shows the empirical distribution of the right paw position projected
onto this dimension from each view. Column arrangement as in A. The LP+EKS model imposes a low-dimensional
model that enforces perfectly correlated projections, by construction. D. Correlation in the CCA subspace is computed
across n=44 sessions for each model and paw. The LP+EKS model has a correlation of 1.0 by construction. E.
Median right paw speed plotted across correct trials aligned to first movement onset of the wheel; error bars show 95%
confidence interval across n=273 trials. The same trial consistency metric from Fig. 6 is computed. See Supplementary
Video 14. F. Trial consistency computed across n=44 sessions. G. Example traces of Kalman smoothed right paw
speed (blue) and predictions from neural activity (orange) for several trials using cross-validated, regularized linear
regression (Methods). H. Neural decoding performance across n=44 sessions. Panels D, F, and H use a one-sided
Wilcoxon signed-rank test; boxes use 25th/50th/75th percentiles for min/center/max; whiskers extend to 1.5 * IQR.
See Supplementary Table 2 for further quantification of boxes.

52

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Modularization 1: isolate model design from auxiliary engineering

Modularization 2: configure experiments and run hyperparameter sweeps with no code changes

Modularization 0: decouple data, architectures and losses

Modular network
design

Extendible loss
factory

Diagnostics and
model comparison

Visualize images,
videos, time-series,

and summary statistics

GPU-accelerated
video loaders

easy to extend by user

A

B

A

Initialization

Create new or load existing
pose estimation project

Data curation Model training

drag-and-drop videos

automatic frame selection

label frames

select models to train

launch training jobs
(parallel & multi GPUs)

online monitoring

Model evaluation
and comparison

image & video GUI

interactive diagnostics
labeled & unlabeled

Video prediction

drag-and-drop new vidoes

predict new videos
(parallel & multi GPUs)

download predictions and
corresponding diagnostics

Cloud application: user-friendly, reproducible, avoids local installs

LabelStudio frame labeling

A

B

C
TensorFlow monitoring FiftyOne GUI Streamlit timeseries diagnostics

Extended Data Figure 8: Lightning Pose enables easy model development, fast training, and is accessible via
a cloud application. A. Our software package outsources many tasks to existing tools within the deep learning
ecosystem, resulting in a lighter, modular package that is easy to maintain and extend. The innermost purple box
indicates the core components: accelerated video reading (via NVIDIA DALI), modular network design, and our
general-purpose loss factory. The middle purple box denotes the training and logging operations which we outsource
to PyTorch Lightning, and the outermost purple box denotes our use of the Hydra job manager. The right box depicts
a rich set of interactive diagnostic metrics which are served via Streamlit and FiftyOne GUIs. B. A diagram of
our cloud application. The application’s critical components are dataset curation, parallel model training, interactive
performance diagnostics, and parallel prediction of new videos. C. Screenshots from our cloud application. From left
to right: LabelStudio GUI for frame labeling, TensorFlow monitoring of training performance overlaying two different
networks, FiftyOne GUI for comparing these two networks’ predictions on a video, and a Streamlit application that
shows these two networks’ time series of predictions, confidences, and spatiotemporal constraint violations.

53

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

8 Supplementary Video Captions

Supplementary Video 1 DeepLabCut model predictions (631 labeled frames), mirror-mouse dataset, cor-
responding to traces in Fig. 1B. See Supplementary Fig. 5 for a detailed caption of Supplementary Videos
1, 5-7. [link]

Supplementary Video 2 Selected frames with high Pose PCA errors, mirror-mouse dataset. DLC model
trained with 631 labeled frames. See Supplementary Fig. 6 for a detailed caption of Supplementary Videos
2-4. [link]

Supplementary Video 3 Selected frames with high Pose PCA errors, mirror-fish dataset. DLC model
trained with 354 labeled frames. [link]

Supplementary Video 4 Selected frames with high Pose PCA errors, CRIM13 dataset. DLC model
trained with 800 labeled frames. [link]

Supplementary Video 5 Baseline vs semi-supervised TCN model predictions (75 labeled frames), mirror-
mouse dataset, corresponding to traces in Fig. 4A. [link]

Supplementary Video 6 Baseline vs semi-supervised TCN model predictions (75 labeled frames), mirror-
fish dataset, corresponding to traces in Extended Data Fig. 4A. [link]

Supplementary Video 7 Baseline vs semi-supervised TCN model predictions (800 labeled frames), CRIM13
dataset, corresponding to traces in Extended Data Fig. 5A. [link]

Supplementary Video 8 Ensemble Kalman Smoother predictions (multi-view PCA), mirror-mouse dataset,
corresponding to the session in Supplementary Fig. 2. See Supplementary Fig. 7 for a detailed caption of
Supplementary Videos 8-12. [link]

Supplementary Video 9 Ensemble Kalman Smoother predictions (Pose PCA), IBL-pupil dataset, corre-
sponding to the session in Supplementary Fig. 3. [link]

Supplementary Video 10 Ensemble Kalman Smoother predictions (multi-view PCA), IBL-paw dataset,
corresponding to the session in Supplementary Fig. 4. [link]

Supplementary Video 11 Ensemble Kalman Smoother predictions (multi-view PCA), mirror-fish dataset.
[link]

54

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://drive.google.com/file/d/1nZYR0gY7Hz0g1WWVXhofzVC6A8nYyUHt/view?usp=drive_link
https://drive.google.com/file/d/1-7PaAgYOiotqMcB7NDblz2fI2i0fsNsZ/view?usp=drive_link
https://drive.google.com/file/d/17o8r_KricHIIMSe_y54BfklBcuVefYpz/view?usp=drive_link
https://drive.google.com/file/d/1nLJ-HbZzylSTxzN-g9wrZWlMSpfwjYLh/view?usp=drive_link
https://drive.google.com/file/d/1C5hVcQDKSSpHUQRaZB28gCUqu7BxKIMr/view?usp=drive_link
https://drive.google.com/file/d/1jWKQBo2zGbB0ZMXZuj1UEgHBiwafrEuK/view?usp=drive_link
https://drive.google.com/file/d/1RoAC6472R8RHGEi0tNJNrDVjTzqWHkk5/view?usp=drive_link
https://drive.google.com/file/d/1IJp8UXSfFQenTqBg4bYubBd3TLbL-Vd-/view?usp=drive_link
https://drive.google.com/file/d/1RJiSt4m9js-3wUJxtCq3X-dV2Qra6t-S/view?usp=drive_link
https://drive.google.com/file/d/123rXUNuetI6aqjJtrnxbKPDeuJNNu0P4/view?usp=drive_link
https://drive.google.com/file/d/13liCi-_m5sx5TojZviCq5J03I6Gjt8Gk/view?usp=drive_link
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Video 12 Ensemble Kalman Smoother predictions (temporal), CRIM13 dataset. [link]

Supplementary Video 13 Trial-by-trial markers and traces for IBL-pupil dataset, corresponding to the
example session in Fig. 6. See Supplementary Fig. 8 for a detailed caption of Supplementary Videos 13-14.
[link]

Supplementary Video 14 Trial-by-trial markers and traces for IBL-paw dataset, corresponding to the
example session in Extended Data Fig. 7. [link]

55

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://drive.google.com/file/d/1n21uz-Wc6r4sGKKsgufwAh3YsBAIPXG9/view?usp=drive_link
https://drive.google.com/file/d/18sgCv-rD4eqoA9Krl41sq982qeKv0YOG/view?usp=drive_link
https://drive.google.com/file/d/1DUDJRdldoex3tQnovtdmmBb3Na1e1AC-/view?usp=drive_link
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Lightning Pose: Supplementary Information

1 Supplementary Methods

1.1 Runtime benchmarking

We used the mirror-mouse dataset (two views, 17 total keypoints) and measured training and inference
time. We compared each of our model variants – supervised baseline, TCN, semi-supervised (combining
the three losses presented in the main text), semi-supervised TCN model – and DeepLabCut (Mathis et al.
[1]; version 2.3.5). For all models, we used a ResNet-50 backbone. All experiments ran on an NVIDIA A10
GPU (using 16 CPU threads and 24 GB GPU memory, costing 1.624 USD per hour on-demand on Amazon
Web Services as of September 2023).

1.1.1 Training time

We measured the time it takes to load a batch of data from disk and complete a stochastic gradient descent
step, an operation that forms the building block of neural network training. We varied two parameters: im-
age resizing dimensions (128 × 128 and 256 × 256; images are read and resized “on the fly”), and labeled
batch size B (16 and 32 images). We timed 100 training batches after discarding the first 15 “warmup”
training batches. For DeepLabCut, we used the Tensorpack accelerated data loading package (henceforth
DLC+tensorpack). As expected, the supervised model’s training time is on par with DLC+tensorpack (Sup-
plementary Fig. 9). All other models train on a significant number of additional unlabeled frames and are
therefore slower to train. The TCN (with J = 5 context frames) operates on a total of 5B frames and is 2x-
5x slower; the semi-supervised model appends an additional unlabeled video clip of length 2B frames (for
a total of 3B frames) and is 2x-4x slower; their combination operates on 7B frames and is 3x-5x slower. To
put these estimates in perspective, a typical network will perform at minimum 300 passes over the entire la-
beled dataset (a.k.a. “epochs”). With 631 labeled InD images of the mirror-mouse dataset (each 256×256),
and a batch size of 32, each epoch will include d631/32e = 20 batches. Throughout training, the semi-
supervised model will ingest additional 20 batches × 64 video frames × 300 epochs = 384K unlabeled
video frames, and will train in approximately (0.44s × 20 × 300)/60s = 44 minutes on a single NVIDIA
A10 GPU (excluding logging operations) which will cost approximately 1.2 USD.

1.1.2 Inference time

Next, we calculate the speed at which a trained network predicts a video (in frames-per-second, FPS). We
compare three models: Lightning Pose without context (LP; either supervised or semi-supervised, since
the training strategy does not affect inference time), LP with context (LP+TCN), and DLC. We calculate
FPS for increasing image sizes (128x128, 256x256, 384x384, 512x512) and sequence lengths (16, 32, 64,

56

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

128, 256, 512). LP and LP+TCN use NVIDIA-DALI video loading which includes an additional resizing
operation “on the fly,” which is not done by DeepLabCut.

Supplementary Fig. 10 summarizes the results. LP (orange) tends to have the highest throughput, with DLC
(blue) 5% slower, and LP+TCN (green) 50% slower when averaged across all sequence lengths and frame
sizes. LP speedups become more pronounced with longer sequence lengths and larger frame sizes, where
GPU utilization increases. For smaller image sizes and sequence lengths, LP and LP+TCN are slower due
to a paradoxical “data bottleneck”: since NVIDIA-DALI decodes and augments the videos entirely on the
GPU, using very small batch sizes is inefficient as it “seeks” the entire video to find each batch. The seeking
operation occupies the GPU instead of performing backward and forward passes through the network. In
this unconventional regime, and with many CPUs available, standard CPU dataloaders like DeepLabCut’s
are preferable. To summarize, when GPUs are properly utilized, LP’s inference is faster, as expected.

1.2 EKS’ Relationship to previous work

We are far from the first to notice that the output of pose tracking networks can contain “glitches,” and a
number of strategies have been proposed for post-processing the network output to remove these glitches.

The simplest and perhaps most commonly applied strategy [2–4] is to detect “bad” keypoints and frames
and remove them, followed by simple temporal interpolation to fill in the resulting gaps in the estimated
pose traces. A number of criteria have been proposed to find bad frames, e.g., low network confidence, large
temporal jumps, and/or multi-camera inconsistency.

While attractively simple, this “remove-then-interpolate” strategy is suboptimal for several reasons. First, it
can be challenging to automatically and reliably choose thresholds to determine which bad frames should be
dropped. Second, using simple temporal interpolation to replace removed keypoints ignores useful spatial
constraints (such as the multi-view PCA loss) which, as we have seen, can significantly improve the estima-
tion of uncertain keypoints. Third, networks often make errors confidently that may not be corrected with
this simple strategy. Finally, even error frames often contain partial information about keypoint location
(for example, a keypoint may be near the estimated value, but not match the estimated value exactly), and
removing error frames completely discards this useful partial information.

A number of more complex denoising strategies have been proposed in the single-animal pose tracking
literature [5–8], in addition to post-processing strategies for the multi-animal tracking case [9, 10] that are
beyond the scope of this paper. These advanced techniques vary widely in their complexity, computational
demands, assumptions, generality, outlier-handling logic, etc., but they all operate on the output of a single
network. As we have seen, the output of a single network (particularly a fully-supervised network) can be
highly unreliable, and moreover the reliability (as measured by the ensemble variance) can vary sharply from
frame to frame. Without well-calibrated information about the reliability of each frame, it can be difficult to
correct network errors.

Previous work [11] showed that training an ensemble of multiple networks and using the mean prediction
leads to better pose estimates. Our Ensemble Kalman Smoother (EKS) denoises the ensemble means and
leads to further drastic improvements in pixel errors (main text Fig. 5). EKS leverages the per-frame and
per-keypoint ensemble variance to determine the degree of smoothing by our spatiotemporal priors. To
reiterate, EKS extracts information even from “bad” predictions, all without the need for the user to set any
manual thresholds to detect these “bad” points. Once the ensemble has been run our method is simpler,
faster, more interpretable, and easier to tune than the more complex strategies discussed in [5–7].

57

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

However, it is important to note that these more complex methods are complementary to ours: future work
could combine our ensembling strategy with the more realistic nonlinear constraints and non-Gaussian ob-
servation models developed in these previous papers, to potentially obtain further accuracy improvements
(at the cost of longer computational post-processing times).

Finally, a note on terminology: the Ensemble Kalman Smoother we use here is different from the Ensemble
Kalman filter commonly used e.g. in weather prediction [12]. The two approaches differ in whether ensem-
bling is performed in the dynamics step or the observation step of the Kalman filter model. In our case, the
ensemble is used to generate the observation model (which is then smoothed with a simple linear-Gaussian
dynamical system model), whereas in the weather prediction context ensembling is performed over multiple
instances of nonlinear dynamics models, which are then combined with a simple Kalman-like observation
update.

1.3 Differences between DeepLabCut and the Baseline model

Backbones. Both packages support multiple backbones. In the results we use AnimalPose10K for all
datasets but mirror-fish (where we use ImageNet), whereas DeepLabCut defaults to ImageNet.

Heatmap peak finding. As described in the Methods section, Lightning Pose operates on normalized
heatmaps, that are valid 2D probability distributions for each keypoint. We find the heatmaps’ peaks
(i.e., the predicted width-height coordinates) via a soft argmax. Crucially, this process is differentiable,
which is necessary when defining downstream unsupervised loss functions on the width-height coordinates.
DeepLabCut, on the other hand, uses a location refinement strategy that requires a hard argmax which is not
differentiable, and therefore incompatible with unsupervised losses.

Supervised heatmap losses. For the supervised loss, we use the mean-squared error between the target
heatmap and the predicted heatmap. DeepLabCut uses a cross-entropy loss for each pixel.

Training. Though both use the Adam optimizer, DeepLabCut trains for a certain number of “iterations”
(typically 50K) independent of the dataset size, while we use the more common “epochs” method which
counts full passes over the labeled dataset, typically 300 at a minimum. As a result there are differences in
the learning rate schedule as well.

1.4 IBL-paw results

Here, we report results on the “IBL-paw” dataset. As in “IBL-pupil”, we compare the following three ap-
proaches: DeepLabCut with custom post-processing (DLC), Lightning Pose’s semi-supervised TCN model
followed by the same post-processing (LP; using temporal difference and Pose PCA losses), and a multi-
view EKS variant which uses an ensemble ofm = 5 LP models (LP+EKS). Here too, we obtain performance
gains (Extended Data Fig. 7 and Supplementary Fig. 4).

We use two cameras to track the paws and, therefore, we can use the multi-view PCA loss to help quantify
the rate of paw tracking errors. (Since the dataset does not contain synchronous labeled frames from both
cameras, we did not train with multi-view PCA and only use it post-hoc; see the Methods section.)

Specifically, we use canonical correlations analysis (CCA) to find directions of motion that must match in
the left and right cameras (see Methods), and then we quantify the correlation values of these two directions

58

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

of motion. We find that the correlation values obtained by DeepLabCut can be fairly low in some sessions
(r=0.83±0.02, mean±sem over 44 sessions), largely due to occlusions or to frames in which one paw is
confused for the other. LP networks improve these correlations slightly (r=0.86±0.02), and the EKS that
enforces the multi-view PCA loss pushes these correlation values to 1.0, by construction (Extended Data Fig.
7C,D; see Methods for multi-view EKS details). Next we align trials to movement onset and compute the
trial consistency metric introduced above, finding improvements with LP+EKS (Extended Data Fig. 7E,F;
DLC 0.07±0.01; LP 0.07±0.01; LP+EKS 0.17±0.02). As in IBL-pupil, we also quantify the correlation
between paw speed and neural activity using a simple decoding analysis, and find that LP+EKS but not LP
leads to greater decoding accuracy (Extended Data Fig. 7H; DLC R2=0.23±0.02; LP 0.22±0.02; LP+EKS
0.26±0.02). All quantities reported here refer to the right paw; see Supplementary Table 2 for left paw
values, which are qualitatively similar.

References

1. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learn-
ing. Nature neuroscience 21, 1281–1289 (2018).

2. Warren, R. A. et al. A rapid whisker-based decision underlying skilled locomotion in mice. Elife 10,
e63596 (2021).

3. Syeda, A. et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nature
Neuroscience, 1–9 (2023).

4. Weinreb, C. et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.
bioRxiv, 2023–03 (2023).

5. Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell reports 36,
109730 (2021).

6. Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S. Animal pose estimation from video
data with a hierarchical von Mises-Fisher-Gaussian model International Conference on Artificial In-
telligence and Statistics (2021), 2800–2808.

7. Monsees, A. et al. Estimation of skeletal kinematics in freely moving rodents. Nature Methods 19,
1500–1509 (2022).

8. Ebrahimi, A. S. et al. Three-dimensional unsupervised probabilistic pose reconstruction (3D-UPPER)
for freely moving animals. Scientific Reports 13, 155 (2023).

9. Pereira, T. D. et al. SLEAP: A deep learning system for multi-animal pose tracking. Nature methods
19, 486–495 (2022).

10. Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature
Methods 19, 496–504 (2022).

11. Abe, T. et al. Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, re-
producible data analysis. Neuron 110, 2771–2789 (2022).

12. Katzfuss, M., Stroud, J. R. & Wikle, C. K. Understanding the Ensemble Kalman Filter. The American
Statistician 70, 350–357 (2016).

13. Kendall, A., Gal, Y. & Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene ge-
ometry and semantics Proceedings of the IEEE conference on computer vision and pattern recognition
(2018), 7482–7491.

59

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

2 Supplementary Tables

In-distribution (Train) Out-of-distribution (Test)

FPS Size Labeled frames Animals Videos/frames Labeled frames Animals Videos/frames

Mirror-mouse 250 406×396 789 10 17/510k 253 3 5/150k
Mirror-fish 300 384×512 373 10 28/55k 94 3 10/22k

CRIM13 30 480×640 3986 4 37/314k 1274 4 19/155k
IBL-paw 60/150 102×128 6071 35 84/187k 1446 10 19/90k

IBL-pupil 60/150 100×100 2619 26 52/279k 1012 8 8/72k

Supplementary Table 1: Dataset details. In-distribution (InD) frames are selected from one set of animals/videos; out-
of-distribution (OOD) frames are selected from a non-overlapping subset of animals/videos. The number of videos is
generally larger than the number of animals, indicating multiple experimental sessions from some animals. The total
number of unlabeled frames is also included under “Videos/frames” (rounded to the nearest thousand). See text for
IBL details.
Frame size is (height × width).

Vert vs Horz diameter r Trial consistency Decoding R2

IBL-pupil DLC 0.36±0.03 0.35±0.06 0.27±0.02
LP 0.88±0.01 0.62±0.07 0.33±0.02

LP+EKS 1.00±0.00∗ 0.74±0.08 0.35±0.02

CCA projection r Trial consistency Decoding R2

IBL-paw (left) DLC 0.85±0.02 0.10±0.01 0.22±0.02
LP 0.88±0.01 0.11±0.01 0.23±0.02

LP+EKS 1.00±0.00∗ 0.14±0.01 0.25±0.02

IBL-paw (right) DLC 0.83±0.02 0.07±0.01 0.23±0.02
LP 0.86±0.02 0.07±0.01 0.22±0.02

LP+EKS 1.00±0.00∗ 0.17±0.02 0.26±0.02

Supplementary Table 2: Model performance on IBL data. We quantify pose estimation performance on the IBL data
using a range of metrics. For more details on how the metrics are computed, see main text Fig. 6 (pupil) and Extended
Data Fig. 7 (paw). An asterisk (∗) indicates values that are fixed to 1.0 by model construction. Values are mean and
standard error of the mean computed over n=65 sessions for the pupil, and n=44 sessions for the paws.

60

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Single Frame Models Context (TCN)

Height ×Width Labeled Unlabeled Labeled (+ Context) Unlabeled

Mirror-mouse 256×256 8 32 8 (+32) 16
Mirror-fish 256×384 8 16 8 (+32) 12

CRIM13 256×256 8 32 8 (+32) 16
IBL-paw 128×128 32 64 32 (+128) 32

IBL-pupil 128×128 64 64 64 (+256) 32

Supplementary Table 3: Batch size details. Height ×Width column shows the dimensions of the resized images fed
to the network. TCN models with a window of (2J + 1) frames (we use J = 2) will result in a 5x larger effective
labeled batch size (number of unlabeled context frames in parentheses). In general, TCN’s effective labeled batch size
is (2J + 1)B without unlabeled videos and (2J + 1)B+T with unlabeled videos. We intentionally kept labeled batch
sizes small so that simple consumer GPUs could train a Single Frame and TCN models with an identical labeled batch
size.

Temporal Multi-view PCA Pose PCA

Train frames 75 All 75 All 75 All

Mirror-mouse 4.75 4.75 4.5 4.5 4.5 5.0
Mirror-fish 5.5 5.0 6.0 6.0 5.0 6.5

CRIM13 4.5 4.5 - - 4.5 5.0
IBL-paw 6.0 6.0 - - - -

IBL-pupil 4.5 4.5 - - 4.0 4.0

Supplementary Table 4: Hyperparameters for unsupervised losses. The table presents the log-weights w2
l for each

of the individual losses Ll, where the total loss is parameterized as sum of terms proportional to Gaussian likelihoods,
as in [13]: Ltotal = Lsuper +

∑L
l=1

1
2 exp(w2

l)
Ll.

61

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

3 Supplementary Figures

Main view

Top view

Right view

Unintended reflectionsMirror-fish annotated frame

Supplementary Figure 1: Annotated frame from mirror-fish dataset. The mirror-fish dataset uses a single camera
pointed at a tank containing a single fish. The tank contains two mirrors at 45◦, allowing the the camera to capture
three roughly orthogonal views. Occasionally, a combination of mirror placement and water levels lead to unintended
reflections on the top of the frame.

62

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

(a) Paw occlusion (b) Paw switching

Supplementary Figure 2: Ensemble Kalman smoothing example with the 75 training frame mirror-mouse
dataset. We use ensembles of m = 5 semi-supervised TCN models as input to EKS. The two columns show two
illustrative examples. Top panels: x and y coordinates of the left hind paw viewed on the top camera. Conventions
as in Supplementary Fig. 3. Second from top: x and y coordinates of the left paw viewed on the bottom camera.
Third from top: CCA coordinates computed from the top and bottom camera views. Similarly to the IBL-paw dataset
(Supplementary Fig. 4), these CCA coordinates should be equal at each frame. The top view is more challenging
(the camera is facing the side of the mouse rather than the bottom, and we are tracking the distant paw here, so more
occlusions occur), and the ensemble variance is correspondingly larger for the top view; therefore the EKS tracks the
bottom view more closely here. Bottom: example frames (indicated with the vertical dashed line above). In the left
column, we see an example of paw occlusion - when the left hind paw goes behind the back of the animal all members
of the ensemble jump to the nearest visible keypoint. Tracking is accurate in frame 17 and then the occlusion and
ensemble confusion is visible in frame 19. Note that the EKS accurately tracks the correct paw here, since it uses
information from the more confident camera view to resolve confusion in the more challenging camera view. In the
right column, we see an example in which the EKS is able to correct an error due to paw switching in the indicated
frames (823-24). For the full video used here, see Supplementary Video 8.

63

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure 3: Ensemble Kalman smoothing example with pupil traces. The top four panels show the
eight tracked coordinates, while the bottom panel shows the estimated diameter. In each panel, the ×’s indicate the
output of individual ensemble members (semi-supervised TCN models); we have connected the output of a single
ensemble member with a solid line across time. The black trace indicates the EKS output. As the pupil keypoints are
arranged in a diamond shape, they are paired naturally, e.g. the x coordinate of the top and bottom keypoints should
be equal, as should the y coordinate of the left and right keypoint (as indicated by the insets at the bottom right of each
of the first four panels). This pairing makes it easy to detect errors: for example, in the first and second panels, any
divergence between the red and blue traces are due to tracking errors. Note that tracking errors are common here but
are largely resolved by the EKS (an example error is shown using dotted line at frame 246). For the full video used
here, see Supplementary Video 9.

64

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

(a) Paw switching (b) Paw occlusion

Supplementary Figure 4: Ensemble Kalman smoothing of baseline supervised models improves pose estimation
on IBL-paw data. The two columns show two illustrative examples. Top panels: x and y coordinates of the left paw
viewed on the left camera. Conventions as in Supplementary Fig. 3. Second from top: x and y coordinates of the
left paw viewed on the right camera. Third from top: canonical correlation analysis (CCA) coordinates computed
from the left and right camera views (see Methods). Due to the geometry of multiple cameras recording the same
body parts from different directions, these CCA coordinates should be equal at each frame (this is true for the EKS by
construction). The left view is more challenging (the paw is further from the camera and the sampling rate of the video
is lower), and the ensemble variance is correspondingly larger for the left view; therefore the EKS tracks the right view
more closely here. Bottom: example frames (indicated with the vertical dashed line above). In the left column, we see
an example of paw confusion - some members of the ensemble (correctly) track one paw, and some (mistakenly) track
the other. Tracking is accurate in frame 221 and then confusion between the two paws is visible in frame 222. Note
that the EKS accurately tracks the correct paw here, since it uses information from the more confident camera view to
resolve confusion in the more challenging camera view. In the right column, we see an example in which the EKS is
able to correct an error due to paw occlusion in the indicated frames (877-8). The right ensemble is highly confident
so it is tightly packed behind the ensemble-kalman prediction. For the full video used here, see Supplementary Video
10.

65

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure 5: Baseline vs semi-supervised context model predictions. Left: Model predictions (with
no confidence filtering) for a snippet of OOD video, for both the fully supervised baseline model (red) and the semi-
supervised context model (blue). The larger marker is the one depicted in the traces. Right: x- and y-coordinates of
the larger marker, along with confidence values and the multi-view PCA loss. Vertical black bar marks the current
frame in the video.

66

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure 6: Selected frames with high Pose PCA errors. The video is composed of 100 unlabeled
video frames with high single-body-part Pose PCA errors, averaged across all views in the mirrored datasets (DLC
models using all available training frames). The body part in question is indicated in the text of the title, as well as the
enlarged markers in the frame. In the mirrored datasets the keypoint is enlarged in all views. Each body part is given
a unique marker color, which is shared across views (mirror-mouse, mirror-fish) or animals (CRIM13); marker shape
is unique for each view/animal. Skeleton lines highlight prediction errors. The videos demonstrate that high values
of the Pose PCA error generally capture erroneous predictions; however, high values are occasionally associated with
correct predictions on rare poses that are not included in the PCA subspace. To avoid redundant frames, we choose
the 1000 frames with highest Pose PCA errors, then fit k-means on these keypoints using 100 clusters, and select one
frame from each cluster to display in the video.

67

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

A

B C

Supplementary Figure 7: Ensemble kalman model predictions. A: Video frames for IBL-paw dataset from two
cameras (right and left) overlaid with predicted markers from ten supervised baseline models (blue and red) and
the Ensemble Kalman Smoother (green). The cameras for this dataset have different sampling frequencies so the
closest frames are visualized together for this video. All blue points are closely packed together behind the green
point. B: Video frames for 75 frame mirror-mouse dataset with two camera views (top and bottom) overlaid with
predicted markers from five semi-supervsied baseline models (red) and the Ensemble Kalman Smoother (green). C:
Video frame for IBL-pupil dataset with predicted markers from ten supervised baseline models (red), one example
supervised baseline model (blue), and the Ensemble Kalman Smoother (green).

68

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure 8: Trial-by-trial markers and traces for IBL datasets. Left: Video frame overlaid with
predicted markers from the DLC model (green) and the ensemble Kalman smoother (LP+EKS; magenta). Markers
with confidence <0.9 are not displayed. Center: Black traces show smoothed DLC pupil diameter from a subset of
correct trials, aligned to feedback onset (reward delivery). The green trace highlights the pupil diameter of the current
trial displayed on the left. Right: Pupil diameters from the LP+EKS model. For the paw video, instead of displaying
per-trial traces in black we display the mean and 95% confidence interval.

69

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

Batch size

10 1

10 0

T
im

e
fo

r
tr

ai
n

ba
tc

h
(s

)
(lo

g
sc

al
e)

128x128 pixels 256x256 pixels

Training time per batch (load data + SGD step)
NVIDIA A10 GPU, mirror-mouse dataset (17 keypoints)

DLC (+tensorpack) Baseline TCN Semi-super semi-super TCN

Labeled + unlabeled

Labeled 16

16 16 80 48 112

32

32 32 160 96 224

16

16 16 80 48 112

32

32 32 160 96 224

Batch size Batch size Batch size

Supplementary Figure 9: Training time per batch. Each bar depicts the mean batch processing time (in seconds) and
95% CI over n=100 batches, with each of the batches overlaid as a point, using a log-scale spacing for the y-axis. Left
panel: 128 × 128 images; right panel: 256 × 256 images. Each panel is divided into a labeled batch size of 16 (left)
and 32 (right). The upper x-axis label denotes the total batch size, comprised of both labeled and unlabeled frames.

70

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

16 32 64 128 256 512
prediction sequence length

 (log scale)

100

250

500

1000

2000

fra
m

es
/s

ec
on

d
 (l

og
 sc

al
e)

FPS as a function of batch size
 NVIDIA A10 GPU, mirror-mouse dataset (17 keypoints)

model_type
DLC (pre-resized)
LP
LP+TCN
frame_size
128
256
384
512

Supplementary Figure 10: Prediction throughput. x-axis: prediction sequence length (frames), log-spaced. y-axis:
frames per second, log-spaced. Colors indicate model types, line styles indicate the frame sizes. For image sizes 384
and 512, sequence lengths did not exceed 128 due to GPU memory constraints. Plotted are means ± standard errors
across n=5 videos.

71

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

4 The International Brain Laboratory consortium members

Larry Abbot, Luigi Acerbi, Valeria Aguillon-Rodriguez, Mandana Ahmadi, Jaweria Amjad, Dora Ange-
laki, Jaime Arlandis, Zoe C Ashwood, Kush Banga, Hailey Barrell, Hannah M Bayer, Brandon Benson,
Julius Benson, Jai Bhagat, Dan Birman, Niccolò Bonacchi, Kcenia Bougrova, Julien Boussard, Sebastian A
Bruijns, Robert Campbell, Matteo Carandini, Joana A Catarino, Fanny Cazettes, Gaelle A Chapuis, Anne
K Churchland, Yang Dan, Felicia Davatolhagh, Peter Dayan, Sophie Denève, Eric EJ DeWitt, Ling Liang
Dong, Tatiana Engel, Michele Fabbri, Mayo Faulkner, Robert Fetcho, Ila Fiete, Charles Findling, Laura
Freitas-Silva, Surya Ganguli, Berk Gercek, Naureen Ghani, Ivan Gordeliy, Laura M Haetzel, Kenneth D
Harris, Michael Hausser, Naoki Hiratani, Sonja Hofer, Fei Hu, Felix Huber, Julia M Huntenburg, Cole Hur-
witz, Anup Khanal, Christopher S Krasniak, Sanjukta Krishnagopal, Michael Krumin, Debottam Kundu,
Agnès Landemard, Christopher Langdon, Christopher Langfield, Inês Laranjeira, Peter Latham, Petrina
Lau, Hyun Dong Lee, Ari Liu, Zachary F Mainen, Amalia Makri-Cottington, Hernando Martinez-Vergara,
Brenna McMannon, Isaiah McRoberts, Guido T Meijer, Maxwell Melin, Leenoy Meshulam, Kim Miller,
Nathaniel J Miska, Catalin Mitelut, Zeinab Mohammadi, Thomas Mrsic-Flogel, Masayoshi Murakami,
Jean-Paul Noel, Kai Nylund, Farideh Oloomi, Alejandro Pan-Vazquez, Liam Paninski, Alberto Pezzotta,
Samuel Piccard, Jonathan W Pillow, Alexandre Pouget, Florian Rau, Cyrille Rossant, Noam Roth, Nicholas
A Roy, Kamron Saniee, Rylan Schaeffer, Michael M Schartner, Yanliang Shi, Carolina Soares, Karolina
Z Socha, Cristian Soitu, Nicholas A Steinmetz, Karel Svoboda, Marsa Taheri, Charline Tessereau, Anne E
Urai, Erdem Varol, Miles J Wells, Steven J West, Matthew R Whiteway, Charles Windolf, Olivier Winter,
Ilana Witten, Lauren E Wool, Zekai Xu, Han Yu, Anthony M Zador, Yizi Zhang

72

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.04.28.538703doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Results
	Supervised pose estimation and its limitations
	Supervised networks need more labeled data to generalize
	Semi-supervised learning via spatiotemporal constraints
	Temporal difference loss
	Multi-view PCA loss
	Pose PCA loss
	Temporal Context Network
	Spatiotemporal losses enhance outlier detection
	Both unsupervised losses and TCN boost tracking performance
	The Ensemble Kalman Smooter (EKS) enhances accuracy post-hoc
	Improved tracking on International Brain Laboratory datasets
	The Lightning Pose software package and a cloud application

	Discussion
	References

	Methods
	Datasets
	Problem formulation
	Model architectures
	Baseline
	Temporal Context Network

	Semi-supervised learning
	Temporal difference loss
	Multi-view PCA loss
	Pose PCA loss

	Training
	Diagnostics and model selection
	Constraint violations as diagnostic metrics
	Model selection based on pixel errors and constraint violations

	Sample efficiency experiments
	Ablation study showing the effects of individual losses
	DeepLabCut Training
	Ensembling
	Post-processor comparison
	Ensemble Kalman Smoother
	Single-keypoint, single-camera case
	Single-keypoint, multi-camera, synchronized cameras case
	Pupil EKS
	Single-keypoint, multi-camera, asynchronous cameras case
	Pose PCA case

	Canonical correlations analysis (CCA)
	Neural decoding
	Lightning Pose software package
	A cloud-hosted application for pose estimation as a service

	Data availability
	Code availability
	References

	Extended Data Figures
	Supplementary Video Captions
	Supplementary Methods
	Runtime benchmarking
	Training time
	Inference time

	EKS' Relationship to previous work
	Differences between DeepLabCut and the Baseline model
	IBL-paw results
	References

	Supplementary Tables
	Supplementary Figures
	The International Brain Laboratory consortium members

