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ABSTRACT 

Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion 

criteria and endpoints. However, guidelines for scoring key features have led to variability in 

interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based 

measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH 

Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert 

consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological 

features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly 

predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological 

endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that 

AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater 

variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic 

response. 
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Nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), is 

a rapidly growing cause of cirrhosis and hepatocellular carcinoma and is the most common indication for 

liver transplantation in women and older adults in the United States1. Despite the increasing incidence of 

NASH, including a ~106% increase of cirrhosis caused by NASH from 1990 to 20172, and the resulting 

medical and economic burden3, the development of effective therapeutics has proved challenging, and no 

effective pharmacologic treatment currently exists. 

 

Histologically assessed endpoints are currently accepted as candidate surrogate endpoints in clinical 

trials evaluating therapeutics for NASH, and histologic criteria that indicate disease activity or severity are 

used as the basis for trial enrollment, risk stratification, and endpoint assessment in many different clinical 

indications. However, key aspects of trial design can be impacted by dependency on manual pathologist 

scoring of histologic features and limited by the sensitivity of scoring systems. Variability in assessment of 

histology-based endpoints and treatment-associated improvements can contribute to incomplete 

measurement of treatment response4,5, clinical trial failure6, difficulty in identifying an appropriate study 

population, and mistaken inclusion or exclusion of study participants6-10. Such errors could affect 

observed treatment responses and trial safety; for example, inappropriately included study participants 

may not respond to therapies or may respond more poorly than the intended population.  

  

The U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have issued 

guidance on the use of histopathologic assessment of liver biopsies as clinical trial inclusion criteria and 

change in histology-based scores over time as endpoints to measure trial outcomes to support 

accelerated approval of therapies for NASH11-14. Most histologic scoring systems proposed to date, with 

the NASH Clinical Research Network (CRN) used by the majority of studies and accepted by both the 

FDA and EMA, recommend measurement of four key features: macrovesicular steatosis, lobular 

inflammation, hepatocellular ballooning, and fibrosis15-17. Despite ongoing efforts by expert NASH 

pathologists to harmonize scoring guidelines18, both within clinical trial settings in their assigned panels 

and outside of specific trials as a community7,16,18,19, a recent re-analysis of a NASH clinical trial reported 
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that a significant portion of the study population (23–31%) included in the trial did not meet enrollment 

criteria upon re-evaluation by a second hepatopathologist6. A separate investigation into the interpretation 

of hepatocellular ballooning by experienced pathologists showed high variation in the number of 

ballooned cells identified and no consensus on images that were free of ballooned hepatocytes7. This 

lack of reliability can reduce the power of NASH trials to detect a significant drug effect, as trials are not 

typically designed and powered to adequately account for variability in manual histologic scoring among 

pathologists.  

 

Advances in artificial intelligence (AI) have led to the development of algorithms that can enable accurate, 

quantitative, and reproducible assessment of digitized pathology whole-slide images (WSIs)5,20. However, 

algorithms for the reliable detection, grading, and staging of NASH are not yet employed in clinical 

settings and have not received regulatory approval for clinical trial use. Here, we report a robust approach 

to evaluate assessment of NASH disease severity and improve clinical trial reliability by using a digital 

pathology tool for AI-based measurement (AIM) of NASH histology (AIM-NASH). 
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Results 

Model-based evaluation of NASH histology 

Machine learning (ML) models for segmenting and grading/staging NASH histologic features were trained 

using 103,579 pathologist-provided annotations of 8747 hematoxylin and eosin (H&E) and 7660 

Masson’s trichrome (MT) WSIs from six completed phase 2b and phase 3 NASH clinical trials 

(Supplementary Table 1)21-24. The model development dataset described above was split into training 

(~70%), validation (~15%), and held-out test (~15%) sets. The dataset was split at the patient level, with 

all WSIs from the same patient allocated to the same development set. Sets were also balanced for key 

NASH disease severity metrics, such as NASH CRN steatosis grade, ballooning grade, lobular 

inflammation grade, and fibrosis stage, to the greatest extent possible. The held-out test set contained a 

dataset from an independent clinical trial to ensure algorithm performance was meeting acceptance 

criteria on a completely held-out patient cohort in an independent clinical trial and to avoid any test data 

leakage25. 

 

For each WSI, these models produced categories of histologic readouts generated separately by 

convolutional neural networks (CNNs) and graph neural networks (GNNs). AIM-NASH consisted of a 

pipeline in which CNNs were used to generate tissue overlays containing colorized predictions of 

segmentation indicating each histologic feature, and slide-level quantifications of the proportionate area of 

each feature. GNNs were used to predict a NASH CRN ordinal grade or stage for each histologic feature 

and a corresponding continuous score26 (Fig. 1 and Supplementary Fig.1). The overall process for the 

segmentation model development is shown in Supplementary Fig. 2. 

 

Model outputs 

Tissue overlays 

CNNs were trained on annotations provided by 59 board-certified pathologists, with a subspeciality in liver 

pathology, as model inputs to identify key histologic features of interest on H&E and MT WSIs (Fig. 1a). 

An artifact model learned to distinguish evaluable liver tissue from features to be excluded from 
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downstream analysis, including artifacts (e.g. tissue folds, out-of-focus areas) and WSI background 

(Fig. 1b). H&E CNNs segmented NAFLD Activity Score (NAS) component features (macrovesicular 

steatosis, hepatocellular ballooning, and lobular inflammation) and other relevant features, including 

portal inflammation, microvesicular steatosis, interface hepatitis, and normal hepatocytes (not exhibiting 

steatosis or ballooning). MT CNNs were trained to segment large intrahepatic septal and subcapsular 

regions (nonpathologic fibrosis), pathologic fibrosis, and bile ducts (Fig. 1c). Model-derived predictions for 

location and extent of each artifact and tissue feature per slide were displayed as colorized overlays over 

the original WSIs, facilitating quality control of the model’s prediction accuracy for each histologic feature 

(Fig. 2). 

 

Histologic feature proportionate area measurements 

CNN-derived histologic feature predictions were quantified to generate slide-level area measurements per 

feature. These measurements were expressed both as raw area quantities (mm2) and as percentages of 

relevant histology and artifact normalized relative to total usable artifact-free tissue area in the WSI. 

Artifact-proportionate area measurements enabled efficient slide-level quality assessments and exclusion 

of inadequate image areas (e.g. artifacts, out of focus areas, tissue folds). Proportionate area 

measurements for H&E and MT NASH features, such as steatosis, ballooning, inflammation, and fibrosis, 

were used to evaluate disease severity. 

 

Model-derived predictions for NASH CRN ordinal and continuous grades and stages 

Spatially resolved overlays from CNN image segmentation algorithms were used as inputs, and 

pathologists provided slide-level NASH CRN grades/stages as labels to train GNNs (see Online 

Methods). GNNs were trained to predict NASH CRN steatosis grade, lobular inflammation grade, and 

hepatocellular ballooning grade from H&E-stained WSIs, and fibrosis stage from MT-stained WSIs (Fig. 

1d,e). To generate interpretable, high-resolution NASH CRN grades and stages, GNN-predicted scores 

calculated on a continuum were mapped to bins, each equivalent to one grade or stage (Supplementary 
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Fig. 3). For example, the continuous range for steatosis 0–1 was mapped to ordinal CRN grade 0, 1–2 to 

CRN grade 1, 2–3 to CRN grade 2, and 3–4 to CRN grade 3. 

 

Model performance repeatability and accuracy 

In initial model performance testing relevant for application to both enrollment criteria and endpoints, the 

AIM-NASH algorithm scoring was highly reproducible. For each of the four histologic features, a 

comparison of 10 independent AIM-NASH reads per WSI resulted in a model versus model agreement 

rate of 100% (κ = 1; Supplementary Table 2), in contrast to modest intra-pathologist agreement using 

conventional approaches6. AIM-NASH performance accuracy was assessed using the mixed leave-one-

out (MLOO) approach (see Online Methods). Comparing model performance with a pathologist-based 

consensus for each of the four histologic features, model versus consensus agreement rates fell within 

the range of previously reported rates of inter-pathologist agreement (Table 1)16,19. The model versus 

consensus agreement rate was greatest for steatosis (κ = 0.74, 95% confidence interval [CI] 0.71–0.77), 

followed by ballooning (κ = 0.70, 95% CI 0.66–0.73), lobular inflammation (κ = 0.67, 95% CI 0.64–0.71), 

and fibrosis (κ = 0.62, 95% CI 0.58–0.65). In addition, agreement between the model and consensus was 

greater than agreement for any individual pathologist against the other three reads, and greater than any 

mean pairwise pathologist agreement (Table 1). 

 

Clinical utility of model-derived histologic grading and staging 

AI-based evaluation of clinical trial enrollment criteria and endpoints 

For patients with noncirrhotic NASH and fibrosis, the FDA has proposed criteria for NASH clinical trial 

enrollment and endpoint assessment13. For phase 2b and 3 trials, the FDA recommends criteria such as 

histologic diagnosis of NASH and fibrosis made within 6 months of enrollment, NAS ≥ 4 with inflammation 

and ballooning, CRN fibrosis score > 1 and < 4, among others. Recommended NASH clinical trial 

endpoints include evidence of efficacy using a histologic endpoint (late phase 2b trials) and resolution of 

NASH, fibrosis, or both NASH and fibrosis for phase 3 trials. 
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To demonstrate clinical relevance, AIM-NASH was deployed on WSIs from a completed phase 2b NASH 

clinical trial22 to generate scores based on histologic criteria and to identify patients eligible for enrollment 

(Supplementary Table 1, Analytic performance test set). AI-derived predictions for each of the patient 

cohorts were compared with the same cohorts identified by the clinical trial’s central readers (n = 3).  

 

Model-derived histologic predictions were used to calculate NASH CRN scores and distinguished 

NAS ≥ 4 (with each component grade ≥ 1) from NAS < 4, criteria used to determine trial enrollment 

(Supplementary Table 1). The AIM-NASH versus consensus percent agreement (0.82; 95% CI 0.79–

0.85) was comparable with that of an average pathologist versus consensus (0.81; 95% CI 0.78–0.83; 

Fig. 3a). A similar result was observed for fibrosis. For distinguishing fibrosis stages F1–F3 versus F4, the 

model versus consensus agreement was 0.97 (95% CI 0.95–0.98), similar to the average pathologist 

versus consensus agreement of 0.96 (95% CI 0.95–0.97; Fig. 3a). 

 

Next, AIM-NASH was used on an enrolled NASH trial dataset to determine component scores and 

evaluate composite endpoints in a retrospective, exploratory manner. As part of the retrospective analysis 

of WSIs from the phase 2b NASH clinical trial22, histologic changes from baseline measured by 

AIM-NASH were compared with a consensus determination of the endpoints by three expert pathologists. 

Overall, AIM-NASH-based grading and staging for histologic endpoint assessment were comparable with 

those of mean individual pathologist versus consensus (Fig. 3b). For fibrosis improvement without 

worsening of NASH, both AIM-NASH versus consensus and pathologist versus consensus percent 

agreement rates were 0.80 (model versus consensus 95% CI 0.76–0.84; pathologist versus consensus 

95% CI 0.77–0.83). For NASH resolution without worsening of fibrosis, the model versus consensus 

agreement rate (0.86, 95% CI 0.82–0.89) was moderately greater than the pathologist versus consensus 

agreement (0.82, 95% CI 0.79–0.86). A similar result was observed for a ≥ 2-point reduction in NAS, 

where the model versus consensus agreement rate (0.79, 95% CI 0.74–0.83) was comparable to the 

pathologist versus consensus agreement rate (0.77, 95% CI 0.74–0.81). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.20.23288534doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.20.23288534
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

AI-based detection of treatment response in NASH clinical trials 

To demonstrate AIM-NASH’s ability to measure treatment response in NASH clinical trials, we performed 

a retrospective analysis of drug efficacy in the ATLAS phase 2b clinical trial,27 which evaluated the 

combination of cilofexor  (CILO) and firsocostat (FIR) in monotherapy and combination (CILO+FIR) in 

patients with advanced (F3–F4) fibrosis, leveraging the study’s original primary (≥ 1-stage improvement in 

fibrosis without worsening of NASH between baseline and week 48, as assessed by a single central 

pathologist [CP]) and exploratory endpoints. Although no treatment arm achieved statistical significance 

for the primary endpoint, the cohort that received the combination of CILO+FIR showed the greatest 

improvement in histology relative to placebo27. 

 

To assess whether AIM-NASH could also detect histologic score–based improvement in patients who 

received the CILO+FIR treatment in the ATLAS trial, we deployed the AIM-NASH models on digitized 

WSIs from baseline and week 48 biopsies from enrolled patients. Model predictions for ordinal NASH 

CRN grades/stages were generated and compared with CP grades/stages for the trial endpoints. In 

addition to computing the proportion of responders per endpoint, treatment arm, and evaluation method, 

we also computed the difference in proportion of responders between CILO+FIR and placebo (placebo-

adjusted response rate). 

 

This analysis showed that compared with the CP, AIM-NASH detected a greater proportion of treatment 

responders in the CILO+FIR group for all three endpoints measured (≥ 1-stage fibrosis improvement 

without NASH worsening, 27% versus 19%; NASH resolution without fibrosis worsening, 24% versus 5%; 

≥ 2-point reduction in NAS, 60% versus 35%; Fig. 4a), in addition to showing a numerically greater 

response in treated patients relative to placebo for all three endpoints (Fig. 4b).  

 

AI-enabled continuous scoring of NASH CRN components 

We developed a continuous scoring system that enabled sensitive detection of changes in histology on a 

continuous scale and was mapped directly to the ordinal system, facilitating interpretation and seamless 
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navigation between the ordinal and continuous systems when assessing therapeutic effect in NASH 

clinical trials (Supplementary Fig. 3). 

 

Biological relevance of continuous scoring  

AI-enabled continuous scoring was evaluated by correlating continuous scores against mean scores from 

three pathologists in a held-out validation dataset. We observed that continuous scores were significantly 

correlated with mean pathologist scores, confirming alignment between ML-derived continuous scores 

and directional bias of panel-based pathologist scoring (Fig. 5a). These results suggest that the disease 

severity indicated by the underlying tissue biology in each WSI was similarly captured through subordinal 

measurements, both by AIM-NASH and by the panel of pathologists, but could not be captured by a 

single pathologist providing ordinal scores for staging and grading scores (Fig. 5a). 

 

To further cross-validate the AI-derived continuous NASH CRN scores with other lines of clinical 

evidence, these continuous scores were correlated with the relevant corresponding noninvasive test (NIT) 

metrics in the ATLAS clinical trial dataset. NITs that were developed to serve as noninvasive biomarkers 

for specific histologic features or have previously been shown to correlate strongly with specific histologic 

features were correlated with the relevant continuous NASH CRN grades/stages (Supplementary Table 

3). AI-derived continuous fibrosis stage was significantly correlated with liver stiffness by FibroScan (rτ: 

0.33, P < 0.001), Fibrosis-4 (rτ: 0.23, P < 0.001), enhanced liver fibrosis (ELF) test (rτ: 0.22, P < 0.001), 

tissue inhibitor of metalloproteinases 1 (rτ: 0.11, P = 0.02), and amino terminal propeptide of type III 

procollagen (rτ: 0.14, P < 0.01), whereas continuous steatosis grade was not significantly correlated with 

the same NIT measures. Similarly, whereas continuous steatosis grade was significantly correlated with 

magnetic resonance imaging-proton density fat fraction (MRI-PDFF) (rτ: 0.52, P < 0 .001), continuous 

fibrosis stage was not correlated with hepatic fat measured by MRI-PDFF (rτ: −0.11, P = 0.24). 

Continuous lobular inflammation grade was significantly correlated with C-reactive protein (rτ: 0.13, 

P < 0.01) and adiponectin levels (rτ: –0.15, P < 0.01), while continuous ballooning grade was significantly 

correlated with glycated hemoglobin (rτ: 0.16, P < 0.001). Notably, both continuous fibrosis stage and 
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continuous steatosis grade were significantly correlated with collagen proportionate area (CPA) by 

morphometry, but in opposite directions (continuous fibrosis stage: rτ: 0.56, P < 0.001; continuous 

steatosis grade: rτ: −0.16, P < 0.001). This result is consistent with data showing a reduction in steatosis 

severity with progression of hepatic fibrosis in NASH28-31. 

 

Advantage of AI-derived continuous NASH CRN fibrosis staging over standard continuous 

fibrosis measures  

To assess whether AI-based continuous NASH CRN fibrosis staging captures greater changes in 

treatment versus placebo over conventional continuous fibrosis measures, we evaluated the relative 

sensitivity of the AI-based NASH CRN fibrosis staging model against an AI-derived proportionate area of 

fibrosis measurement (surrogate for CPA) in MT images from the ATLAS clinical trial dataset. The results 

showed that in primary endpoint responders, treated patients showed a significantly greater reduction in 

continuous fibrosis score (cFib) than placebo patients (Mann–Whitney U = 20.0, P = 0.02), whereas 

proportionate area fibrosis measurements were not significantly reduced in treated relative to placebo 

patients (Mann–Whitney U = 39.0, P = 0.21; Fig. 5b). In addition, cFib scores increased for many 

nonresponders but decreased for all responders, showing that the continuous scoring system was able to 

identify worsening fibrosis in patients not responding to treatment (Fig. 5b). 

 

Advantage of continuous over ordinal scoring for predicting patient outcomes 

To assess the potential utility of continuous NASH CRN scores compared with ordinal NASH CRN 

grades/stages for patient stratification and for predicting NASH patient outcomes, we examined the 

prognostic utility of continuous scoring for predicting progression to cirrhosis (F4) in patients with bridging 

(F3) fibrosis at baseline or predicting liver-related events (LREs) in patients with cirrhosis at baseline in 

the STELLAR 3 and STELLAR 4 NASH clinical trial cohorts23, respectively. Associations between 

continuous scores at baseline and clinical disease progression through end of follow-up were determined 

using the Kaplan–Meier method and Cox proportional hazards regression analysis, with rounded cutoffs 

selected to maximize hazards. We found that continuous fibrosis stage cutoffs of 3.6 and 4.6 maximized 
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the stratification of patients into slow versus rapid progressors to cirrhosis or LREs, respectively (Fig. 5c). 

AI-derived continuous scoring showed higher discriminatory accuracy for predicting progression to 

cirrhosis and LREs than ML-derived ordinal scoring (Fig. 5d). 
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Discussion  

Pathologist assessment of liver histopathology is central to the evaluation of NASH disease severity and 

serves as the basis for patient selection and treatment efficacy assessment in NASH clinical trials. 

Histologic evaluation in NASH clinical trials has been limited by intra- and inter-pathologist variability in 

histologic grading and staging6,32. Both the FDA and NASH CRN have proposed panel scoring to reduce 

inter-pathologist variability; however, these guidelines have yet to be standardized or widely adopted, and 

variability in assessment, even among expert pathologists, remains high6,7.  

 

We developed a suite of digital pathology algorithms that reproducibly predict the location, extent, and 

severity of histologic biomarkers of NASH via both AI-derived recapitulation of NASH CRN ordinal grading 

and staging, and novel AI-based qualitative and quantitative metrics. Our goal was to develop these tools 

to assist pathologists in locating and evaluating critical histologic signatures of NASH disease progression 

and regression. We also aimed to enable reproducible scoring that facilitates consistent measurement of 

changes in disease severity between baseline and end of treatment in NASH clinical trials. 

 

We first demonstrated model performance accuracy using a clinical trial population by showing that 

AI-derived predictions for NASH CRN steatosis grade, lobular inflammation grade, ballooning grade, and 

fibrosis stage were concordant with expert pathologist consensus NASH CRN grading/staging in a NASH 

clinical trial population. AIM-NASH performance was tested by treating the model as an independent 

reader within a panel. Our results provide evidence that the model did not internalize any individual 

pathologist’s scoring biases, but instead learned to grade and stage histologic features in alignment with 

a consensus of expert NASH pathologists. These results suggest that AIM-NASH captured features and 

change in histology over time and in response to drug treatment in an unbiased manner that aligned with 

expert pathologist interpretation.  

 

Furthermore, we demonstrated that model-derived ordinal scores recapitulated patient enrollment and 

endpoint measurement in a completed phase 2b NASH clinical trial. The model’s predictions were also 
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highly reproducible when the analysis was repeated on the same images, suggesting that this approach 

could enable consistent measurement of disease severity within and across timepoints and clinical trials. 

Further analytical validation is being performed to assess reproducibility with various pre-analytic factors 

(different scanners, stain quality, biopsy and section quality). Together, the accuracy and reproducibility of 

AIM-NASH suggest that this AI-based system could be used in the future to assist pathologists in 

achieving reproducible grading/staging, especially for cases in which the disease pathology may reflect a 

boundary between two grades/stages, leading to discordance among pathologists. 

 

We further tested the model’s utility as a research tool by performing a retrospective assessment of 

primary and exploratory study efficacy endpoints in the phase 2b ATLAS clinical trial27. We found that 

AIM-NASH, along with achieving a high level of scoring accuracy and superior repeatability compared 

with pathologists, detected a greater proportion of primary and exploratory endpoint responders in treated 

patients than manual scoring. Notably, this result was maintained when adjusting for the proportion of 

placebo patient responders. This finding was consistent with AIM-NASH-based retrospective analysis of 

other trial cohorts. We showed that AI, but not manual scoring, revealed statistically significant differences 

in response rates between treated and placebo patients in a completed phase 2 clinical trial, suggesting 

that the trial would have met its primary endpoint if histology had been assessed by AI33. Furthermore, we 

showed that placebo response rates were significantly reduced when assessed by AI relative to manual 

scoring in a phase 2 trial of patients with cirrhotic NASH27,34. Together, these results suggest that 

AIM-NASH CRN grading and staging of histologic features can detect histologic response to drug 

treatment with comparable accuracy to expert NASH pathologists, while providing greater sensitivity and 

reproducibility. AIM-NASH may thus have potential clinical utility for determining disease severity and may 

be applicable for more sensitive determination of drug efficacy in clinical trial settings. Future studies 

should include rigorous analytical validation to verify repeatability and reproducibility across scanners and 

scanner operators, in addition to clinical validation to verify the efficacy, utility, and scalability of an AI-

assist clinical trial workflow.   
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Achieving the surrogate biopsy-based endpoints adopted by regulatory bodies for NASH clinical trials has 

been exceedingly difficult, owing to the slow rate at which NASH progresses and regresses35; 

consequently, no NASH therapeutic has been approved. To address this challenge, several 

measurement systems that detect subordinal levels of histologic change have been proposed36. We 

previously demonstrated the utility of AI-based continuous measures of fibrosis for detecting subtle, yet 

statistically significant changes in fibrosis in response to treatment5,34.  

 

The continuous scoring system we present here maps each NASH CRN grade/stage to a bin derived 

from the standard NASH scoring system, allowing direct comparison between the ordinal and continuous 

scoring systems. The AI-derived continuous NASH CRN scores showed strong correlations with mean 

scores derived by a panel of expert NASH pathologists, where the directional bias of the panel was 

clearly reflected in the continuous score, and between these scores and relevant noninvasive NASH 

biomarkers that are known to correlate with specific histologic features and clinical outcomes31. The 

AIM-NASH–based continuous NASH CRN fibrosis score was more sensitive to treatment-induced 

changes in fibrosis than the gold standard continuous CPA and was more strongly predictive of patient 

progression to cirrhosis and liver-related complications than the AI-based ordinal NASH CRN 

grades/stages. Additionally, the continuous fibrosis score enabled the definition of cutoffs that stratified 

patients with NASH with stage 3 (F3) or stage 4 (F4) fibrosis into slow versus rapid disease progressors. 

These results suggest several important applications for continuous histologic scoring in NASH in both 

translational and clinical development settings. 

 

One limitation of the continuous scoring system reported here is that it presents disease progression and 

regression on a linear scale; however, it is widely accepted that NASH disease neither progresses nor 

regresses linearly35,37. For instance, a change in continuous fibrosis stage from 3.0 to 3.2 may reflect a 

different amount of change in disease severity than a change from 4.0 to 4.2 or from 3.0 to 2.8. Future 

experiments should investigate whether this mapping of a nonlinear system to a linear scale complicates 
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measurement of changes in disease severity in response to treatment, and whether it might be possible 

to develop a scale that more closely approximates the manner in which NASH disease progresses and 

regresses. Another limitation of the continuous scoring system is that clinically meaningful thresholds are 

not yet known. Additional research is needed to define and characterize meaningful changes in the 

continuous fibrosis score, such as a study to determine whether a sub-integer reduction in fibrosis score 

is associated with improved clinical outcome. 

 

Importantly, the present results highlight the benefits of collaboration between AI developers and NASH 

pathologists to ensure that the technology being developed will improve pathologists’ evaluation of liver 

biopsies, while utilizing workflows that can be scaled to accommodate the increasing demand for NASH 

pathologists as the number of NASH clinical trials increases. The integration of AI-based digital pathology 

into NASH clinical trial workflows using validated WSI viewing platforms has the potential to facilitate 

more accurate identification of patients with NASH for trial enrollment, more robust measurement of 

histologic endpoints, and greater sensitivity to drug effect, which together promise to increase clinical trial 

success and improve patient outcomes.  
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Online methods 

Compliance 

Artificial intelligence (AI)-based computational pathology models and platforms to support model 

functionality were developed using Good Clinical Practice/Good Clinical Laboratory Practice principles, 

including controlled process and testing documentation. All whole-slide images (WSIs) included in model 

development and performance evaluation are from patients who consented to the future use of these 

images for research purposes.  

 

Data collection 

Datasets 

Machine learning (ML) model development and external, held-out test sets are summarized in 

Supplementary Table 1. ML models for segmenting and grading/staging nonalcoholic steatohepatitis 

(NASH) histologic features were trained using 8747 haematoxylin and eosin (H&E) and 7660 Masson’s 

trichrome (MT) WSIs from six completed phase 2b and phase 3 NASH clinical trials, covering a range of 

drug classes, trial enrollment criteria, and patient statuses (screen fail versus enrolled) (Supplementary 

Table 1). H&E and MT liver biopsy WSIs from primary sclerosing cholangitis (PSC) and chronic hepatitis 

B infection were also included in model training. The latter dataset enabled the models to learn to 

distinguish between histologic features that may visually appear to be similar but are not as frequently 

present in NASH (e.g. interface hepatitis)38, in addition to enabling coverage of a wider range of disease 

severity than is typically enrolled in NASH clinical trials. 

 

Model performance repeatability assessments and accuracy verification were conducted in an external, 

held-out validation dataset (Analytic performance test set) comprising WSIs of baseline and 

end-of-treatment (EOT) biopsies from a completed phase 2b NASH clinical trial (Supplementary Table 1). 

The clinical trial methodology and results have been described previously22. Digitized WSIs were 

reviewed for Clinical Research Network (CRN) grading and staging by the clinical trial’s three central 

pathologists (CPs), who have extensive experience evaluating NASH histology in pivotal phase 2 and 3 
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clinical trials and in the NASH CRN and European NASH pathology communities6. Images for which CP 

scores were not available were excluded from the model performance accuracy analysis. Median scores 

of the three pathologists were computed for all WSIs and used as a reference for AI model performance. 

Importantly, this dataset was not used for model development and thus served as a robust external 

validation dataset against which model performance could be fairly tested. 

 

The clinical utility of model-derived features was assessed by generated ordinal and continuous ML 

features in WSIs from three completed NASH clinical trials: 1882 baseline and EOT WSIs from 

395 patients enrolled in the ATLAS phase 2b clinical trial and 1519 baseline WSIs from patients enrolled 

in the STELLAR-3 (n = 725 patients) and STELLAR-4 (n = 794 patients) clinical trials. Dataset 

characteristics for these three trials have been published previously27.  

 

Pathologists 

Board-certified pathologists with a subspecialty in liver pathology assisted in the development of the 

present NASH AI algorithms by providing (a) hand-drawn annotations of key histologic features for 

training image segmentation models (see Annotations), (b) slide-level NASH CRN steatosis grades, 

ballooning grades, lobular inflammation grades, and fibrosis stages for training the AI scoring models (see 

Model Development), or (c) both. Pathologists who provided slide-level NASH CRN grades/stages for 

model development were required to pass a proficiency examination, in which they were asked to provide 

NASH CRN grades/stages for 20 NASH cases, and their scores were compared with a consensus 

median provided by three NASH CRN pathologists. Agreement statistics were reviewed by a PathAI 

expert NASH pathologist and leveraged to select pathologists for assisting in model development. In total, 

59 pathologists provided feature annotations for model training; five pathologists provided slide-level 

NASH CRN grades/stages (see Annotations). 
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Annotations 

Tissue feature annotations: Pathologists provided pixel-level annotations on WSIs using a proprietary 

digital WSI viewer interface. Pathologists were specifically instructed to draw, or “annotate,” over the H&E 

and MT WSIs to collect many examples of substances relevant to NASH, in addition to examples of 

artifact and background. Instructions provided to pathologists for select histologic substances are 

included in Supplementary Table 4. In total, 103,579 feature annotations were collected to train the ML 

models to detect and quantify features relevant to image/tissue artifact, foreground versus background 

separation, and NASH histology. 

 

Slide-level NASH CRN grading and staging: All pathologists who provided slide-level NASH CRN 

grades/stages received and were asked to evaluate histologic features according to the Nonalcoholic 

Fatty Liver Disease Activity Score (NAS) and CRN Fibrosis Staging rubrics developed by Kleiner et al16. 

All cases were reviewed and scored using the aforementioned WSI viewer. 

 

Model development 

Dataset splitting 

The model development dataset described above was split into training (~70%), validation (~15%), and 

held-out test (~15%) sets. The dataset was split at the patient level, with all WSIs from the same patient 

allocated to the same development set. Sets were also balanced for key NASH disease severity metrics, 

such as NASH CRN steatosis grade, ballooning grade, lobular inflammation grade, and fibrosis stage, to 

the greatest extent possible. The balancing step was occasionally challenging because of the NASH 

clinical trial enrollment criteria, which restricted the patient population to those fitting within specific ranges 

of the disease severity spectrum. The held-out test set contains a dataset from an independent clinical 

trial to ensure algorithm performance is meeting acceptance criteria on a completely held-out patient 

cohort in an independent clinical trial and avoiding any test data leakage25. 
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Convolutional neural networks 

The present AI NASH algorithms were trained using the three categories of tissue compartment 

segmentation models described below. Summaries of each model and their respective objectives are 

included in Supplementary Table 5. For all convolutional neural networks (CNNs), cloud-computing 

infrastructure allowed massively parallel patch-wise inference to be efficiently and exhaustively performed 

on every tissue-containing region of a WSI, with a spatial precision of 4–8 pixels. 

 

Artifact Segmentation Model: A CNN was trained to differentiate (1) evaluable liver tissue from WSI 

background and (2) evaluable tissue from artifacts introduced via tissue preparation (e.g. tissue folds) or 

slide scanning (e.g. out-of-focus regions). A single CNN for artifact/background detection and 

segmentation was developed for both H&E and MT stains (Fig. 1). 

 

H&E Segmentation Model: For H&E WSIs, a CNN was trained to segment both the cardinal NASH H&E 

histologic features (macrovesicular steatosis, hepatocellular ballooning, lobular inflammation) and other 

relevant features, including portal inflammation, microvesicular steatosis, interface hepatitis, and normal 

hepatocytes (i.e. hepatocytes not exhibiting steatosis or ballooning; Fig. 1). 

 

MT Segmentation Models: For MT WSIs, CNNs were trained to segment large intrahepatic septal and 

subcapsular regions (comprising non-pathologic fibrosis), pathologic fibrosis, bile ducts, and blood 

vessels (Fig. 1). All three segmentation models were trained utilizing an iterative model development 

process, schematized in Supplementary Fig. 2. First, the training set of WSIs was shared with a select 

team of expert liver pathologists who were instructed to annotate over the H&E and MT WSIs, as 

described above. This first set of annotations is referred to as “primary annotations.” Once collected, 

primary annotations were reviewed by internal pathologists, who removed annotations from pathologists 

who had misunderstood instructions or otherwise provided inappropriate annotations. The final subset of 

primary annotations was used to train the first iteration of all three segmentation models described above, 

and segmentation overlays (Fig. 2) were generated. Internal pathologists then reviewed the 
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model-derived segmentation overlays, identifying areas of model failure and requesting correction 

annotations for substances for which the model was performing poorly. At this stage, the trained CNN 

models were also deployed on the validation set of images to quantitatively evaluate the model’s 

performance on collected annotations. After identifying areas for performance improvement, correction 

annotations were collected from expert pathologists to provide further improved examples of NASH 

histologic features to the model. Model training was monitored, and hyperparameters were adjusted 

based on the model’s performance on pathologist annotations from the held-out validation set until 

convergence was achieved and pathologists confirmed qualitatively that model performance was strong. 

 

The artifact, H&E tissue, and MT tissue CNNs were trained using pathologist annotations comprising 

8–12 blocks of compound layers with a topology inspired by residual networks and inception networks 

with a softmax loss39-41. Each CNN model’s learning was augmented using distributionally robust 

optimization42,43 to achieve model generalization across multiple clinical and research contexts and 

augmentations. Augmentations included, but were not limited to, vertical and horizontal flips, shifts in 

contrast, brightness, and saturation, and the introduction of artificial gaussian noise, blur, and sharpening. 

Input- and feature-level mix-up44,45 was also employed (as a regularization technique to further increase 

model robustness). 

 

Graph neural networks 

CNN model predictions were used in combination with NASH CRN scores from eight pathologists to train 

graph neural networks (GNNs) to predict ordinal NASH CRN grades for steatosis, lobular inflammation, 

ballooning, and fibrosis. GNN methodology was leveraged for the present development effort because it 

is well suited to data types that can be modeled by a graph structure, such as human tissues that are 

organized into structural topologies, including fibrosis architecture46. Here, the CNN predictions (WSI 

overlays) of relevant histologic features were clustered into “superpixels” to construct the nodes in the 

graph, reducing hundreds of thousands of pixel-level predictions into thousands of super-pixel clusters. 

WSI regions predicted as background or artifact were excluded during clustering. Directed edges were 
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placed between each node and their five nearest neighboring nodes (via the K nearest neighbor 

algorithm). Each graph node was represented by three classes of features generated from previously 

trained CNN predictions predefined as biological classes of known clinical relevance. Spatial features 

included the mean and standard deviation of (x, y) coordinates. Topological features included area, 

perimeter, and convexity of the cluster. Logit-related features included the mean and standard deviation 

of logits for each of the classes of CNN-generated overlays. Scores from multiple pathologists were used 

for training, and consensus (n = 3) scores were used for evaluating model performance during training. 

Leveraging scores from multiple qualified NASH pathologists reduced the potential impact of scoring 

variability and bias associated with a single reader. 

 

To further account for systemic bias, whereby some pathologists may consistently overestimate patient 

disease severity while others underestimate it, we specified the GNN model as a “mixed effects” model. 

Each pathologist’s policy was specified in this model by a set of bias parameters learned during training 

and discarded at test time. Briefly, to learn these biases, we trained the model on all unique label-graph 

pairs, where the label was represented by a score and a variable that indicated which pathologist in the 

training set generated this score. The model then selected the specified pathologist bias parameter and 

added it to the unbiased estimate of the patient's disease state. During training, these biases were 

updated via backpropagation only on WSIs scored by the corresponding pathologists. When the GNNs 

were deployed, the labels were produced using only the unbiased estimate. 

 

In contrast to our previous work, in which models were trained on scores from a single pathologist5, GNNs 

in this study were trained using NASH CRN scores from eight NASH pathologists on a subset of the data 

used for image segmentation model training (Supplementary Table 1). The GNN nodes and edges were 

built from CNN predictions of relevant histologic features in the first model training stage. This tiered 

approach improved upon our previous work, in which separate models were trained for slide-level scoring 

and histologic feature quantification. Here, ordinal scores were constructed directly from the CNN-labeled 

WSIs.  
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GNN-derived continuous score generation 

Continuous NAS and CRN fibrosis scores were produced by mapping GNN-derived ordinal grades/stages 

to bins, such that ordinal scores were spread over a continuous range spanning a unit distance of 1 

(Supplementary Fig. 2). Activation layer output logits were extracted from the GNN ordinal scoring model 

pipeline and averaged. The GNN learned inter-bin cutoffs during training, and piecewise linear mapping 

was performed per logit ordinal bin from the logits to binned continuous scores using the logit-valued 

cutoffs to separate bins. Bins on either end of the disease severity continuum per histologic feature have 

long-tailed distributions that are not penalized during training. To ensure balanced linear mapping of 

these outer bins, logit values in the first and last bins were restricted to minimum and maximum values, 

respectively, during a post-processing step. These values were defined by outer-edge cutoffs chosen to 

maximize the uniformity of logit value distributions across training data. GNN continuous feature training 

and ordinal mapping was performed for each NASH CRN NAS component fibrosis separately. 

 

Quality control measures 

Several quality control (QC) measures were implemented to ensure model learning from high-quality 

data: (1) PathAI liver pathologists evaluated all annotators for annotation/scoring performance at project 

initiation; (2) PathAI pathologists performed QC review on all annotations collected throughout model 

training; following review, annotations deemed to be of high quality by PathAI pathologists were used for 

model training, while all other annotations were excluded from model development; (3) PathAI 

pathologists performed slide-level review of the model’s performance after every iteration of model 

training, providing specific qualitative feedback on areas of strength/weakness after each iteration; 

(4) model performance was characterized at the patch- and slide-levels in an internal (held-out) test set; 

(5) model performance was compared against pathologist consensus scoring in an entirely held-out test 

set, which contained images that were out of distribution relative to images from which the model had 

learned during development. 
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Statistical analysis 

Model performance repeatability 

Repeatability of AI-based scoring (intra-method variability) was assessed by deploying the present AI 

algorithms on the same held-out analytic performance test set 10 times and computing percent positive 

agreement across the 10 reads by the model.  

 

Model performance accuracy 

To verify model performance accuracy, model-derived predictions for ordinal NASH CRN steatosis grade, 

ballooning grade, lobular inflammation grade, and fibrosis stage were compared with median consensus 

grades/stages provided by a panel of three expert NASH pathologists who had evaluated NASH biopsies 

in a recently completed phase 2b NASH clinical trial (Supplementary Table 1). Importantly, images from 

this clinical trial were not included in model training and served as an external, held-out test set for model 

performance evaluation. Alignment between model predictions and pathologist consensus was measured 

via agreement rates, reflecting the proportion of positive agreements between the model and consensus.  

 

We also evaluated the performance of each expert reader against a consensus to provide a benchmark 

for algorithm performance. For this mixed leave-one-out (MLOO) analysis, the model was considered a 

fourth “reader,” and a consensus, determined from the model-derived score and that of two pathologists, 

was used to evaluate the performance of the third pathologist left out of the consensus. The average 

individual pathologist versus consensus agreement rate was computed per histologic feature as a 

reference for model versus consensus per feature. Confidence intervals were computed using 

bootstrapping. Concordance was assessed for scoring of steatosis, lobular inflammation, hepatocellular 

ballooning, and fibrosis using the NASH CRN system. 

 

AI-based assessment of clinical trial enrollment criteria and endpoints 

The analytic performance test set (Supplementary Table 1) was leveraged to assess the AI’s ability to 

recapitulate NASH clinical trial enrollment criteria and efficacy endpoints. Baseline and EOT biopsies 
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across treatment arms were grouped, and efficacy endpoints were computed using each study patient’s 

paired baseline and EOT biopsies. For all endpoints, the statistical method used to compare treatment 

with placebo was a Cochran–Mantel–Haenszel test, and P values were based on response stratified by 

diabetes status and cirrhosis at baseline (by manual assessment). Concordance was assessed with 

k statistics, and accuracy was evaluated by computing F1 scores. A consensus determination (n = 3 

expert pathologists) of enrollment criteria and efficacy served as reference for evaluating AI concordance 

and accuracy. To evaluate the concordance and accuracy of each of the three pathologists, AI was 

treated as an independent, fourth “reader”, and consensus determinations were composed of AIM and 

two pathologists for evaluating the third pathologist not included in the consensus. This MLOO approach 

was followed to evaluate the performance of each pathologist against a consensus determination. 

 

Continuous score interpretability 

To demonstrate interpretability of the continuous scoring system, we first generated NASH CRN 

continuous scores in WSIs from a completed phase 2b NASH clinical trial (Supplementary Table 1, 

Analytic performance test set). We then compared the continuous scores across all four histologic 

features with the mean pathologist scores from the three study central readers, using Kendall rank 

correlation. The goal in measuring the mean pathologist score was to capture the directional bias of this 

panel per feature and verify whether the AI-derived continuous score reflected the same directional bias. 
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Table 1. Model performance accuracy assessment. 

AIM-NASH performance was tested on an external, held-out dataset comprising WSIs from a phase 2b 

NASH clinical trial. Agreement rates for AIM-NASH grades/stages versus a consensus of three expert 

pathologists were superior to mean agreement between any individual pathologist and a panel comprising 

the other two pathologists and the model, and superior to any mean pairwise pathologist agreement. 

 

Agreement rate (95% CI)  

Histologic 
feature 

AIM-NASH versus 
consensus 

Mean pathologist 
versus consensus 

Mean pairwise 
pathologist agreement 

Lobular 
inflammation 0.67 (0.64–0.71) 0.64 (0.62–0.67) 0.58 (0.55–0.6) 

Ballooning 0.70 (0.66–0.73) 0.66 (0.63–0.69) 0.61 (0.59–0.64) 

Steatosis 0.74 (0.71–0.77) 0.69 (0.66–0.72) 0.62 (0.6–0.65) 

Fibrosis 0.62 (0.58–0.65) 0.59 (0.57–0.62) 0.54 (0.51–0.56) 

 

AIM, artificial intelligence-based measurement; CI, confidence interval; NASH, nonalcoholic 

steatohepatitis; WSI, whole side image.  
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Fig. 1. Pipeline for model deployment.  

(a) The model was trained with digitized H&E- and MT-stained images. (b) An artifact model detected 

image and tissue artifacts and excluded them prior to downstream analysis for both H&E and MT WSIs. 

(c) Pixel-level predictions of relevant histologic features were generated using a CNN trained on 

pathologist annotations. (d) Pixel-level predictions were clustered using GNNs. To correct for 

pathologists’ bias, the GNN model was specified as a “mixed effects” model, biases are learned, and 

GNNs are deployed with predictions using only the unbiased estimate. GNN nodes and edges were built 

from CNN predictions of relevant histologic features in the first model training stage. (e) This two-stage 

ML approach produced patient-level predictions of NASH CRN NAS component scores and fibrosis 

stage.  
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AI, artificial intelligence; CNN, convolutional neural network; CRN, Clinical Research Network; GNN, 

graph neural network; H&E, hematoxylin and eosin; MT, Masson’s trichrome; NAS, nonalcoholic fatty liver 

disease activity score; NASH, nonalcoholic steatohepatitis; WSI, whole side image. 
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Fig. 2. AI-based detection and scoring of NAS components and fibrosis.  

The NASH algorithm can detect histopathologic features on WSIs across a range of NASH disease 

severity. (a) Representative H&E-stained slides show AI overlays highlighting regions of steatosis, lobular 

inflammation, and ballooning. Cases corresponding to NAS ≤ 4 and NASH > 4, according to both 

pathologist consensus scoring and AI, are shown. The inset is a magnified field showing the presence of 

the three NAS components. (b) Representative MT-stained slides of each NASH CRN fibrosis stage show 

AI-generated overlays highlighting regions of fibrosis present on biopsies. Cases corresponding to NASH 

CRN fibrosis stages F1–F4, according to both pathologist consensus scoring and AI, are shown. These 

AI-generated overlays allow for qualitative review of model performance. Scale bar is 1 mm. 
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AI, artificial intelligence; CRN, Clinical Research Network; H&E, hematoxylin and eosin; F, fibrosis stage; 

MT, Masson’s trichrome; NAS, nonalcoholic fatty liver disease activity score; NASH, nonalcoholic 

steatohepatitis; WSI, whole slide image. 
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Fig. 3. AI-based grading/staging of enrollment criteria and efficacy endpoints.  

(a) Model-derived scores distinguished fibrosis stages F1–F3 versus F4 and NAS ≥ 4 (with each 

component grade ≥ 1) versus NAS < 4, criteria used to determine trial enrollment. AIM-NASH agreement 

with consensus was comparable with that of each pathologist. (b) For assessment of efficacy endpoints 

commonly used in phase 2b and phase 3 NASH clinical trials (including NASH resolution without 

worsening of fibrosis, fibrosis improvement without worsening of NASH, and improvement in the 

composite NAS), AIM-NASH agreement with consensus was comparable with that of an average 

pathologist. Assessment was performed on an external held-out validation dataset from a phase 2b 

NASH clinical trial. 

 

 

AI, artificial intelligence; AIM, artificial intelligence-based measurement; F, fibrosis stage; NAS,  

nonalcoholic fatty liver disease activity score; NASH, nonalcoholic steatohepatitis. 
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Fig. 4: AIM-based retrospective drug efficacy assessment.  

AIM-NASH models were deployed on WSIs from baseline and week 48 biopsies from patients enrolled in 

the phase 2b ATLAS trial, which evaluated combination therapies for individuals with advanced NASH 

fibrosis. (a) For the trial endpoint NAS ≥ 2-point improvement, fibrosis improvement without worsening of 

NASH, and NASH resolution without worsening of fibrosis, AIM-NASH models showed a greater 

proportion of responders compared with that determined by the trial central reader. Sample sizes varied 

depending on data availability. (b) The placebo-adjusted response rate detected by AIM-NASH was 

greater than that detected by the central reader.  
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AI, artificial intelligence; AIM, artificial intelligence-based measurement; NAS, nonalcoholic fatty liver 

disease activity score; NASH, nonalcoholic steatohepatitis; WSI, whole slide image. 
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Fig. 5. AI-based continuous NASH CRN scores. 

(a) Correlation of AI-based continuous scores with mean scores across three pathologists in the analytic 

performance test set. Results are shown for both AI-derived ordinal bins (blue) and pathologist-derived 

ordinal bins (gray). Filled circles indicate statistical significance, FDR-corrected P < 0.05. (b) cFib versus 

CPA measurements in primary endpoint responders in the ATLAS clinical trial. In primary endpoint 

responders, continuous fibrosis scores were significantly reduced in treated versus placebo patients 

(Mann–Whitney U = 20.0, P = 0.02), while proportionate area fibrosis measurements were not 

significantly reduced (Mann–Whitney U = 39.0, P = 0.21). (c) Stratification of patients with BL F3 or F4 

fibrosis from STELLAR 3 and STELLAR 4 trial cohorts into rapid (red) and slow (orange) progressors 

based on continuous score cut-offs of 3.6 and 4.6, respectively. Kaplan–Meier and Cox proportional 

hazards regression analyses are shown. Rounded cutoffs were chosen to maximize hazards. 

(d) Discriminatory accuracy of AI-derived continuous scores versus ordinal scores to predict progression 

to cirrhosis (left) and LRE (right) in STELLAR 3 and STELLAR 4 trial cohorts. In both cases, using 

receiver operating characteristic analysis, the continuous AUC was significantly greater (progression to 

cirrhosis: 0.66 [95% CI: 0.60–0.71] versus 0.59 [95% CI: 0.55–0.60]; progression to LRE: 0.61 [95% CI: 

0.51–0.71] versus 0.54 [95% CI: 0.47–59]). 
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AI, artificial intelligence; AIM, artificial intelligence-based measurement; AUC, area under the receiver 

operating characteristic curve; BL, baseline; cFib, AI-derived continuous fibrosis scoring; CI, confidence 

interval; CPA, collagen proportionate area; CRN, Clinical Research Network; FDR, false discovery rate; 

FPR, false positive rate; LRE, liver-related event; NASH, nonalcoholic steatohepatitis; Tau, Kendall’s rank 

correlation coefficient for ordinal scores; TPR, true positive rate. 
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Supplementary Table 1. Model development and test dataset characteristics. 

Dataset Trial 
phase 

Number of WSIs  
(H&E, MT) 

Drug class Enrollment criteria 

Model development datasets 

1 3 2188, 2188 ASK1 inhibitor NASH diagnosis; fibrosis F323 

2 3 2488, 2478 ASK1 inhibitor NASH diagnosis; fibrosis F423 

3 2b 528, 528 Monoclonal antibody 
directed against LOXL2 

NASH defined as steatosis > 5% with 
associated lobular inflammation: Ishak 
stage 3,447 

4 2b 561, 554 Monoclonal antibody 
directed against LOXL2 

NASH diagnosis; Ishak stage 5,621 

5 2 158, 163 ASK1 Inhibitor, 
monoclonal antibody 
directed against LOXL2 

Evidence of NASH with fibrosis on 
biopsy48 

6 2 312, 312 PPARδ agonist Definite NASH; NAS ≥ 4 with 1 per 
component; fibrosis F1, F2, F349 

7 3 1477, 766 Nucleotide analogue 
(antiviral) 

HBV50 

8 3 851, 415 Nucleotide analogue 
(antiviral) 

HBV50 

9 2b 331, 333 Monoclonal antibody 
directed against LOXL2 

PSC24 

Analytic performance test set 

10 2b 639, 633 Insulin sensitizer Definite NASH; NAS ≥ 4 with 1 per 
component; Fibrosis F1, F2, F322 
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ASK1, apoptosis signal-regulating kinase 1 (also known as mitogen-activated protein kinase kinase 

kinase 5); F, fibrosis stage; HBV, hepatitis B virus; H&E, hematoxylin and eosin; LOXL2, lysyl oxidase-like 

2; MT, Masson’s trichrome; NAS, NAFLD activity score; NASH, nonalcoholic steatohepatitis; PPARδ, 

peroxisome proliferator activated receptor delta; PSC, primary sclerosing cholangitis; WSI, whole slide 

image. 
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Supplementary Table 2. Algorithm repeatability assessment using 10 independent reads per WSI. 

 Number of WSIs Model versus model agreement rate 

Steatosis 639 100% 

Lobular inflammation 639 100% 

Ballooning 639 100% 

Fibrosis 633 100% 

 

WSI, whole slide image. 
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Supplementary Table 3. Correlations between the AI-derived continuous scoring system and 

comparable noninvasive tests. 

Continuous scoring system NIT Kendall’s Tau P value n 

Continuous fibrosis stage FibroScan 0.33 2.49E–11 188 

Continuous fibrosis stage FIB4 0.23 1.56E–06 207 

Continuous fibrosis stage ELF 0.22 2.52E–06 210 

Continuous fibrosis stage TIMP1 0.11 2.01E–02 210 

Continuous fibrosis stage PIIINP 0.14 3.03E–03 210 

Continuous fibrosis stage MRI-PDFF –0.11 2.36E–01 59 

Continuous fibrosis stage Morphometric quantitative 
collagen (%) 

0.56 2.20E–32 205 

Continuous steatosis grade MRI-PDFF 0.52 4.83E–09 59 

Continuous steatosis grade Morphometric quantitative 
collagen (%) 

–0.16 5.42E–04 205 

Continuous lobular 
inflammation grade 

C-reactive protein 0.13 5.04E–03 211 

Continuous lobular 
inflammation grade 

Adiponectin –0.15 1.38E–03 211 

Continuous ballooning grade HbA1C 0.16 8.36E–04 211 

 

AI, artificial intelligence; ELF, enhanced liver fibrosis test; FIB4, fibrosis-4; HbA1C, hemoglobin A1c; 

MRI-PDFF, magnetic resonance imaging derived proton density fat fraction; NIT, noninvasive test; PIIINP, 

procollagen III N-terminal peptide; Kendall’s Tau, Kendall’s rank correlation coefficient for ordinal scores; 

TIMP, tissue inhibitor of metalloproteinase; TIMP1, TIMP metallopeptidase inhibitor 1. 
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Supplementary Table 4. Example instructions for the interpretation of histologic features. 

Histologic feature Example instructions 

Lobular inflammation Place label regions containing at least three inflammatory cells, not 
including those within sinusoids. Do not label regions of portal 
inflammation with this region label. 

Hepatocyte ballooning Please use this label on regions of hepatocellular ballooning. 
Hepatocellular ballooning is defined as round cells with rarified 
cytoplasm that are at least 50% larger than neighboring normal cells. 

Steatosis Please use this label on regions of dense steatosis. 

Thick pathologic fibrotic septa Please use this label for thickened fibrotic septae extending from 
portal and central regions considered when staging liver biopsies. 

Portal tract (normal) Please use this label for normal-appearing, small-/medium-sized 
portal regions, not expanded by fibrosis or inflammation. 

Portal tract (abnormal) Please use this label for portal regions expanded by inflammation, 
fibrosis, bile ductular proliferation, or any combination of the above. 

Large normal septa Please use this label for larger intrahepatic normal septae (usually 
containing larger arteries, veins, and bile ducts) that would not be 
included when staging liver biopsies. 

Subcapsular fibrosis Please use this label for normal subcapsular regions of fibrosis not 
considered when staging liver biopsies. 
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Supplementary Table 5. AI-derived models, input substances, and objectives for application. 

Model name Major input substances Objectives 

Artifact model Background, blur artifact, bad stain 
artifact, black spots, bubble, cautery, 
crushed tissue, hair, margin ink, marker 
tape, skin cell, tissue fold, rainbow pattern 
artifact 

Remove unwanted regions 
of WSI that should be 
excluded from downstream 
analysis 

MT tissue model Lumen, blood vessel, bile duct, cirrhotic 
septal portal fibrosis, hilar fibrosis, large 
septal area, perisinusoidal fibrosis, septal 
fibrosis, subcapsular fibrosis, thick fibrotic 
septae, normal portal area, normal portal 
triad, fibrosis 

Detect fibrosis regions to 
identify and quantify 
features of interest 

MT large septae model Normal portal area, normal portal triad, 
perisinusoidal fibrosis, thick fibrotic 
septae 

Detect regions of 
pathological fibrosis 

H&E tissue model Lobular Inflammation, portal inflammation, 
interface hepatitis, bile duct, blood vessel, 
Normal hepatocytes, hepatocellular 
swelling, hepatocellular ballooning, 
steatosis, microvesicular steatosis 

Detect macrovesicular 
steatosis, hepatocellular 
ballooning, and lobular 
inflammation regions to 
identify and quantify 
features of interest 

H&E GNN model Overlays from H&E tissue model: 

Lobular inflammation, portal inflammation, 
interface hepatitis, bile duct, blood vessel, 
normal hepatocytes, hepatocellular, 
swelling, hepatocellular ballooning, 
steatosis, microvesicular steatosis 

Compute slide-level NASH 
CRN ordinal grades 

MT GNN model Overlays from MT large septae model: 

Large septae, pathological fibrosis, other 
tissue 

Overlays from MT tissue model: 

Fibrosis, bile duct, blood vessel, other 
tissue 

Compute slide-level NASH 
CRN ordinal stage 
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AI, artificial intelligence; CRN, Clinical Research Network; GNN, graph neural network; H&E, hematoxylin 

and eosin; MT, Masson’s trichrome; NAS, nonalcoholic fatty liver disease activity score; NASH, 

nonalcoholic steatohepatitis; WSI, whole slide image. 
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Supplementary Fig. 1. Model training schematic. 

 

 

 

CNN, convolutional neural network; GNN, graph neural network; NASH, nonalcoholic steatohepatitis. 
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Supplementary Fig. 2. Segmentation model development process. 

 

 

QC, quality control. 
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Supplementary Fig. 3. Mapping of continuous scores.  
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