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Abstract

Large-scale functional networks have been characterized in both rodent and human brains,

typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD

and underlying neural activity is complex and incompletely understood, which poses chal-

lenges to interpreting network organization obtained using this technique. Additionally, most

work has assumed a disjoint functional network organization (i.e., brain regions belong to

one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with

fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical

networks discovered by each modality using a mixed-membership algorithm to test the hy-

pothesis that functional networks are overlapping rather than disjoint. Our results show that

multiple BOLD networks are detected via Ca2+ signals; there is considerable network over-

lap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly

more similar to BOLD networks; and, despite similarities, important differences are detected

across modalities (e.g., brain region “network diversity”). In conclusion, Ca2+ imaging un-

covered overlapping functional cortical organization in the mouse that reflected several, but

not all, properties observed with fMRI-BOLD signals.
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Introduction

Brains show evidence of functional organization across spatiotemporal scales, from synapses to the whole

organ, which varies between individuals, over time, as well as with injury or disease. Understanding

the principles that govern brain organization enables their use as clinical indices. Closing knowledge

gaps requires work in humans and model species, across scales, and using complementary sources of

image contrast. Here, we focus on large-scale systems (i.e., networks), as a deeper understanding of their

characteristics stands to have broad prognostic and diagnostic utility, in part because they can be assessed

with noninvasive imaging methods that are applicable in human subjects.

Much of what we know and can access about large-scale systems, especially in humans, comes from the

blood-oxygenation-level-dependent (BOLD) contrast obtained with functional magnetic resonance imag-

ing (fMRI). Recent and growing evidence shows that measures of large-scale systems obtained with fMRI-

BOLD (or proximal optical measures of hemoglobin) are, to an extent, reflective of neural activity [1–5].

Yet, despite important progress, the relationship between fMRI-BOLD and underlying neural activity is

complex and incompletely understood [6–8], which poses several challenges to interpreting network or-

ganization obtained using this technique [9–13].

A powerful tool for investigating the functional organization of large-scale networks is wide-field fluores-

cence imaging in mouse models bearing genetically encoded calcium (Ca2+ ) sensitive indicators [14, 15].

Critically, Ca2+ imaging affords a large field of view covering much of the mouse cortical mantle, and

provides image contrast that is a more direct measure of neural activity than BOLD. Applied with fMRI-

BOLD (or BOLD-like measures), Ca2+ imaging can reveal the neural component captured by the BOLD

signal [1, 2, 5, 16–18]. Here, we leverage a novel simultaneous multimodal framework, BOLD-fMRI

and Ca2+ imaging [1], to determine both cross-modal convergent and divergent features of large-scale

functional networks.

As in previous studies using similar [3, 16] or the same experimental approach [1], we examine functional

connectivity, a widely employed measure of inter-regional synchrony, to define and characterize large-

scale brain networks. Importantly, we consider networks as having overlapping, rather than disjoint,

functional organization. Many complex systems, including biological, technological, and social ones, are

inherently overlapping (nodes participate in multiple communities or clusters) rather than disjoint (each

node belongs to a single community) [19–21]. In the brain, overlap means that regions participate across

multiple networks (to varying degrees), consistent with the notion that functionally flexible regions can

contribute to multiple brain processes [22–25]. Although evidence for overlap in human brain networks

has accrued based on multiple analysis techniques applied to BOLD-fMRI data [25–28], it is unclear

whether the putative overlapping organization is driven, at least in part, by the nature of BOLD signals. To

the best of our knowledge, the potentially overlapping functional organization of cortical networks has not

been tested in animal models, where fMRI-BOLD can be obtained together with Ca2+ signals that exhibit

greater spatiotemporal resolution and capture neural activity more directly.

Here, we use highly-sampled simultaneously recorded wide-field Ca2+ and fMRI-BOLD data to resolve

whether functional networks discovered with BOLD are also detected with Ca2+ imaging, while deter-

mining their overlapping organization (Figure 1). We use a Bayesian generative algorithm that estimates

the membership strength of a given brain region to all networks [25, 27, 29]. Importantly, this approach

also allows detection of disjoint organization in a data-driven manner. In addition, region-level properties

are quantified including node degree [30, 31] and diversity [32–34], while a wide range of parameters are

explored to test the robustness of our findings (Table 1).
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Overall, we find that overlapping network organization is robustly detected in simultaneously recorded

wide-field Ca2+ and fMRI-BOLD data regardless of the parameters selected. Evidence of rich overlapping

organization advances our fundamental understanding of cortical brain organization, helping to further

validate the neural origins of clinically accessible fMRI-BOLD network organization.

Results

Mice (N=10) expressing GCaMP6f in excitatory neurons underwent simultaneous wide-field Ca2+ and

BOLD-fMRI, as described previously by us ([1]; Methods, Figure 1A). Animals were lightly anesthetized

(0.50%-0.75% isoflurane) and head-fixed. Data were collected at each of 3 longitudinal sessions; each

session contained 4 runs, each lasting 10 minutes (Figure 1B) for a total of 1,200 minutes of data.

BOLD data (acquisition rate 1 Hz, Methods) were processed using RABIES (Rodent Automated BOLD

Improvement of EPI Sequences) [36–38] and high-pass filtered [39] (0.01-0.5 Hz). Given that Ca2+ and

BOLD signals are maximally correlated when Ca2+ is temporally band-passed to match BOLD [1, 2, 17],

and the “lowpass” nature of the BOLD signal [40–42], we investigated network measures within a slow

(BOLD-matched) and fast (0.5-5 Hz) Ca2+ frequency range (herein, Ca2+
slow and Ca2+

fast ). Ca2+ data were

acquired at an effective background-corrected rate of 10 Hz and processed as described by us previously

[43]. Critically, we collected both GCaMP-sensitive and GCaMP-insensitive optical measurements for the

removal of background fluorescence and hemoglobin signals from the Ca2+ data ([1, 43–45]; Methods).

Parameters explored in the present study

Parameter Values and figures

Number of networks
3 (Figure 2); 7 (Figures 3–7); and

20 (Figure S1)

Initial parcellation granularity
Fine (542 regions, Figure 1D); and

Coarse (152 regions, Figure S2)

Network density 10–25% (Figure S3, Figure S7)

fMRI preprocessing pipeline Figure S7A

Table 1: To ensure the robustness of our findings, we explored a range of parameters and found that our

results were qualitatively reproduced across all conditions.

To build functional networks, a common set of regions of interest (ROIs) were defined (Figure 1C; Meth-

ods). To relate 3D BOLD and 2D Ca2+ data, we adopted the CCFv3 space for the mouse brain provided

by the Allen Institute for Brain Sciences [35]. ROIs covered most of the cortex. Areas not well captured

in the wide-field Ca2+ imaging FOV were excluded (Figure 1D). Correlation matrices were computed for

each acquisition run using pairwise Pearson correlation. Matrices were binarized by retaining the top d%

strongest edges (Table 1). We used a mixed-membership stochastic blockmodel algorithm [46] that can

generate overlapping (or disjoint) networks [25, 27, 29]. The algorithm determines membership values for
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Figure 1: Experimental setup and overlapping community analysis. (A) Simultaneous fMRI-BOLD and wide-field Ca2+

imaging [1]. Ca2+ data are background-corrected (illustrated by three colored wavelengths; Methods) (B) Hierarchical data

structure. N = 10 mice, scanned across 3 longitudinal sessions, with 4 runs per session, each lasting 10 minutes. (C) Definition

of ROIs within the Allen Mouse Brain Common Coordinate Framework (CCFv3) [35]. (I) Division of the mouse dorsal

flatmap into N = 1024 spatially homogeneous ROIs. (II) Add depth by following streamlines normal to the cortical surface.

The resulting ROIs are “column-like”. (III) Transform ROIs from common space into 3D and 2D individual spaces (Methods).

Dorsal flatmap, layer masks, and columnar streamlines from CCFv3. (D) Analyses were restricted to ROIs that appeared in the

Ca2+ imaging FOV after multimodal co-registration (Methods). Lateral areas including the insula and temporal association areas

were excluded. (E) We applied a mixed-membership stochastic blockmodel algorithm to estimate overlapping communities

[29]. Membership strength (values between 0 and 1) quantifies the affiliation strength of a node in a network. Here, node A

belongs only to the green community, node B belongs to all three communities with varying strengths, and node C belongs to

the blue and red communities with varying strengths.
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each ROI, with one value per network (Figure 1E). Membership values sum to 1 across networks, which

allows these values to be interpreted as probabilities. Overlapping networks, and by extension membership

values, were computed at the level of runs, then averaged across sessions to determine an animal-level re-

sult. Random-effects group analysis was evaluated based on animal-level estimates and variability. Results

in the main text are from 542 ROIs and d = 15%.

Traditional cortical organization captured by overlapping network solutions

Here, network is used interchangeably with overlapping community, as is node with region. Existing

work has shown decomposition of the mouse cortex into as few as 2-3 networks [4, 33, 47], but 7-10

is more typical [37, 48–50]. We explored a range numbers of networks (3, 7, and 20). Our 3-network

solution captured previously observed systems, namely, the visual (overlapping community 2, OC-2) and

somatomotor (OC-3), as well as a large system (OC-1) that included territories previously classified as

the mouse “default network” [49, 51–53] (Figure 2A). To facilitate comparisons to standard disjoint al-

gorithms, we forced a disjoint version of our solutions by assigning each region to the network with the

largest community membership value.

With 7 networks, well-defined visual and somatomotor networks (OC-2 and OC-3, respectively) were

again identified [37, 50], alongside additional systems covering bilateral and well-defined cortical territo-

ries (Figure 2C). OC-1 encompassed medial areas including the cingulate cortex but also extended more

laterally. OC-4 spanned from medial to lateral areas, including somatosensory cortex. For both Ca2+
fast and

Ca2+
slow , OC-4 also included the frontal orienting field (FOF), a possible homolog of the frontal eye field in

primates [54–58]. OC-5 largely overlapped with the anterior lateral motor area, a region involved in motor

planning [44, 59–61]; notably, for Ca2+
fast this network also included the supplementary somatosensory area.

OC-6 overlapped with the barrel field for BOLD and Ca2+
slow , but captured the upper limb somatosensory

cortex for Ca2+
fast . Finally, OC-7 was very different for BOLD and Ca2+ signals; for BOLD, it was centered

around FOF, and for both Ca2+ signals it was centered around the retrosplenial cortex.

The 20-network solution is shown in Figure S1, which revealed finer spatial networks that were again

bilateral (like the 3- and 7-network solutions). Notably, even with 20 networks, the FOF did not appear

as a separate network for either Ca2+ signal, in contrast to BOLD. In sum, across solutions (3, 7, and 20

networks), recognized functional organization (established brain regions, functional networks, and a high

degree of bilateral symmetry) was uncovered using our algorithm across imaging modalities.

Intermodal network organization similarity

For 7 networks, BOLD, Ca2+
slow , and Ca2+

fast were quantitatively compared (Figure 2D) to test the hypothesis

that band-pass filtering Ca2+ to match BOLD leads to greater intermodal agreement. The comparison

was based on cosine similarity (1 indicates identical organization, 0.5 indicates “orthogonal/unrelated”

organization, and 0 indicates perfectly “opposite” organization). The similarity between BOLD and Ca2+
slow

networks was relatively high (> 0.73), except for OC-7 (0.26), a network that was evident in both Ca2+

conditions but not captured by BOLD. In comparison, BOLD and Ca2+
fast similarity was generally lower

but still relatively high for OC-1 to OC-4 (> 0.77), though modest for OC-5 and OC-6 (0.59 and 0.65,

respectively). Overall, band-pass filtering Ca2+ seemed to have a modest network-dependent impact when

comparing network territories across modalities.

To generate a summary metric, we collapsed across networks to generate an overall index of similarity.

As expected [1–3], BOLD and Ca2+
slow solutions were more similar than BOLD and Ca2+

fast (p < 0.05,
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Figure 2: Overlapping functional networks of the mouse cortex. (A) Decomposition based on 3 networks. Color scale

indicates membership strengths (Figure 1E). The disjoint approximation is obtained by taking each region’s maximum mem-

bership value. (B) Cortical areas (top view) as defined in the CCFv3 Allen reference atlas [35]. In addition, dashed lines

approximately correspond to functionally defined subregions in the secondary motor area [55, 59]. (C) Decomposition with

7 networks. (D) Network similarity based on cosine similarity (1 = identical, 0.5 = “orthogonal”, 0 = perfectly dissimilar or

“inversely correlated”). Color scale emphasizes similarities and strong dissimilarities. (E) Diagonal elements of matrices in

D are plotted. Empty circles correspond to individual animals; the large solid circle is the group average. (F) Overall simi-

larity collapsing across networks as a function of number of networks (3, 7, and 20). (E-F) Comparison of BOLD and Ca2+
slow

networks (p < 0.05, Holm-Bonferroni corrected). Error bars are 95% confidence intervals based on hierarchical bootstrap.

Abbreviations: OC, overlapping community; ACA, anterior cingulate area; ALM, anterior lateral motor cortex; FOF, frontal

orienting field; MO, somatomotor areas; PL, prelimbic area; PTLp, posterior parietal association areas; RSP, retrosplenial area;

SSp, primary somatosensory area; SSs, supplemental somatosensory area; VIS, visual areas. See also Figure S1, Figure S2,

Figure S3, and Figure S4.
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permutation test, Holm–Bonferroni corrected). This result was stable across 3, 7, and 20 networks, data

processing parameters (Figure S3), including d%, and number of ROIs (Figure S2).

Cortical networks show prominent overlapping organization

All results are described at the group-level. However, we confirmed that the basic organization of the 7-

network solution was observed at the individual level (Figure S4). Thus, group-level properties, including

network overlap, are not driven by the process of performing group analysis.

To quantify overlapping organization, we examined the distribution of membership values across net-

works. Membership values range 0–1, and sum to 1 across networks. Thus, a disjoint organization would

be characterized by all regions having high membership values for a single network (a “right-peaked”

distribution; Figure 3A, left). Importantly, this outcome is observed with our algorithm when synthetic,

disjoint data are simulated (see Figure S5). In contrast, a roughly uniform distribution of membership val-

ues would correspond to a network whose regions affiliate with multiple networks with varying strengths

(Figure 3A, middle). Finally, extreme overlap would be when regions tend to not affiliate with any network

very strongly (Figure 3A, right).

To examine membership distributions, we considered the range (0.2,1.0]. Membership values < 0.2 were

not considered so as to conservatively characterize network overlap. The last bin contained values > 0.8
based on our results from simulated synthetic graphs with known ground truth [62]. Specifically, we found

that disjoint synthetic networks had membership values concentrated in the range (0.8,1.0] (Figure S5).

In contrast, actual data, across conditions (BOLD, Ca2+
slow , and Ca2+

fast ), showed that no more than 60% of

brain regions within any network were within this range (> 0.8). The least overlapping networks were the

visual and somatomotor (OC-2 and OC-3) for all conditions, and the retrosplenial network (OC-7) for the

two Ca2+ conditions. Networks with the greatest amount of overlap were OC-1 and OC-4 (Figure 3B),

which included the cingulate cortex (OC-1) as well as medial and lateral areas, including somatosensory

cortex (OC-4) and the FOF (OC-4, Ca2+ ).

To visualize network overlap, we binned membership strength into four categories. Because we considered

7 networks, bin thresholds were multiples of 1/7 (all statistics are FDR corrected). Based on this repre-

sentation, we observed that overlapping network organization was arranged in a spatially coherent fashion

that showed a tiered pattern of nested membership (Figure 4A). To quantify overlap across networks, if a

region had a membership value statistically greater than 1/7 for a given network, we classified it as “be-

longing to” to that network. We then summed the number of networks to which regions belonged (Figure

4B). By this definition, approximately 50% of brain regions belonged to more than one network (Figure

4C). Further, brain regions belonging to more than one network were distributed across networks (Figure

4D). In even the most disjoint-like cases (OC-2 and OC-3), > 25% of regions affiliated significantly with

more than one network across all conditions.

Membership diversity reveals intermodal differences

The preceding analyses showed clear evidence for extensive overlapping organization in the mouse cortex

across imaging modalities and frequency bands. The characteristics of this overlapping organization were

further quantified using (normalized) Shannon entropy, a continuous measure of membership diversity

computed from regional membership values (Methods, Figure 5A, left). A region that belongs to all

networks with equal membership strengths will have maximal diversity. Conversely, a region that belongs

to a single network will have minimal diversity. Thus, membership diversity is indicative of a region’s

multi-functionality and/or involvement in multiple processes.
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The distribution of membership diversity values across all regions is shown in Figure 5A (right). The peak

near zero captures a group of regions, approximately 30% for Ca2+
slow and Ca2+

fast , and 15% for BOLD, that

are primarily associated with one network. Beyond this peak, the majority of regions displayed values

more or less along a continuum, with a second smaller peak (at approximately 0.35) with regions affiliated

with two networks (dashed line in Figure 5A, right inset). For visualization purposes, we rank-ordered

membership diversity values to inspect the overall pattern across conditions (BOLD, Ca2+
slow , and Ca2+

fast

; Figure 5B; for the non-rank-ordered version, see Figure S6A). The resulting patterns revealed modest

agreement between BOLD and both Ca2+ conditions, and especially strong agreement between the two

Ca2+ frequency bands. To quantify this agreement, we (Pearson) correlated membership diversity values:

between BOLD and Ca2+
slow : r = 0.54±0.11; BOLD and Ca2+

fast : r = 0.63±0.09; and Ca2+
slow and Ca2+

fast :

r = 0.90±0.07 (Figure 5C). Contrary to expectations, measures of BOLD membership diversity were not

more similar to those obtained from Ca2+
slow relative to between BOLD and Ca2+

fast (Figure 5C).
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in most regions, except for some frontal areas where BOLD = Ca2+ , and higher visual areas where BOLD < Ca2+ (left and

middle). Ca2+
slow exhibited a large territory of regions with entropy < Ca2+

fast (right).
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We also identified regions that showed significant differences in membership diversity magnitude between

conditions by subtracting each pair of measures (Figure 5D; FDR corrected). Spatially broad differences

(BOLD versus both Ca2+ frequency bands) were observed. Diversity was consistently larger for BOLD

compared to both Ca2+ conditions, except for two bilateral sectors that showed the opposite pattern (one in

higher-order visual areas and one, for Ca2+
slow only, in a primary somatosensory area). This final observation

was made alongside Ca2+
fast exhibiting a large territory of regions with higher membership diversity than

Ca2+
slow . Overall, differences were observed despite similar proportions across modalities for values above

0.1 (Figure 5A, right).

For a comparison between membership diversity (entropy) and participation coefficient, a measure com-

monly used to quantify link diversity [32–34, 63, 64], see Figure S6. We found membership diversities and

participation coefficients to be in good agreement for BOLD: r = 0.71±0.09, and Ca2+
slow : r = 0.77±0.12,

and to be more weakly related for Ca2+
fast : r = 0.47±0.28.

Region degree is substantially different across modalities

Degree is a measure of centrality that quantifies the number of functional connections of a region [30,

31] (Figure 6A, left). Importantly, degree differs from membership diversity by being independent of

community (regions have functional connections both within and between communities). As in the previ-

ous section, the distribution of degree across regions was plotted for each condition (BOLD, Ca2+
slow , and

Ca2+
fast ) (Figure 6A, right), the spatial distribution was displayed on the cortex (Figure 6B), and (Pearson)

correlation was used to measure agreement between conditions (Figure 6C).

Across conditions, degree distributions showed weak similarity (Figure 6A, right). As expected, Ca2+
slow

and Ca2+
fast were more similar to one another than to BOLD, and Ca2+

slow was more like BOLD than Ca2+
fast

. BOLD and both Ca2+ measures showed differences at the low-extreme (near zero) as well as across the

range: Ca2+ having fewer low-mid degree regions, and more high-degree regions than BOLD. Intermodal

differences were more pronounced when we looked at the spatial distribution of degree (Figure 6B), and

the (Pearson) correlation of degree across conditions (Figure 6C). As for membership diversity, degree

showed a consistent spatial pattern across Ca2+ conditions (Figure 6B), and was highly correlated: r =
0.87± 0.08 (Figure 6C, right). Unlike membership diversity, BOLD and both Ca2+ degree measures

showed opposing spatial patterns (Figure 6B), and were negatively correlated with BOLD: between BOLD

and Ca2+
slow : r =−0.29±0.16, and BOLD and Ca2+

fast : r =−0.46±0.14 Figure 6C (left and middle). To

account for differences based solely on the magnitude/variability of degree values, we computed percentile

maps by calculating t-statistics followed by rank-ordering [33] and found the patterns to be unchanged

(not shown). Further, differences across modalities persisted across edge thresholds and changes in data

preprocessing steps (Figure S7).

Different entropy-degree relationships across modalities

How a given brain region affiliates across multiple networks (as indexed by membership diversity/entropy)

is closely linked to its roles as an integrative and/or coordination hub [34]. Furthermore, membership

diversity and degree are measures that, when combined, can further uncover brain organization [32, 33].

In particular, regions with low entropy and high degree have few inter-network functional connections (low

entropy) and many intra-network functional connections (high degree), and can be thought of as provincial

hubs [33, 63, 64]. Regions with high entropy and low degree have few functional connections but link

many networks, and can be conceptualized as connector hubs. Inspired by the framework developed by

Yang and Leskovec [65], such organization reveals what can be called “sparse” network overlap (Figure
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Figure 6: Regional degree. (A) Left: schematic of regional degree. Right: distribution of regional degree normalized

by number of brain regions (total of 542). (B) Regional degree visualized on the cortex. Densely connected regions have

high degree (hot colors), whereas sparsely connected regions have low degree (cool colors). BOLD and Ca2+ conditions

show opposing spatial patterns. (C) Similarity between conditions is quantified using (Pearson) correlation. BOLD and Ca2+

are negatively correlated whereas Ca2+ conditions are highly positively correlated (variability obtained based on hierarchical

bootstrapping; Methods).

7A, left). Finally, regions with high entropy and high degree interlink many networks via an organization

that can be called “dense” overlap (Figure 7A, right). To determine cortical functional organization based

on these measures, we visualized region entropy-degree relationships for each condition (BOLD, Ca2+
slow ,

and Ca2+
fast ) (Figure 7B) color-coded by disjoint network assignment (Figure 7B; inset).

Entropy and degree were inversely (Pearson) correlated for BOLD (r = −0.44± 0.16; Figure 7B, left).

This pattern was partly driven by a concentration of regions showing sparse overlap (lower right quadrant)

with connector hubs present in most networks, alongside two networks (overlapping with OC-3 and to a

lesser extent OC-2; Figure 2C), that included regions with a more provincial hub characterization (upper

left quadrant). In contrast, entropy and degree were positively correlated for Ca2+
slow (r = 0.44± 0.09),

and Ca2+
fast (r = 0.69± 0.07) (Figure 7B, middle and right). Like BOLD (but to a lesser extent), Ca2+

slow

results included regions with sparse overlap (lower right quadrant); these overlapped with OC-6, and
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to a lesser extent OC-1 and OC-7 (Figure 2C). However, unlike BOLD, there were regions with high

entropy (densely overlapping regions; upper right quadrant), as well as regions with low overall functional

connectivity (lower left quadrant). This pattern was more pronounced in the Ca2+
fast results where fewer

regions exhibited sparse overlap (lower right quadrant; Figure 7B, right). Together, these results uncovered

distinct functional cortical organization observed with BOLD, Ca2+
slow , and Ca2+

fast , such that Ca2+ signals

expressed patterns of denser overlap not captured by BOLD signals.

A

B

Entropy

D
e
g
re

e

Ca2+
fastslowCa2+

BOLD

Sparse overlap Dense overlap

Figure 7: Entropy-degree relationships across modalities. (A) Illustrated examples of sparse and dense overlapping organi-

zation. Figure inspired by Yang and Leskovec [65]. (B) Entropy versus degree for BOLD (left), Ca2+
slow (middle), and Ca2+

fast

(right). Each point corresponds to a brain region, color coded by their disjoint network assignment (inset; see last column in

Figure 2C). See also Figure S6.

Discussion

We used recently developed simultaneous wide-field Ca2+ and fMRI-BOLD acquisition to characterize the

functional network architecture of the mouse cortex. The spatial organization of large-scale networks dis-

covered by both modalities showed many similarities, with some temporal frequency dependence (BOLD

networks were generally more similar to Ca2+
slow than Ca2+

fast ). Functional connectivity interrogated using

a mixed-membership algorithm, instead of traditional disjoint approaches, confirmed the hypothesis that

mouse cortical networks exhibit substantial overlap when either BOLD or Ca2+ signals were considered.

Further, despite the considerable agreement, we also uncovered important differences in organizational

properties across signal modalities.

Previous multimodal studies comparing cortical functional organization via concurrent GCaMP6 Ca2+

and hemoglobin-sensitive imaging have predominantly employed seed-based analyses [3, 16, 66]. Such

work provides information on how one or a limited set of a priori regions are functionally related to

other areas but does not reveal how all regions are interrelated, which was the goal of the present work.

A few studies using optical imaging have gone beyond seed-based analysis; however, the number of

identified networks in these studies was limited. For example, Vanni and colleagues [4] investigated
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cortical networks in GCaMP6 mice and reported 3 networks based on slow temporal frequencies (< 1 Hz)

and two based on faster temporal frequencies (3 Hz) (see also [5]). Here, when we decomposed the

cortex into 3 networks, we observed visual (OC-2) and somatomotor (OC-3) networks and a network

that overlapped with territories possibly linked to the default network (OC-1) [49, 51–53] (Figure 2A).

At this coarse scale, our results agreed with Vanni et al. [4] and other seed-based approaches [3, 16,

37, 51]. Importantly, we sought to determine functional organization at finer spatial levels, too. With

7 networks, we still observed visual (OC-2) and somatomotor (OC-3) networks, now together with a

finer decomposition of other cortical systems (Figure 2C). Overall, our analyses reproduced previous

observations at a coarse scale but characterized a more fine-grained decomposition of cortical functional

organization.

Next, we quantified the concordance between BOLD and Ca2+ networks. Overall, collapsing across net-

works, outcomes from Ca2+
slow (BOLD-frequency matched) were more similar than Ca2+

fast to BOLD, as ex-

pected [1–3, 17, 40–42]. However, when networks were characterized separately, three scenarios emerged:

(1) Low and high frequency Ca2+ signals both manifested networks that were also recovered by BOLD

(e.g., OC-1–OC-4); (2) Low relative to high frequency Ca2+ networks were a better match to their BOLD

counterparts (e.g., OC-5 and OC-6); and (3) Networks that were dissimilar across modalities regardless

of Ca2+ temporal frequency (e.g., OC-7). This observation should be qualified by the finding that Ca2+
slow

and Ca2+
fast results were in close agreement. Overall, linking the functional organization obtained with

BOLD to slow Ca2+ signals is not fully supported by our findings. In particular, the proposal that differ-

ent bands capture distinct neurophysiological properties [67] was not supported for the large-scale system

organization uncovered in the present work.

We quantified whether networks discovered for each condition (BOLD, Ca2+
slow , and Ca2+

fast ) showed signif-

icant overlapping structure. This was accomplished by examining the distribution of membership values

and by quantifying the number of networks each region “belonged to”. Notably, our algorithm detects

disjoint organization in synthetic data, and the robustness of our findings was tested using a range of pa-

rameters (Table 1). Without exception, across conditions, parameter choices, and for all networks, we

observed evidence of significant overlapping organization. On average, slightly over half of brain regions

were affiliated with more than one network. Critically, although the extent of network overlap was largest

for BOLD, it was also pronounced in Ca2+ data regardless of temporal frequency. These results lend strong

support to the validity of overlapping organization in the human brain discovered with BOLD [25–28].

Properties of network overlap, membership diversity (entropy) and degree, were quantified at the region-

level and compared across conditions (BOLD, Ca2+
slow , and Ca2+

fast ). As expected, Ca2+ results showed

low diversity in sensorimotor regions relative to areas that have been implicated in multiple processes

and have widespread anatomical connections such as the posterior parietal cortex (which includes higher-

order visual areas) [68, 69]. Despite showing a positive correlation with Ca2+ results, BOLD membership

diversity measures showed some peculiarities. Specifically, in contrast to Ca2+ , the posterior parietal

cortex exhibited low diversity, while somatosensory areas exhibited high diversity. This was unexpected

given that these regions are not known to be functionally diverse (again, Ca2+ data produced the anticipated

outcome). Overall, these discrepancies do not disrupt a positive correlation between BOLD and Ca2+ but

raise questions about the extent to which the two imaging techniques are capturing the same phenomena.

Further, the story became more complicated when we examined region degree, which showed a negative

correlation between BOLD and Ca2+ measurements with clearly different spatial patterns.

The relationship between entropy and degree helped to uncover additional properties of cortical functional

organization. For BOLD, membership diversity and degree were inversely correlated, a pattern indicative

of “sparse overlap” alongside some networks that included “provincial” hubs. Notably, this pattern has
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been observed in human BOLD data [32, 34]. In contrast, Ca2+ data exhibited a positive correlation (that

was more pronounced for Ca2+
fast ), suggestive of “dense overlap” alongside regions showing few connec-

tions. Together, these results indicated that BOLD and Ca2+ capture distinct forms of overlapping network

organization, with Ca2+ signals particularly able to uncover a “diverse club” of regions (**Bertolero) that

are densely overlapping (*Dense/sparse paper), reminiscent of the “communication core” organization of

structural connections in nonhuman primates (**Modha and Singh, 2010; Markov/Kennedy 2013 Science

paper).

It is possible that some of the discrepancies between BOLD and Ca2+ results stemmed from Ca2+ signals

originating from excitatory neurons, while the BOLD signal is cell-type agnostic. Despite excitatory

neurons being the most populous cell type in the cortex, it is still unclear to what extent the activity of

other cell populations (inhibitory neurons or astrocytes [70]) or vascular effects [7, 8, 71, 72] ) influence the

BOLD signal. This will be explored in our future work utilizing the methods established here. Another

important consideration is our use of anesthesia. Due to the challenges of imaging awake mice [73],

especially head motion, we opted to use low levels of anesthesia. Head motion systematically alters the

correlation structure of functional data and was therefore of particular concern in our analyses [74, 75]

(Methods). However, the effects of anesthesia on brain activity and neurovascular coupling are complex

and may vary by region, anesthetic agent, and dose [66, 76–78]. Our future studies will evaluate how

functional networks, and their properties, differ between awake and anesthetized animals. Notably, the

effects of brain state on functional organization were minimized given that the simultaneous nature of our

multimodal data, given the same “ground truth” brain activity underlies the results from each modality.

Thus, moment-to-moment brain-state differences were not driving factors behind our findings. However,

the analysis methods we used do not strictly require simultaneous data collection. Further, although the

findings reported in the main text were at the group level, our highly-sampled dataset allowed network

organization to be determined at the level of the individual, lending considerable strength to our group-

level findings, and underscoring the translational potential of our approach [79]. Exploring individualized

network properties and exploiting the simultaneous nature of these data further will be a focus of future

work.

Processing and analyzing multimodal data entails making several parameter choices that potentially affect

outcome measures. In particular, network overlap could be inflated by spatial misalignment. We took

great care in co-registering our data and optimizing our parameter set (from the Advanced Normalization

Tools package [80]). Further, issues of misalignment were considerably reduced by estimating network

measures at the level of runs and combining values subsequently. Thus, modest misalignment after reg-

istration did not inflate the overall evaluation of overlap (Methods). In addition, the quantification of

membership strength was applied to values that were thresholded based on statistical significance. We

also used relatively sparse graphs (15% density in the main text), such that only the strongest correlations

were considered; further analyses that quantified the extent of overlap considered only membership val-

ues that statistically exceeded 1/7 (for the 7-network solution). We also probed the effects of parameter

changes (Table 1) and found that our results were qualitatively robust.

In conclusion, we employed novel simultaneous wide-field Ca2+ imaging and BOLD in a highly sam-

pled group of mice expressing GCaMP6f in excitatory neurons to determine the relationship between

large-scale networks discovered by the two techniques. Our findings demonstrated that (1) most BOLD

networks were detected via Ca2+ signals. (2) Considerable overlapping—as opposed to disjoint—network

organization was recovered by both modalities. (3) The large-scale functional organization determined

by Ca2+ signals at low temporal frequencies (0.01−0.5Hz), relative to high frequencies (0.5−5Hz), was

more similar to those recovered with BOLD; yet, qualitative differences were also observed. (4) Key

differences were uncovered between the two modalities in the spatial distribution of membership diver-
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sity and the relationship between region entropy (i.e., network affiliation diversity) and degree. Together

these findings uncovered a distinct overlapping network phenotype across modalities. In sum, this work

revealed that the mouse cortex is functionally organized in terms of overlapping large-scale networks that

are observed with BOLD, lending fundamental support for the neural basis of such a property, which is

also observed in human subjects. The robust differences which were uncovered demonstrate that Ca2+

and BOLD also capture some complementary features of brain organization. Future work exploring these

commonalities and differences, using the simultaneous multimodal acquisition used here, promises to help

uncover how large-scale networks are supported by underlying brain signals in health and disease.
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Materials and methods

Experimental model and subject details

All procedures were performed in accordance with the Yale Institutional Animal Care and Use Committee

and are in agreement with the National Institute of Health Guide for the Care and Use of Laboratory

Animals. All surgeries were performed under anesthesia.

Animals

Mice were group housed on a 12-hour light/dark cycle. Food and water were available ad libitum. Cages

were individually ventilated. Animals were 6-8 weeks old, 25-30g, at the time of the first imaging ses-

sion. Animals (SLC, Slc17a7-cre/Camk2α-tTA/TITL-GCaMP6f also known as Slc17a7-cre/Camk2α-

tTA/Ai93) were generated from parent 1 (Slc17a7-IRES2-Cre-D) and parent 2 (Ai93(TITL-GCaMP6f)-

D;CaMK2a-tTA). Both were on a C57BL/6J background. To generate these animals, male CRE mice

were selected from the offspring of parents with different genotypes, which is necessary to avoid leaking

of CRE expression. Animals were originally purchased from Jackson labs.

Head-plate surgery

All mice underwent a minimally invasive surgical procedure enabling permanent optical access to the

cortical surface (previously described here: [1]). Briefly, mice were anesthetized with 5% isoflurane

(70/30 medical air/O2) and head-fixed in a stereotaxic frame (KOPF). After immobilization, isoflurane

was reduced to 2%. Paralube was applied to the eyes to prevent dryness, meloxicam (2 mg/kg body

weight) was administered subcutaneously, and bupivacaine (0.1%) was injected under the scalp (incision

site). Hair was removed (NairTM) from the surgical site and the scalp was washed with betadine followed

by ethanol 70% (three times). The scalp was removed along with the soft tissue overlying the skull and

the upper portion of the neck muscle. Exposed skull tissue was cleaned and dried. Antibiotic powder

(Neo-Predef) was applied to the incision site, and isoflurane was further reduced to 1.5%. Skull-thinning

of the frontal and parietal skull plates was performed using a hand-held drill (FST, tip diameter: 1.4 and

0.7 mm). Superglue (Loctite) was applied to the exposed skull, followed by transparent dental cement

(C&B Metabond®, Parkell) once the glue dried. A custom in-house-built head plate was affixed using

dental cement. The head-plate was composed of a double-dovetail plastic frame (acrylonitrile butadiene

styrene plastic, TAZ-5 printer, 0.35 mm nozzle, Lulzbot) and a hand-cut microscope slide designed to

match the size and shape of the mouse skull. Mice were allotted at least 7 days to recover from head-plate

implant surgery before undergoing the first of three multimodal imaging sessions.
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multimodal image acquisition

All mice, N = 10, underwent 3 multimodal imaging sessions with a minimum of 7 days between acquisi-

tions. All animals underwent all imaging sessions. None were excluded prior to the study end-point. Data

exclusion (based on motion etc.) is described below. During each acquisition, we simultaneously acquired

fMRI-BOLD and wide-field Ca2+ imaging data using a custom apparatus and imaging protocol we have

described previously [1]. Functional MRI data were acquired on an 11.7 T system (Bruker, Billerica,

MA), using ParaVision version 6.0.1 software. During each imaging session, 4 functional resting-state

runs (10 min each) were acquired. In addition, 3 runs (10 mins each) of unilateral light stimulation data

were acquired. These data are not used in the present study. Structural MRI data were acquired to allow

both multimodal registration and registration to a common space. Mice were scanned while lightly anes-

thetized (0.5− 0.75% isoflurane in 30/70 O2/medical air) and freely breathing. Body temperature was

monitored (Neoptix fiber) and maintained with a circulating water bath.

Functional MRI

We employed a gradient-echo, echo-planar-imaging sequence with a 1.0 sec repetition time (TR) and 9.1

ms echo time (TE). Isotropic data (0.4 mm× 0.4 mm× 0.4 mm) were acquired along 28 slices providing

near whole-brain coverage.

Structural MRI

We acquired 4 structural images for multimodal data registration and registration to a common space.

(1) A multi-spin-multi-echo (MSME) image sharing the same FOV as the fMRI data, with a TR/TE of

2500/20 ms, 28 slices, two averages, and a resolution of 0.1 mm×0.1 mm×0.4 mm. (2) A whole-brain

isotropic (0.2 mm×0.2 mm×0.2 mm) 3D MSME image with a TR/TE of 5500/20 ms, 78 slices, and two

averages. (3) A fast-low-angle-shot (FLASH) time-of-flight (TOF) angiogram with a TR/TE of 130/4 ms,

resolution of 0.05 mm×0.05 mm×0.05 mm and FOV of 2.0 cm×1.0 cm×2.5 cm (positioned to capture

the cortical surface). (4) A FLASH image of the angiogram FOV, including four averages, with a TR/TE

of 61/7 ms, and resolution of 0.1 mm×0.1 mm×0.1 mm.

Wide-field fluorescence Ca2+ imaging

Data were recorded using CamWare version 3.17 at an effective rate of 10 Hz. To enable frame-by-frame

background correction, cyan (470/24, Ca2+-sensitive) and violet (395/25, Ca2+-insensitive) illumination

(controlled by an LLE 7Ch Controller from Lumencor) were interleaved at a rate of 20 Hz. The exposure

time for each channel (violet and cyan) was 40 ms to avoid artifacts caused by the rolling shutter refreshing.

Thus, the sequence was: 10 ms blank, 40 ms violet, 10 ms blank, 40 ms cyan, and so on. The custom-built

optical components used for in-scanner wide-field Ca2+ imaging have been described previously [1].

Image preprocessing

multimodal data registration

All steps were executed using tools in BioImage Suite (BIS) specifically designed for this purpose [1].

For each animal, and each imaging session, the MR angiogram was masked and used to generate a view

that recapitulates what the cortical surface would look like in 2D from above. This treatment of the data

highlights the vascular architecture on the surface of the brain (notably the projections of the middle

cerebral arteries, MCA) which are also visible in the static wide-field Ca2+ imaging data. Using these
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and other anatomical landmarks, we generated a linear transform that aligns the MR and wide-field Ca2+

imaging data. The same static wide-field image was used as a reference for correcting motion in the time

series. To register the anatomical and functional MRI data, linear transforms were generated and then

concatenated before being applied.

Data were registered to a reference space (CCFv3, [35]) using isotropic whole-brain MSME images via

affine followed by non-linear registration (ANTS, Advanced normalization tools; [80]). The histological

volume in CCFv3 was used because of a better contrast match with MRI images. The goodness of fit

was quantified using mutual information and a hemispheric symmetry score that captured the bilateral

symmetry of major brain structures. A large combination of registration hyperparameters was explored,

and the top 10 fits per animal were selected. The best transformation out of this pool was selected for each

animal by visual inspection.

Fluorescence Ca2+ imaging data preprocessing

We have previously described all steps in this pipeline [43]. Briefly, the raw signal was split between

GCaMP-sensitive and GCaMP-insensitive imaging frames. Spatial smoothing with a large kernel (16-

pixel kernel, median filter) was applied to reduce and/or remove focal artifacts (e.g., dust or dead pixels

from broken fibers). Focal artifacts do not move with the subject and can bias motion correction. Motion

correction parameters were estimated on these data using normalized mutual information. Rigid image

registration was performed between each imaging frame in the time series and the reference frame. Reg-

istration parameters were saved, and the large kernel-smoothed images were discarded. Modest spatial

smoothing (4-pixel kernel, median filter) was applied to the raw data, and these data were motion cor-

rected by applying the parameters estimated in the previous step. Data were down-sampled by a factor

of two in both spatial dimensions, which yielded a per pixel spatial resolution of 50× 50 µm2 (original

was 25× 25 µm2). Photo bleach correction was applied to reduce the exponential decay in fluorescence

at the onset of imaging [81]. The fluorophore-insensitive time series were regressed from the fluorophore-

sensitive time series. The first 50 seconds of data were discarded due to the persistent effects of photo-

bleaching in the Ca2+ data. Data were band-pass filtered (3rd order Butterworth) between [0.01−0.5] Hz

(Ca2+
slow ), and high-pass filtered between [0.5− 5.0] Hz (Ca2+

fast ), and 15 time points (1.5s of data) were

discarded from both beginning and the end of the time series to avoid filtering-related edge artifacts [75].

RABIES fMRI data preprocessing

For fMRI preprocessing, we used RABIES (Rodent automated BOLD improvement of EPI sequences)

v0.4.2 [36]. We applied functional inhomogeneity correction N3 (nonparametric nonuniform intensity

normalization; [82, 83]), motion correction (ANTS, Advanced normalization tools; [80]), and slice time

correction, all in native space. A within-dataset common space was created by nonlinearly registering

and averaging the isotropic MSME anatomical images (one from each mouse at each session), which was

registered to the Allen CCFv3 reference space using a nonlinear transformation (see above).

For each run, fMRI data were motion corrected and averaged to create a representative mean image. Each

frame in the time series was registered to this reference. To move the fMRI data to the common space,

the representative mean image was registered to the isotropic structural MSME image acquired during

the same imaging session. This procedure minimizes the effects of distortions caused by susceptibility

artifacts [84]. Then, the three transforms — (1) representative mean to individual mouse/session isotropic

MSME image, (2) individual mouse/session isotropic MSME image to within-dataset common space,

and (3) within-dataset common space to out-of-sample common space –– were concatenated and applied

to the fMRI data. Functional data (0.4mm isotropic) were upsampled to match anatomical MR image
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resolution (0.2mm isotropic). Registration performance was visually inspected and verified for all ses-

sions. Motion was regressed (6 parameters). Data were high-pass filtered (3rd order Butterworth) between

[0.01− 0.5] Hz, and 15 time points (15s of data) were discarded from both the beginning and the end of

the time series to avoid filtering-related edge artifacts. Average white matter and ventricle time courses

were regressed.

Frame censoring

Data were scrubbed for motion using a conservative 0.1 mm threshold. High-motion frames were selected

based on estimates from the fMRI time series and applied to both fMRI and Ca2+ data. Runs were removed

from the data pool if half of the imaging frames exceed this threshold for a given run. In this dataset, 2 runs

(or ∼ 1.7% of all runs) were removed for this reason. Additionally, 2 more runs were removed because

they did not pass our quality control criteria.

Parcellating the cortex into columnar regions of interest (ROI)

To create regions of interest (ROIs), we employed the Allen CCFv3 (2017) reference space [35] and used

their anatomical delineations as our initial choice of ROIs. However, this led to poor performance (see

supplemental discussion). Here, we introduce a novel spatially homogeneous parcellation of the mouse

cortex that can be adopted for both 3D fMRI and 2D wide-field Ca2+ imaging data.

The procedure worked as follows. (1) We generated a cortical flatmap within the CCFv3 space using

code published in ref. [85](https://github.com/AllenInstitute/mouse_connectivity_models).

(2) We subdivided the left hemisphere into N regions via k-means clustering applied to pixel coordinates

(for most analyses reported, N = 512). The right hemisphere was obtained by simple mirror-reversal to

obtain a total of 2N regions. (3) Depth was added to the ROIs to obtain column-shaped regions. To do

so, a path was generated by following streamlines normal to the surface descending in the direction of

white matter (streamline paths were available at 10 µm resolution in CCFv3; see Figure 3F in [35]). Here,

we chose ROI depths so that we included potential signals from approximate layers 1 to 4 (layer masks

were obtained from CCFv3). Evidence from wide-field Ca2+ imaging suggests that signals originate from

superficial layers but can extend into the cortex to some extent [15, 44, 86–88]. (4) Finally, ROIs were

downsampled from 10 µm to 100 µm resolution. See Figure 1C.

After co-registration, ROIs were transformed from the CCFv3 space into each individual’s 3D and 2D

anatomical spaces (see above). On average, ROIs had a size of 8±3 voxels (3D, fMRI) and 48±20 pixels

(2D, Ca2+ ) in individual spaces (mean ± standard deviation).

Functional network construction

Time series data were extracted and averaged from all voxels/pixels within an ROI in native space to

generate a representative time series per ROI. For each modality, for each run, an adjacency matrix was

calculated by applying Pearson correlation to time series data to each ROI pair. Next, we binarized the

adjacency matrices by rank ordering the connection weights and maintaining the top 15%; thus, after

binarization, the resulting graphs had a fixed density of d = 15% across runs and modalities. This approach

aims to keep the density of links fixed across individuals and runs and better preserves network properties

compared to absolute thresholding [89]. To establish the robustness of our results to threshold values, we

also tested values of 10% to 25% in 5% increments.
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Finding overlapping communities

Overlapping network analysis was applied by using SVINET, a mixed-membership stochastic blockmodel

algorithm [29, 90], which has been previously applied to human fMRI data by us [25] and other groups

[27]. SVINET models the observed graph within a latent variable framework by assuming that the ex-

istence (or non-existence) of links between pairs of nodes can be explained by their latent community

memberships. For binary adjacency matrix A and membership matrix π , the model assumes the condi-

tional probability of a connection as follows

p(Ai j|πi,π j) ∝
K

∑
k=1

πikπ jk, (1)

where K is the number of communities, and Ai j = 1 if nodes i and j are connected and 0 otherwise.

Intuitively, pairs of nodes are more likely to be connected if they belong to the same community or to

(possibly several) overlapping communities. More formally, SVINET assumes the following generative

process

1. For each node, draw community memberships πi ∼ Dirichlet(α)

2. For each pair of nodes i and j:

(a) Draw community indicator zi→ j ∼ πi

(b) Draw community indicator zi← j ∼ π j

(c) Assign link between i and j if zi→ j = zi← j.

Model parameters α are fit using stochastic gradient ascent [91, 92]. The algorithm was applied to data

from each run using 500 different random seeds. Results across seeds were combined to obtain a final

consensus for a run.

Aligning community results

Communities were identified in random order due to the stochastic nature of our algorithm. Maximum

cosine similarity of the cluster centroids was used to match communities across calculations (runs or ran-

dom seeds). For each run and random seed, membership vectors for all random seeds were submitted

to k-means clustering (sklearn.cluster.KMeans) to determine K clusters (e.g., K = 7 for analyses with 7

communities). The similarity between the resulting cluster centroids was then established via cosine simi-

larity, and the community matched based on maximum similarity. Formally, the outcome was membership

matrix π (Figure 1E).

Group results

Crucially, all measures were computed at the run level first before combining at the group level.

Membership matrices

This is what’s visualized in Figure 2A and C, Figure S1 and Figure S2A and C.
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Thresholding membership values

To enhance the robustness of our estimates of network overlap, membership values were thresholded to

zero if they did not pass a test rejecting the null hypothesis that the value was zero. After thresholding,

the surviving membership values were rescaled to sum to 1. Thresholding was performed for each animal

separately by performing a one-sample t-test and employing a false discovery rate of 5%. All results

shown utilized this step, with the exception of figures which illustrate the spatial patterns of membership

values (and do not estimate network overlap). Note that almost all (∼ 99%) memberships that did not

reach significance had values in the range [0,0.2].

Region functional diversity

Shannon entropy was applied to membership matrices for each run separately before averaging. That is,

given a membership matrix π from a run, node entropies were computed to get an entropy estimate per

node at the run level

(normalized) entropy of node i at run level = f (πi)≡ hi =−
K

∑
k=1

πik logπik/ logK, (2)

where K = 7 is the number of communities. Entropy values were combined by averaging over runs to get

the group-level estimates. This is what’s visualized in Figure 5B. Similarly, group averages were used to

calculate the correlations between modalities in Figure 5C.

Computing distributions

Similar to above, distributions were computed for each run separately before combining at the group level.

For example, consider hi (entropy of node i) from a run. We computed percentage values using 20 bins of

width 0.05 that covered the entire range of normalized entropy values [0,1]. We then averaged over run-

level histogram values to get group-level estimates shown in Figure 5A. Other distributions were computed

in an identical way. Specifically, 57 bins of size 5 were used for Figure 6A, and 4 bins of size 0.2 were

used for Figure 3B.

Statistical analysis

Hierarchical bootstrapping

Statistical results were performed at the group level by taking into consideration the hierarchical structure

of the data (for each animal, runs within sessions), which can be naturally incorporated into computational

bootstrapping to estimate variability respecting the organization of the data [93]. For each iteration (total

of 1,000,000), we sampled (with replacement) N = 10 animals, N = 3 sessions, and N = 4 runs, while

guaranteeing sessions were yoked to the animal selected and runs were yoked to the session selected

(Figure 1B). In this manner, the multiple runs were always from the same session, which originated from

a specific animal. Overall, the procedure allowed us to estimate population-level variability based on

the particular sample studied here. To estimate 95% confidence intervals, we used the bias-corrected

and accelerated (BCa) method [94], which is particularly effective when relatively small sample sizes are

considered (SciPy’s scipy.stats.bootstrap). See Figure 2E and F, Figure 3B, Figure 5C, Figure 6C, Figure

7B, Figure S2E and F, Figure S3, and Figure S6.
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One-sample t-test

We used a one-sample t-test to define belonging in networks as a function of a threshold µ . The t-statistic

for membership of node i in network k is given as

tik =
π̄ik−µ

SEik

, (3)

where π̄ik is the group averaged membership of node i in network k, and SEik is the standard error estimated

using hierarchical bootstrapping (see above). We calculated p values using t-statistics for all nodes and

networks and declared a node a member of a network if its p-value reached significance p = 0.05. The

results as a function of various µ are shown in Figure 4A. We applied Benjamini-Hochberg correction

[95] using Python statsmodels’ implementation (statsmodels.stats.multitest.multipletests) to correct for

multiple comparison.

LFR analysis

The following parameters need to be specified to generate a binary and overlapping LFR graph [62]. N,

number of nodes; k, average degree; µ , topological mixing parameter; t1, minus exponent for the degree

sequence; t2, minus exponent for the community size distribution; Cmin, minimum for the community

sizes; Cmax, maximum for the community sizes; ON, number of overlapping nodes; OM, number of

memberships of the overlapping nodes.

To match basic statistics of the real data with LFR graphs we set N = 542 (Figure 1D); and, for every run

from each data modality, we calculated the average degree k and estimated t1 via an exponential fit to the

degree distributions (scipy.stats). We set t2 = 0.1, Cmin = 0.05×N ≈ 27, Cmax = 0.35×N ≈ 190. For the

fraction of overlapping nodes ON, we explored a wide range between 0 (disjoint) and 0.9 in incremental

steps of 0.1. This yielded ON = 0 up to ON = 0.9×N = 488. Finally, we used OM = 2 and 3. This results

in a total of 20 LFR graphs per run, per data modality. We applied the community detection algorithm to

LFR graphs in an identical way to the real data, but with fewer seeds (N = 10 compared to N = 500). The

alignment procedure was performed in an identical way as described above. See Figure S5.

Permutation test

A paired permutation test was used to compare conditions in Figure 2E and F, Figure S2E and F, and

Figure S3; and to perform a node-wise comparison across modalities in Figure 5D. We used SciPy’s im-

plementation (scipy.stats.permutation test) with N = 1,000,000 resamples. Holm–Bonferroni correction

was applied to correct for multiple comparison [96].
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Supplemental information

Supplemental discussion

Choosing number of communities

Clustering is in the eyes of the beholder (or the algorithm) [97]. Community detection is inherently ill-

defined: algorithms do not find communities, what they do is “define” communities and later find them

according to their definition. Here, we employed a mixed-membership stochastic blockmodel [46], where

each community corresponds to a latent functional role (see [98] for an extensive review). Choosing a

specific number of communities is thus equivalent to deciding how many functional roles (or clusters) best

describe the observed graphs. In this sense, there is no “true” number of communities. Therefore, instead

of focusing on a single result as a true decomposition, we explored network organization at different

levels of granularity. We decided the number of communities empirically, using criteria such as bilateral

symmetry. At the most coarse level, our K = 3 communities recapitulated previous seed-based reports in

Ca2+ data and coarse fMRI-ICA findings. Our K = 7 decomposition was similar to previous fMRI-ICA

reports [37, 50]. Overall, the highly bilateral nature of the resulting community structure (observed for up

to K = 20 for Ca2+ ) and their similarity to previous reports increased our confidence about our results.

Thresholding the graphs

The algorithm used in this study requires binary graphs as its input [29], which necessitates choosing an

edge-filtering threshold. To mitigate this, we employed an approach known as proportional thresholding

which is known to perform better than alternatives such as absolute thresholding [89]. In addition, the-

oretical work has shown that network topology is highly robust against different thresholds [99]. Here

we reported results at a graph density of d = 15%. To ensure the robustness of our findings to this arbi-

trary choice, we also explored densities going from d = 10% all the way up to d = 25% with incremental

steps of 5%. Empirically, we found that our results were robust to the choice of edge density, as well as

other hyperparameters. Overall, our data partially confirmed previous theoretical and simulation work that

network topology is robust across a wide range of sparsity levels.

Region of interest (ROI) definition scheme

We started by using brain region masks from Allen Reference Atlas (ARA) as our initial choice of ROIs

[35]. However, we observed some mismatch between functional parcellations and ARA parcellation. This

is probably because ARA regions were delineated using various anatomical and structural criteria; but

crucially, function was not one of them. In the present work, we introduced a new parcellation scheme

illustrated in Figure 1C and D, which increased the robustness of our results. In conclusion, we found that

spatially homogeneous ROIs worked well for the purpose of functional network construction, consistent

with previous reports in humans [100].

Defining appropriate ROIs for our multimodal dataset was challenging because different modalities occupy

spaces with different geometries. Namely, fMRI data is defined within a 3D volumetric space, while

mesoscopic Ca2+ imaging data exists only on the 2D cortical surface. To address this, we started from the

2D space of cortical flatmap (Figure 1C; step I), which fits Ca2+ data well. We then added depth to obtain

3D volumetric ROIs (Figure 1C; step II), suitable for fMRI data. In the depth dimension, we included

cortical layers 1 to 4. Crucially, our goal was not to obtain layer-specific results (BOLD resolution was

0.4 mm isotropic). Instead, we wanted to consider depths of the cortex that most likely contribute to
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Ca2+ signal [15, 44, 86–88], which would render our network-level cross-modality comparisons more

meaningful.

Comparing entropy to other measures of node diversity

Brain regions of high functional diversity are more likely to participate in multiple networks. This region-

level property can be characterized using appropriate node centrality measures. Here, we took advantage

of having access to continuous membership values and defined node entropy centrality (Figure 5). Another

measure, “participation coefficient” [32–34, 63, 64], has also been commonly used to quantify a similar

concept: a node’s participation coefficient measures how well-distributed its links are among different

communities. Large participation coefficient indicates higher amount of link diversity, which could be

potentially related to high membership diversity. To understand the relationship between the two measures,

we visualized their spatial patterns and found that entropy and participation coefficient maps were largely

in agreement (Figure S6). The node-wise correlation between entropy and participation coefficient was

r = 0.70±0.09, BOLD; r = 0.77±0.12, Ca2+
slow ; r = 0.47±0.28, Ca2+

fast .

It is worth noting that node entropy and participation coefficient are defined in very different ways. Entropy

is computed from membership probability vectors within our overlapping framework; whereas, participa-

tion coefficient depends on how links are distributed across communities within a disjoint framework.

Despite this, the two measures were highly correlated indicating that they probably capture similar under-

lying phenomena.
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Figure S1: K = 20 decomposition. (A) Even at K = 20, most networks maintain their bilateral symmetry, especially for Ca2+

. A network centered around FOF appears as its own separate network for BOLD, similar to the K = 7 solution (top-right). In

contrast, this network did not appear separately for Ca2+ , even at K = 20. Instead, FOF partially overlaps with a large medial

Ca2+ network that spans parts of SSp-tr/ll. (B) Fine divisions of the cortical regions in Allen reference atlas, along with ALM

and FOF (dashed lines). Label colors inspired from Figure 1F in ref. [101]. A complete list of abbreviations can be found in

the original CCFv3 publication [35]. Compare with Figure 2 for K = 3 and K = 7 solutions.
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Figure S3: BOLD network organization is more similar to Ca2+
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fast . This is a robust finding in the present

study, as it is reproduced over a large combinatorial space of analysis conditions. The y-axis is cosine similarity and the x-axis

corresponds to different conditions. See Figure S2B for a visual comparison of coarse versus fine ROIs. d is graph density

after edge-filtering is applied. Small triangles indicate our choices for the main results: d = 15%, fine ROIs. Permutation test,

p < 0.05, Holm-Bonferroni corrected. Error bars show 95% confidence intervals, hierarchical bootstrap. See also Figure 2 and

Figure S2.
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us to distinguish between disjoint and overlapping graphs: for disjoint graphs, the bin corresponding to strong membership
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for network overlap size. Error bars indicate standard deviation. Compare with Figure 3.
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degree is somewhat altered depending on which BOLD preprocessing steps are used. Minimally processed, motion correction

(rigid transformations) and detrending; HP, high-pass filtering (0.01 Hz); FC, frame censoring; 6MOT, motion regression (6

parameters); WM/CSF, average signal from white matter and ventricles regressed out. (B) Degree patterns are robust to the

choice of edge filtering threshold. Difference thresholds result in different scales, but the spatial patterns remain relatively

similar. (C) Similar to B but for a coarse parcellation (see Figure S2B). Small triangles indicate the pipeline and parameters

used for the main results. Related to Figure 6.

37 Vafaii et al., Apr 2023


	Introduction
	Results
	Traditional cortical organization captured by overlapping network solutions
	Intermodal network organization similarity
	Cortical networks show prominent overlapping organization
	Membership diversity reveals intermodal differences
	Region degree is substantially different across modalities
	Different entropy-degree relationships across modalities

	Discussion
	Acknowledgements
	Materials and methods
	Experimental model and subject details
	Animals
	Head-plate surgery

	multimodal image acquisition
	Functional MRI
	Structural MRI
	Wide-field fluorescence Ca₂ imaging

	Image preprocessing
	multimodal data registration
	Fluorescence Ca₂ imaging data preprocessing
	RABIES fMRI data preprocessing
	Frame censoring

	Parcellating the cortex into columnar regions of interest (ROI)
	Functional network construction
	Finding overlapping communities
	Aligning community results

	Group results
	Membership matrices
	Thresholding membership values
	Region functional diversity
	Computing distributions

	Statistical analysis
	Hierarchical bootstrapping
	One-sample t-test
	LFR analysis
	Permutation test


	Supplemental information
	Supplemental discussion
	Choosing number of communities
	Thresholding the graphs
	Region of interest (ROI) definition scheme
	Comparing entropy to other measures of node diversity



