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Abstract

Among the most striking features of retinal organization is the grouping of its output neurons, the 

retinal ganglion cells (RGCs), into a diversity of functional types. Each of these types exhibits a 

mosaic-like organization of receptive fields (RFs) that tiles the retina and visual space. Previous 

work has shown that many features of RGC organization, including the existence of ON and 

OFF cell types, the structure of spatial RFs, and their relative arrangement, can be predicted 

on the basis of efficient coding theory. This theory posits that the nervous system is organized 

to maximize information in its encoding of stimuli while minimizing metabolic costs. Here, we 

use efficient coding theory to present a comprehensive account of mosaic organization in the 

case of natural videos as the retinal channel capacity—the number of simulated RGCs available 

for encoding—is varied. We show that mosaic density increases with channel capacity up to a 

series of critical points at which, surprisingly, new cell types emerge. Each successive cell type 

focuses on increasingly high temporal frequencies and integrates signals over larger spatial areas. 

In addition, we show theoretically and in simulation that a transition from mosaic alignment to 

anti-alignment across pairs of cell types is observed with increasing output noise and decreasing 

input noise. Together, these results offer a unified perspective on the relationship between retinal 

mosaics, efficient coding, and channel capacity that can help to explain the stunning functional 

diversity of retinal cell types.

1 Introduction

The retina is one of the most intensely studied neural circuits, yet we still lack a 

computational understanding of its organization in relation to its function. At a structural 

level, the retina forms a three-layer circuit, with its primary feedforward pathway consisting 

of photoreceptors to bipolar cells to retinal ganglion cells (RGCs), the axons of which 

form the optic nerve [1]. RGCs can be divided into 30–50 functionally distinct cell types 
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(depending on species) with each cell responsive to a localized area of visual space (its 

receptive field (RF)), and the collection of RFs for each type tiling space to form a “mosaic” 

[2, 3, 4, 5]. Each mosaic represents the extraction of a specific type of information across the 

visual scene by a particular cell type, with different mosaics responding to light increments 

or decrements (ON and OFF cells), high or low spatial and temporal frequencies, color, 

motion, and a host of other features. While much is known about the response properties of 

each RGC type, the computational principles that drive RGC diversity remain unclear.

Efficient coding theory has proven one of the most powerful ideas for understanding 

retinal organization and sensory processing. Efficient coding posits that the nervous system 

attempts to encode sensory input by minimizing redundancy subject to biological costs 

and constraints [6, 7]. As more commonly formulated, it seeks to maximize the mutual 

information between sensory data and neural representations, with the most common cost 

in the retinal case being the energetic cost of action potentials transmitted by the RGCs. 

Despite its simplicity, this principle has proven useful, predicting the center-surround 

structure of RFs [8], the frequency response profile of contrast sensitivity [9], the structure 

of retinal mosaics [10, 11], the role of nonlinear rectification [12], different spatiotemporal 

kernels [13], and inter-mosaic arrangements [14, 15].

While previous studies have largely focused on either spatial or temporal aspects of efficient 

coding, we optimize an efficient coding model of retinal processing in both space and 

time to natural videos [16]. We systematically varied the number of cells available to the 

system and found that larger numbers of available cells led to more cell types. Each of these 

functionally distinct types formed its own mosaic of RFs that tiled space. We show that 

when and how new cell types emerge and form mosaics is the result of tradeoffs between 

power constraints and the benefits of specialized encoding that shift as more cells are 

available to the system. We show that cell types begin by capturing low-frequency temporal 

information and capture increasingly higher-frequency temporal information over larger 

spatial RFs as new cell types form. Finally, we investigated the relative arrangement of 

these mosaics and their dependence on noise. We show that mosaic pairs can be aligned or 

anti-aligned depending on input and output noise in the system [14]. Together, these results 

demonstrate for the first time how efficient coding principles can explain, even predict, the 

formation of cell types and which types are most informative when channel capacity is 

limited.

2 Model

The model we develop is an extension of [14], a retinal model for efficient coding of 

natural images, which is based on a mutual information maximization objective proposed in 

[10]. The retinal model takes D-pixel patches of natural images x ∈ ℝD corrupted by input 

noise nin N 0, Cnin , filters these with unit-norm linear kernels wj ∈ ℝD ∣ wj = 1
j = 1, ⋯, J

representing J RGCs, and then feeds the resulting signals yj = wj
⊤ x + nin  through softplus 

nonlinearities η y = log 1 + eβy /β (we used β = 0.25) with gain γj and threshold θj. Finally, 

these signals are further corrupted by additive output noise nout  N 0, Cnout , to produce firing 

rates rj:
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rj = γj ⋅ η yj − θj + nout, j (1)

The model learns parameters wj, γj, and θj to maximize the mutual information between the 

inputs x and the outputs r, under a mean firing rate constraint [10, 14]:

maximize  log
det GW⊤ Cx + Cnin WG + Cnout

det GW⊤CninWG + Cnout

(2)

subject to  E rj = 1. (3)

Here Cx is the covariance matrix of the input distribution, W ∈ ℝD × J contains the filters 

wj as its columns, the gain matrix G = diag  γj
dη
dy yj − θj

, and the noise covariances are 

Cnin = σin
2 1D × D and Cnout = σout

2 1J × J. This objective is equivalent to the formulation in [10], which 

assumes normally distributed inputs and locally linear responses in order to approximate the 

mutual information in a closed form.

Here, we extend this model to time-varying inputs x t ∈ ℝD representing natural videos 

(Figure 1A–B), which are convolved with linear spatiotemporal kernels wj t j = 1, ⋯, J:

yj t = wj
⊤ t * x t = ∫

−∞

∞

wj(τ)⊤x t − τ dτ . (4)

We additionally assume that the convolutional kernels are separable in time and space:

wj t = ϕj t wj,  ‖wj‖ = 1,  ϕj t ∈ ℝ,  ∫
−∞

∞

ϕ(t)2dt = 1, (5)

and the temporal kernels are unit-norm impulse responses taking the following parametric 

form:

ϕj t ∝ αjtne− t
τj − αj

'tne− t
τj

' if delay t ≥ 0
0 otherwise

, (6)

where αj, αj
' , τj > 0, τj

' > 0 are learnable parameters, and n ∈ ℕ is fixed. Previous work assumed 

an unconstrained form for these filters, adding zero-padding before and after the model’s 

image inputs to produce the characteristic shape of the temporal filters in primate midget and 

parasol cells [13], but this zero-padding represents a biologically implausible constraint, and 

the results fail to correctly reproduce the observed delay in retinal responses [17, 18, 19]. 

Rather, optimizing (2) with unconstrained temporal filters produces a filter bank uniformly 

tiling time (Supplementary Figure 4).
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By contrast, (6) is motivated by the arguments of [20], which showed that the optimal 

minimum-phase temporal filters of retinal bipolar cells, the inputs to the RGCs, take the 

form

ϕ(t > 0) ∝ e−t/τ sin ωt − ωt cos ωt ≈ e−t/τ (ωt)3

3 (7)

when ωτ ≪ 1. Thus, we model RGC temporal filters as a linear combination of these 

forms. In practice, we take only two filters and use n = 6 rather than n = 3, since these 

have been shown to perform well in capturing observed retinal responses [19]. The results 

produced by more filters or different exponents are qualitatively unchanged (Supplementary 

Figure 7). For training on video data, we use discrete temporal filters and convolutions 

with ∑t = 0
T − 1 ϕj[t]2 = 1. Finally, while unconstrained spatial kernels wj converge to characteristic 

center-surround shapes under optimization of (2) (Figure 1C), for computational efficiency 

and stability, we parameterized these filters using a radially-symmetric difference of 

Gaussians

wj r ∝ e−ajr2 − cje−bjr2,  bj > aj > 0,  0 < cj < 1, (8)

where r measures the spatial distance to the center of the RF, and the parameters aj, bj, cj that 

determine the center location and spatial kernel shape are potentially different for each RGC 

j. The result of optimizing (2) using these forms is a set of spatial and temporal kernels 

(Figure 1D–E) that replicate experimentally-observed shapes and spatial RF tiling.

3 Efficient coding as a function of channel capacity: linear theory

Before presenting results from our numerical experiments optimizing the model (2, 3), 

we begin by deriving intuitions about its behavior by studing the case of linear filters 

analytically. That is, we assume a single gain γ for all cells, no bias θ = 0 , and a linear 

transfer function η y = y. As we will see, this linear analysis correctly predicts the same 

types of mosaic formation and filling observed in the full nonlinear model. Here, we sketch 

the main results, deferring full details to Appendix A.

3.1 Linear model in the infinite retina limit

For analytical simplicity, we begin by assuming an infinite retina on which RFs form 

mosaics described by a regular lattice. Under these conditions, we can write the log 

determinants in (2) as integrals and optimize over the unnormalized filter v ≡ γw subject 

to a power constraint:

max
v ∫

G0

d2k
(2π)2 log∑g ∈ G | v k + g |2 Cx k + g + σin

2 + σout
2

∑g ∈ G | v k + g |2σin
2 + σout

2
− ν ∑

g ∈ G

| v k + g |2 Cx k + g + σin
2 ,

(9)
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where Cx k  is the Fourier transform of the stationary image covariance Cx z − z′ , the integral 

is over all frequencies k ∈ G0 unique up to aliasing caused by the spatial regularity of the 

mosaic, and the sums over g account for aliased frequencies (Appendix A.1). In [8], the 

range −π, π  is used for the integral, corresponding to a one-dimensional lattice and units of 

mosaic spacing Δz = 1.

Now, solving the optimization in (9) results in a spatial kernel with the spectral form 

(Appendix A.2)

|v k |2 = σout
2

σin
2

1
2

Cx k
Cx k + σin

2 1 + σin
2

σout
2

4
νCx k + 1 − 1

+

,  k ∈ G0, (10)

where k = ∥ k ∥ and ν is chosen to enforce the constraint on total power. This is exactly the 

solution found in [8], linking it (in the linear case) to the model of [10, 11]. Note, however, 

that (10) is only nonzero within G0, since RF spacing sets an upper limit on the passband of 

the resulting filters.

The generalization of this formulation to the spacetime case is straightforward. Given a 

spacetime stationary image spectrum Cx z − z′, t − t′  and radially-symmetric, causal filter 

w z, t , the same infinite retina limit as above requires calculating determinants across both 

neurons i, j and time points t, t′ of matrices with entries of the form

F ijtt′ = ∫ dzdz′dτdτ′γ2w zi − z, t − τ Cx z − z′, τ − τ′ w zj − z′, t′ − τ′

= ∫ d2k
(2π)2

dω
2π eik ⋅ zi − zj + iω t − t′ | v k, ω |2Cx k, ω .

(11)

Again, such matrices can be diagonalized in the Fourier basis, with the result that 

the optimal spacetime filter once again takes the form (10) with the substitutions 

v k v k, ω , Cx k Cx k, ω  (Appendix A.3). Figure 2A depicts the frequency response 

of this filter in d = 1 spatial dimensions, with corresponding spatial and temporal sections 

plotted in Figures 2 B–C.

3.2 Multiple cell types and the effects of channel capacity

Up to this point, we have only considered a single type of filter v k, ω , corresponding to 

a single cell type. However, multiple cell types might increase the coding efficiency of 

the entire retina if they specialize, devoting their limited energy budget to non-overlapping 

regions of frequency space. Indeed, optimal encoding in the multi-cell-type case selects 

filters v and v′ that satisfy v* k, ω v′ k, ω = 0, corresponding encoding independent visual 

information (Appendix A.4).

This result naturally raises two questions: First, how many filter types are optimal? And 

second, how should a given budget of J RGCs be allocated across multiple filter types? 

As detailed in Appendix A.5, we can proceed by analyzing the case of a finite retina in 

the Fourier domain, approximating the information encoded by a mosaic of J RGCs with 
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spatial filters given by (10) and nonoverlapping bandpass temporal filters that divide the 

available spectrum (e.g., Figure 2 B, C). Following [21], we approximate the correlation 

spectrum of images by the factorized power law Cx k, ω ≃ A
kαω2  with α ≈ 1.3 and find that in 

this case, the optimal filter response exhibits two regimes as a function of spatial frequency 

(Supplementary Figure 1A): First, below kf = A/σin
2 ω2 1/α, the optimal filter is separable and 

log-linear, and the filtered image spectrum is white:

|v k, ω |2 ≈ kαω2
Aν ,  |v k, ω |2Cx k, ω ≈ ν−1,

where ν, the Lagrange multiplier in (9) that enforces the power constraint, scales as 1/P  for 

small values of maximal power P  and 1/P2 for larger values (Supplementary Figure 1D). 

Second, for k ≳ kf, the filter response decreases as k−α/2 until reaching its upper cutoff at 

kc = kf / νσout
2 1/α, with the filtered image spectrum falling off at the same rate (Supplementary 

Figure 1B).

But what do these regimes have to do with mosaic formation? The link between the two is 

given by the fact that, for a finite retina with regularly spaced RFs, adding RGCs decreases 

the distance between RF centers and so increases the resolving power of the mosaic. That is, 

the maximal value of k grows roughly as k J in d = 2, such that larger numbers of RGCs 

capture more information at increasingly higher spatial frequencies (Supplementary Figure 

1A). However, while information gain is roughly uniform in the whitening regime, it falls off 

sharply for k ≳ kf (Supplementary Figure 1C), suggesting the interpretation that the k ≲ kf

regime is a “mosaic filling” phase in which information accumulates almost linearly as RFs 

capture new locations in visual space, while the k ≳ kf regime constitutes a “compression 

phase” in which information gains are slower as RFs shrink to accommodate higher numbers 

(Figure 2D). Indeed, one can derive the scaling of total information as a function of J:

ℐ ≃
J log 1 + P0

σout
2 − 2P0

α + 2 σout
2

J
Jf

α
2 k ≲ kf

J − Jf
J
Jf

− α
2 2

2 − α k ≳ kf

, (12)

where P0 is the power budget per RGC and Jf is the RGC number corresponding to 

k = kf. Thus, mosaic filling exhibits diminishing marginal returns (Figure 2E), such that new 

cell types are favored when the marginal gain for growing mosaics with lower temporal 

frequency drops below the gain from initiating a new cell type specialized for higher 

temporal frequencies. Moreover, the difference between these gain curves implies that 

new RFs are not added to all mosaics at equal rates, but in proportion to their marginal 

information (Figure 2F). As we demonstrate in the next section, these features of cell type 

and mosaic formation continue to hold in the full nonlinear model in simulation.
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4 Experiments

We analyzed the characteristics of the optimal spatiotemporal RFs obtained from the model 

(2, 3) trained on videos from the Chicago Motion Database [22]. Model parameters for 

spatial kernels, temporal kernels, and the nonlinearities were jointly optimized using Adam 

[23] to maximize (2) subject to the mean firing rate constraint (3) using the augmented 

Lagrangian method with the quadratic penalty ρ = 1 [24]. Further technical details of model 

training are in Appendix E. All model code and reproducible examples are available at 

https://github.com/pearsonlab/efficientcoding.

As previously noted, the power spectral density of natural videos can be well approximated 

by a product of spatial and temporal power-law densities, implying an anticorrelation 

between high spatial and temporal frequency content [21]. Supplementary Figure 5 shows 

the data spectrum of the videos in our experiments is also well-approximated by separable 

power-law fits. To examine the effect of these statistics on the learned RFs, we divided the 

dataset into four progressively smaller subsets by the proportion of their temporal spectral 

content below 3 Hz, their spectral attenuation. Using values of 70%, 80%, and 90% then 

yielded a progression of datasets ranging from most videos to only the slowest videos 

(Figure 3A, B). Indeed, when the model was trained on these progressively slower data 

subsets, it produced only temporal smoothing filters, whereas the same model trained on 

all videos produced a variety of “fast” temporal filter types (Figure 3C). We also note that 

these experiments used unconstrained spatial kernels in place of (8), yet still converged on 

spatial RFs with typical center-surround structure as in [10, 15, 14]. Thus, these preliminary 

experiments suggest that the optimal encoding strategy—in particular, the number of distinct 

cell types found—depends critically on the statistics of the video distribution to be encoded.

4.1 Mosaics fill in order of temporal frequency

As the number of RGCs available to the model increased, we observed the formation of new 

cell types with new spectral properties (Figure 4). We characterized the learned filters for 

each RGC in terms of their spectral centroid, defined as the center of mass of the Fourier 

(spatial) or Discrete Cosine (temporal) transform. Despite the fact that each model RGC 

was given its own spatial and temporal filter parameters (8, 6), the learned filter shapes 

strongly clustered, forming mosaics with nearly uniform response properties (Figure 4A–C). 

Critically, the emergence of new cell types shifted the spectral responses of previously 

established ones, with new cell types compressing the spectral windows of one another as 

they further specialized. Moreover, mosaic density increased with increasing RGC number, 

shifting the centroids of early mosaics toward increasingly higher spatial frequencies. This is 

also apparent in the forms of the typical learned filters and their power spectra: new filters 

selected for increasingly high-frequency content in the temporal domain (Figure 4D).

We likewise analyzed the coverage factors of both individual mosaics and the entire 

collection, defined as the proportion of visual space covered by the learned RFs. More 

specifically, we defined the spatial radius of an RF as the distance from its center at which 

intensity dropped to 20% of its peak and used this area to compute a coverage factor, the 

ratio of total RF area to total visual space (π/4 of the square’s area due to circular masking). 

Since coverage factors depend not simply on RGC number but on RF density, they provide 
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an alternative measure of the effective number of distinct cell types learned by the model. 

As Figure 4E shows, coverage increases nearly linearly with RGC number, while coverage 

for newly formed mosaics increases linearly before leveling off. In other words, new cell 

types initially increase coverage of visual space by adding new RFs, but marginal gains 

in coverage diminish as density increases. In all cases, the model dynamically adjusts the 

number of learned cell types and the proportion of RGCs assigned to them as channel 

capacity increases.

4.2 Phase changes in mosaic arrangement

In addition to retinal organization at the level of mosaics, a pair of recent papers reported 

both experimental [15] and theoretical [14] evidence for an additional degree of freedom 

in optimizing information encoding: the relative arrangement of ON and OFF mosaics. Jun 

et al. studied this for the case of natural images in [14], demonstrating that the optimal 

configuration of ON and OFF mosaics is alignment (RFs co-located) at low output noise 

levels and anti-alignment (OFF RFs between ON RFs and vice-versa) under higher levels 

of retinal output noise. Moreover, this transition is abrupt, constituting a phase change in 

optimal mosaic arrangement.

We thus asked whether learned mosaics exhibited a similar phase transition for natural video 

encoding. To do so, following [14], we repeatedly optimized a small model (J = 14, 7 ON, 

7 OFF) for multiple learned filter types while systematically varying levels of input and 

output noise. In each case, one ON-OFF pair was fixed at the center of the space, while the 

locations of the others were allowed to vary. We used RF size D = 82 pixels for Slow and 

D = 122 for FastA and FastB cell types to allow the size of spatial kernels to be similar to 

those of the previous experiments, and we imposed the additional constraint that the shape 

parameters aj, bj, and cj in (8) be shared across RGCs.

Under these conditions, the six free pairs of RFs converged to either aligned (overlapping) or 

anti-aligned (alternating) positions along the edges of the circular visual space, allowing 

for a straightforward examination of the effect of input and output noises on mosaic 

arrangement. Figure 5A–C shows that the phase transition boundaries closely follow the 

pattern observed in [14]: increasing output noise shifts the optimal configuration from 

alignment to anti-alignment. Moreover, for each of the tested filters, increasing input noise 

discourages this transition. This effect also follows from the analysis presented in [14], since 

higher input noise increases coactivation of nearby pairs of RFs, requiring larger thresholds 

to render ON-OFF pairs approximately indpendent (Appendix B).

5 Discussion

Related work:

As reviewed in the introduction, this study builds on a long line of work using efficient 

coding principles to understand retinal processing. In addition, it is related to work 

examining encoding of natural videos [25, 22, 16] and prediction in space-time. The most 

closely related work to this one is that of [13], which also considered efficient coding of 

natural videos and considered the tradeoffs involved in multiple cell types. Our treatment 
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here differs from that work in several key ways: First, while [13] was concerned with 

demonstrating that multiple cell types could prove beneficial for encoding (in a framework 

focused on reconstruction error), that study predetermined the number of cell types and 

mosaic structure, only optimizing their relative spacing. By contrast, this work is focused 

on how the number of cell types is dynamically determined, and how the resulting mosaics 

arrange themselves, as a function of the number of units available for encoding (i.e., the 

channel capacity). Specifically, we follow previous efficient coding models [8, 9, 10, 11] 

in maximizing mutual information and do not assume an a priori mosaic arrangement, 

a particular cell spacing, or a particular number of cell types— all of these emerge via 
optimization in our formulation. Second, while the computational model of [13] optimized 

strides for a pair of rectangular arrays of RGCs, we individually optimize RF locations 

and shapes, allowing us to study changes in optimal RF size and density as new, partial 

mosaics begin to form. Third, while [13] used zero-padding of natural videos to bias learned 

temporal filters toward those of observed RGCs, we link the form of temporal RFs to 

biophysical limits on the filtering properties of bipolar cells, producing temporal filters with 

the delay properties observed in real data. Finally, while [13] only considered a single noise 

source in their model, we consider noise in both photoreceptor responses (input noise) and 

RGC responses (output noise), allowing us to investigate transitions in the optimal relative 

arrangement of mosaics [14, 15].

We have shown that efficient coding of natural videos produces multiple cell types with 

complementary RF properties. In addition, we have shown for the first time that the 

number and characteristics of these cell types depend crucially on the channel capacity: 

the number of available RGCs. As new simulated RGCs become available, they are 

initially concentrated into mosaics with more densely packed RFs, improving the spatial 

frequency bandwidth over which information is encoded. However, as this strategy produces 

diminishing returns, new cell types encoding higher-frequency temporal features emerge 

in the optimization process. These new cell types capture information over distinct 

spatiotemporal frequency bands, and their formation leads to upward shifts in the spatial 

frequency responses of previously formed cell types. Moreover, pairs of ON and OFF 

mosaics continue to exhibit the phase transition between alignment and anti-alignment 

revealed in a purely spatial optimization of efficient coding [14], suggesting that mosaic 

coordination is a general strategy for increasing coding efficiency. Furthermore, despite 

the assumptions of this model—linear filtering, separable filters, firing rates instead of 

spikes—our results are consistent with observed retinal data. For example, RGCs with 

small spatial RFs exhibit more prolonged temporal integration: they are also more low-pass 

in their temporal frequency tuning. Second, there is greater variability in the size and 

shape of spatial RFs at a given retinal location, but temporal RFs exhibit remarkably little 

variability in our simulations and in data [19]. Thus, these results further testify to the power 

of efficient coding principles in providing a conceptual framework for understanding the 

nervous system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
ON and OFF RF mosaics and their temporal kernels are predicted by efficient coding of 

natural videos. (A) Frames of natural videos x t  plus input noise nin are linearly filtered 

with the spatial kernels wj and then passed through one-dimensional temporal convolutions 

ϕj followed by a nonlinearity, resulting firing rates rj t  for each of J RGCs. (B) The 

same calculations shown along the time axis, visualizing the temporal convolutions. (C) 

Examples of initial and optimized spatial filters, temporal filters, and nonlinearities: (left) 
fast OFF kernel, (right) slow ON kernel. (D) Unconstrained spatial filters J = 160  learned 

center-surround shapes, about half of which are ON RFs. (E) Temporal filters J = 160
using the parameterization (6) converged to four distinct clusters.
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Figure 2: 
Optimal filters in the linear spacetime case. (A) Spectrum of the optimal linear spacetime 

filter in d = 1 spatial dimension. Contour lines indicate constant (log) power. (B) Spatial 

filters at representative temporal frequencies. Each filter represents a vertical section at the 

correspondingly colored dot in A. (C) Temporal filters at representative spatial frequencies. 

Each filter represents a horizontal section at the correspondingly colored dot in A. (D) 

Spatial filters at ω = 0 for increasing numbers of RGCs J. The spatial extent of the center 

narrows with more RGCs added to the mosaic. (E) Gain in information per RGC added 

to each mosaic as a function of current RGC number J. New cell types begin when the 

marginal benefit of adding an RGC to an existing mosaic equals the benefit of adding 

the first RGC of a new cell type. Color indicates ω0, the temporal frequency of the 

narrow-band filter. (F) Total number of RGCs in each mosaic as a function of total RGCs 

across all mosaics. As new cell types arise and form mosaics, new RGCs are allocated 

to existing mosaics at a decreasing rate. For both plots, A = 100, σin = 0.4, σout = 1.25, and 

log10ω0 = 1.5, 1.52, 1.54, 1.56, 1.6. Details of calculations in Appendix A.5.
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Figure 3: 
Statistics of natural videos affect learned RFs. (A) Histogram of spectral attenuation 

(fraction of power < 3 Hz) for each video clip from the Chicago Motion Database. A 

significant portion of the dataset exhibits predominaly low-frequency spectral content in 

time. Videos with spectral attenuation above 0.9, 0.8, and 0.7, are denoted (4), (3), and (2), 

respectively, while (1) refers to all videos in the dataset. (B) Spatial (top) and temporal 

(bottom) spectral density of the four subsets. (C) Temporal filters learned by training on 

each of the four subsets. Training on slow videos produced only smoothing kernels, while 

training on all videos produced a variety of temporal filters.

Jun et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Emergence of new RF types with increasing RGC number. (A) Distribution of spatial 

and temporal spectral centroids for J = 80,  140,  200 RGCs. ON and OFF RFs form 

distinct clusters corresponding to different learned filter types. (B) ON and OFF mosaics 

corresponding to each cell type. The number in the lower right of each plot is the coverage 

factor for the mosaic. (C) Power spectral density of a typical kernel in each mosaic 

for J = 200. As predicted, learned kernels filter over roughly nonoverlapping regions of 

spatiotemporal frequency. Contour lines represent isopower lines of the signal correlation 

Cx k, ω . (D) Learned shapes of example spatial ON and OFF filters (top) and corresponding 
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temporal filters (bottom) from each RF type for the J = 200 case. (E) Total (left) and 

per-mosaic (right) coverage factors as the number of RGCs J increases from 40 to 200. New 

mosaics increase coverage linearly with the number of RFs, while nearly full mosaics see 

diminishing returns in coverage from density increases. See Supplementary Figures 8–9 for 

similar plots for all RGC numbers.
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Figure 5: 
Learned mosaics exhibit a phase transition as a function of input and output noise. (A-C) 

Spatial kernel centers for Slow (A), FastA (B), and FastB (C) as a function of σin and σout. In 

all three cases, the optimal configuration changes from aligned to anti-aligned when output 

noise increases or input noise decreases. Blue bars denote alignment as measured by median 

distance to the nearest RF center of the opposite type.
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