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Abstract

This paper targets at improving the generalizability of hypergraph neural networks in the 

low-label regime, through applying the contrastive learning approach from images/graphs (we 

refer to it as HyperGCL). We focus on the following question: How to construct contrastive 
views for hypergraphs via augmentations? We provide the solutions in two folds. First, guided 

by domain knowledge, we fabricate two schemes to augment hyperedges with higher-order 

relations encoded, and adopt three vertex augmentation strategies from graph-structured data. 

Second, in search of more effective views in a data-driven manner, we for the first time 

propose a hypergraph generative model to generate augmented views, and then an end-to-end 

differentiable pipeline to jointly learn hypergraph augmentations and model parameters. Our 

technical innovations are reflected in designing both fabricated and generative augmentations 

of hypergraphs. The experimental findings include: (i) Among fabricated augmentations in 

HyperGCL, augmenting hyperedges provides the most numerical gains, implying that higher-order 

information in structures is usually more downstream-relevant; (ii) Generative augmentations do 

better in preserving higher-order information to further benefit generalizability; (iii) HyperGCL 

also boosts robustness and fairness in hypergraph representation learning. Codes are released at 

https://github.com/weitianxin/HyperGCL.

1 Introduction

Hypergraphs have raised a surge of interests in the research community [1, 2, 3] due 

to their innate capability of capturing higher-order relations [4]. They offer a powerful 

tool to model complicated topological structures in broad applications, e.g., recommender 

systems [5, 6], financial analyses [7, 8], and bioinformatics [9, 8, 10]. Concomitant with the 

trend, hypergraph neural networks (HyperGNNs) have recently been developed [1, 2, 3] for 

hypergraph representation learning.
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This paper focuses on the few-shot scenarios of hypergraphs, i.e., task-specific labels 

are scarce, which are ubiquitous in real-world applications of hypergraphs [5, 7, 9] and 

empirically restrict the generalizability of HyperGNNs. Inspired by the emerging self-

supervised learning on images/graphs [11, 12, 13, 14, 15, 16], especially the contrastive 

approaches [12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25], we set out to leverage contrastive 

self-supervision to address the problem.

Nevertheless, one challenge stands out: How to build contrastive views for hypergraphs? 
The success of contrastive learning hinges on the appropriate view construction, otherwise 

it would result in “negative transfer” [12, 14]. However, it is non-trivial to build hypergraph 

views due to their overly intricate topology, i.e., there are ∑e = 1
N N

e  possibilities for one 

hyperedge on N vertices, versus 
N
2  for one edge in graphs. To date, the only way of 

contrasting is between the representations of hypergraphs and their clique-expansion graphs 

[26, 27], which is computationally expensive as multiple neural networks of different 

modalities (hypergraphs and variants of expanded graphs) need to be optimized. More 

importantly, contrasting on clique expansion has the risk of losing higher-order information 

via pulling representations of hypergraphs and graphs close.

Contributions.

Motivated by [12, 14] that appropriate data augmentations suffice for the effective 

contrastive views, and intuitively they are more capable of preserving higher-order relations 

in hypergraphs compared to clique expansion, we explore on the question in this paper, 

how to design augmented views of hypergraphs in contrastive learning (HyperGCL). Our 

answers are in two folds.

We first assay whether fabricated augmentations guided by domain knowledge are suited 

for HyperGCL. Since hypergraphs are composed of hyperedges and vertices, to augment 

hyperedges, we propose two strategies that (i) directly perturb on hyperedges, and (ii) 

perturb on the “edges” between hyperedges and vertices in the converted bipartite graph; 

To augment vertices, we adopt three schemes of vertex dropping, attribute masking and 

subgraph from graph-structured data [14]. Our finding is that, different from the fact that 

vertex augmentations benefit more on graphs, hypergraphs mostly benefit from hyperedge 
augmentations (up to 9% improvement), revealing that higher-order information encoded in 

hyperedges is usually more downstream-relevant (than information in vertices).

Furthermore, in search of even better augmented views but in a data-driven manner, we 

study whether/how augmentations of hypergraphs could be learned during contrastive 

learning. To this end, for the first time, we propose a novel variational hypergraph 

auto-encoder architecture, as a hypergraph generative model, to parameterize a certain 

augmentation space of hypergraphs. In addition, we propose an end-to-end differentiable 

pipeline utilizing Gumbel-Softmax [28], to jointly learn hypergraph augmentations and 

model parameters. Our observation is that generative augmentations can better capture the 

higher-order information and achieve state-of-the-art performance on most of the benchmark 

data sets (up to 20% improvement).
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The aforementioned empirical evidences (for generalizability) are drawn from 

comprehensive experiments on 13 datasets. Moreover, we introduce the robustness and 

fairness evaluation for hypergraphs, and show that HyperGCL in addition boosts robustness 

against adversarial attacks and imposes fairness with regard to sensitive attributes.

The rest of the paper is organized as follows. We discuss the related work in Section 

2, introduce HyperGCL in Section 3, present the experimental results in Section 4, and 

conclude in Section 5.

2 Related Work

Hypergraph neural networks.

Hypergraphs, which are able to encode higher-order relationships, have attracted significant 

attentions in recent years. In the machine learning community, hypergraph neural networks 

are developed for effective hypergraph representations. HGNN [1] adopt the clique 

expansion technique and designs the weighted hypergraph Laplacian for message passing. 

HyperGCN [2] proposes the generalized hypergraph Laplacian and explores adding the 

hyperedge information through mediators. The attention mechanism [29, 30] is also 

designed to learn the importance within hypergraphs. However, the expanded graph will 

inevitably cause distortion and lead to unsatisfactory performance. There is also another 

line of works such as UniGNN [31] and HyperSAGE [32] which try to perform message 

passing directly on the hypergraph to avoid the information loss. A recent work [3] provides 

an AllSet framework to unify the existing studies with high expressive power and achieves 

state-of-the-art performance on comprehensive benchmarks. The work utilizes deep multiset 

functions [33] to identify the propagation and aggregation rules in a data-driven manner.

Contrastive self-supervised learning.

Contrastive self-supervision [12, 34, 35] has achieved unprecedented success in computer 

vision. The core idea is to learn an embedding space where samples from the same 

instance are pulled closer and samples from different instances are pushed apart. Recent 

works start to cross-pollinate between contrastive learning and graph neural networks 

to for more generalizable graph representations. Typically, they design some fabricated 

augmentations guided by domain knowledge, such as edge perturbation, feature masking 

or vertex dropping, etc. Nevertheless, contrastive learning on hypergraphs remains largely 

unexplored. Most existing works [6, 36, 26, 37] design pretext tasks for hypergraphs and 

mainly focus on recommender systems [38, 39, 40, 41], via contrasting between graphs and 

hypergraphs which might lose important higher-order information. In this work, we explore 

on the structure of hypergraph itself to construct contrastive views.

3 Methods

3.1 Hypergraph Contrastive Learning

A hypergraph is denoted as G = V, ℇ ∈ G where V = v1, …, vV  is the set of vertices 

and ℇ = e1, …, eℇ  is the set of hyperedges. Each hyperedge en = v1, …, ven  represents the 

higher-order interaction among a set of vertices. State-of-the-art approaches to encode such 
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complex structures are hypergraph neural networks (HyperGNNs) [1, 2, 3], mapping the 

hypergraph to a D-dimension latent space via f:G ℝD with higher-order message passing.

Motivated from learning on images/graphs, we adopt contrastive learning to further 

improve the generalizability of HyperGNNs in the low-label regime (HyperGCL). Main 

components of our HyperGCL, similar to images/graphs [12, 14] include: (i) hypergraph 
augmentations for contrastive views, (ii) HyperGNNs as hypergraph encoders, (iii) 

projection head ℎ ⋅  for representations, and (iv) contrastive loss for optimization. The 

overall pipeline is shown in Figure 1. Detailed descriptions and training procedure are shown 

in Appendix B. The main challenge here is how to effectively augment hypergraphs to build 

contrastive views.

3.2 Fabricated Augmentations for Hypergraphs

We first explore whether manually designed augmentations are suited for HyperGCL. Since 

hyperedges and vertices compose a hypergraph, augmentations are fabricated with regards to 

topology and node features, respectively.

A1. Perturbing hyperedges.—The most direct augmentation on higher-order 

interactions is to perturb on the set of hyperedges. Since adding a hyperedge is confronted 

with the combinatorial challenge (see Sec. 1 of introduction), here we focus on randomly 

removing the existing hyperedges following an i.i.d. Bernoulli distribution. The underlying 

assumption is that the partially missing higher-order relations do not significantly affect the 

semantic meaning of hypergraphs.

A2. Perturbing edges in equivalent bipartite graph.—To augment higher-order 

relations in a more fine-grained way, we first convert the hypergraph into the equivalent 

bipartite graph, where two disjoint sets of vertices represent vertices and hyperedges in the 

hypergraph, respectively (see Figure 2). On top of the bipartite graph, we perform random 

removal of edges. A2 disrupts the higher-order relations via randomly kicking out vertices 

from hyperedges, enforcing the semantics of hypergraph representations to be robust to such 

disruption. A2 is essentially the generalized version of A1.

Moreover, we find that vertex augmentations for graph-structured data [14] are applicable 

to hypergraphs. Therefore, we adopt three additional schemes of vertex dropping (A3), 

attribute masking (A4) and subgraph (A5) into our experiments, with similar prior 

knowledge incorporated as in [14].

3.3 Generative Models for Hypergraph Augmentations

Manually designing augmentation operators requires a wealth of domain knowledge, and 

might lead to sub-optimal solutions even with extensive trial-and-errors. We next study 

whether/how augmentations of hypergraphs could be learned during contrastive learning. 

Two questions need to be answered here: (i) How to parameterize the augmentation space of 

hypergraphs? (ii) How to incorporate the learnable augmentations into contrastive learning?

Wei et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.1 Hypergraph Generative Models for Augmentations—Considering an 

augmentation operator defined as the stochastic mapping between two hypergraph manifolds 

that g:G G, a natural thought is to adopt the generative model to parameterize the 

augmentation space, which in general is composed of a deterministic encoder ℎ1:G ℝD′

and a stochastic decoder (or sampler) ℎ2:ℝD′ G. In this way, g = ℎ1 ∘ ℎ2.

Following this thought, inspired by the well-studied generative models with variational 

inference [42, 43], we propose a novel variational hypergraph auto-encoder architecture 

(VHGAE). To the best of our knowledge, this is the first hypergraph generative model 

for generating augmentations of hypergraphs, which will be used as A6. Notice that 

here it only parametrizes the augmentation space of edge perturbation, and in the future 

node perturbation would be included. VHGAE consists of the encoder and decoder neural 

networks. The overall framework is shown in Figure 3.

Encoder.: The encoder embeds hypergraphs into latent representations. Instead of 

embedding a hypergraph into a single vector, we follow VGAE [43] to embed it into a set of 

vertex and in additional hyperedge representations, to facilitate the further decoding process 

of non-Euclidean structures. We adopt two HyperGNNs, ℎ1
μ and ℎ1

σ, to encode the mean 

and the logarithmic standard deviation for variational distributions of vertex and hyperedge 

representations zV qϕ zV ∣ G = N μV, σV
2 , zℇ qϕ zℇ ∣ G = N μℇ, σℇ

2  as follows (please refer to 

Appendix B for the detailed computing pipeline):

μV, μℇ = ℎ1
μ G , log   σV , log   σℇ = ℎ1

σ G , (1)

where μ ∈ ℝD′ × V , log σ ∈ ℝD′ × V . We here leverage the higher-order message passing in 

HyperGNNs for a better encoding capability.

Decoder.: With the learned vertex and hyperedge variational distributions, the decoder 

attempts to reconstruct the higher-order relations of hypergraphs. However, modeling the 

space of higher-order interactions encounters the combinatorial challenge (see Section 1). 

Adopting the similar strategy as in the augmentation A2 (see Section 3.2), we designate 

the decoder to recover the relations on the converted bipartite graph G = V, ℇ  for 

approximation. Mathematically, we formulate decoding as:

p G ∣ zV, zℇ ≈ p G ∣ zV, zℇ =
e = 1

ℇ

v = 1

V
p ℇv, e ∣ zv, ze =

e = 1

ℇ

v = 1

V
Sigmoid   zv

Tze

,
(2)

where wve = zv
Tze is the learned edge logit. On the decoded topological distribution of the 

bipartite graph, we perform sampling and then convert the sample back to the hypergraph 

(the conversion between hypergraphs and bipartite graphs is lossless).

Generator optimization.: With variational inference [42, 44, 45], we optimize the 

hypergraph generator on the evidence lower bound (ELBO) as follows:
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ELBO = Eqϕ zℇ ∣ G Eqϕ zV ∣ G log   pθ G ∣ zv, ze − KL   qϕ zV ∣ G ∣ p zV − KL  
qϕ zℇ ∣ G ∣ p zℇ

(3)

where qϕ zℇ ∣ G  and qϕ zV ∣ G  are their variational distribution, p zV  and p zℇ  are 

default Gaussian priors with p zV N 0, I , p zℇ N 0, I . When generating hypergraphs, the 

generator would sample the relations on the converted bipartite graph with probability 

p G ∣ zV, zℇ .

3.3.2 Jointly Augmenting and Contrasting with Gumbel-Softmax—With 

hypergraph augmentations parametrized with generative models, the next step is to 

incorporate augmentation learning into HyperGCL. The main barrier results from the 

discrete sampling of hyperedges which is non-differentiable. To tackle it, we leverage the 

Gumbel-Softmax trick [28] for the hyperedge distribution as:

T G   = Gumbel‐   Softmax   p G ∣ zV, zℇ

= Sigmoid   wVℇ + log   δ − log   1 − δ /τ
Ggen = T G ∘ G,

(4)

where wVℇ denotes the learned edge logits (before Sigmoid) and δ Uniform   0,1 . When 

hyperparameter temperature τ 0, the results get closer to being binary. T  is the sampled 

one-hot vector for each hyperedge-vertex interaction in the hypergraph G. Then the sampled 

vector will be applied to perform augmentation. During the Gumbel-Softmax, we leverage 

the reparametrization trick [42] to smooth the gradient and make the sample operation 

differentiable. Thus, this objective can be optimized in an end-to-end manner as:

minϕℒgen ϕ − β ⋅ ℒcl G, Ggen ∣ θ, ϕ , (5)

where ℒgen = − ELBO is the generator loss to be minimized, β is the tradeoff factor. Due 

to the computational cost of collaboratively optimizing two generative views, we train one 

VHGAE to produce one generative view, with the other view Gp is kept as fabricated. 

To be specific, (i) independently optimizing two hypergraph generators is of reasonable 

budgets but would lead to distribution collapse (i.e., two hypergraph generators output 

the same distribution) [1,2] which results in less effective generative views, while (ii) 

the collaborative optimization techniques for graph generators (e.g. REINFORCE on the 

rewards of generative graph structures) are not directly applicable to HyperGCL due to 

the combinatorial challenge of hypergraph structures (which is computationally expensive). 

The goal of this multi-task loss is to generate stronger augmentation (maximize contrastive 

loss) to push HyperGNN to avoid capturing redundant information during the representation 

learning, while at the same time learning the hypergraph data distribution.

4 Experiments

4.1 Setup

We examine our methods on the most comprehensive hypergraph benchmarks with 13 

data sets, with statistics shown in Table 1. Please refer to Appendix C for detailed 
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information. We focus on semi-supervised vertex classification in the transductive setting. 

Different from the existing work [3] that leverages 50% of all vertexes as the training 

set, we focus on the more low-label regime of challenging and practical applications. 

By default, we split the data into training/validation/test samples using (10%/10%/80%) 

splitting percentages. Each experiment is run for 20 different data splits and initialization 

with mean and standard deviation reported. We adopt state-of-the-art SetGNN [3] as the 

backbone HyperGNN architecture. For baselines, we compare two existing hypergraph 

self-supervised approaches [36] and [26] in recommender systems, denoted as Self and Con. 

They conduct self-supervised learning between the hypergraph and conventional graph. By 

default, we adopt multi-task training to incorporate contrastive self-supervision because it 

performs the best as shown in the comparison in Section 4.2. All the implementation details 

are listed in Appendix C. More experiments of the hyperparameters study are given in 

Appendix A.

4.2 Results

Comparison among different hypergraph augmentations.—The augmentation 

operations are summarized in Table 2. Please refer to Appendix C.5 for detailed 

descriptions. We first conduct experiments to compare different contrastive operations on 

hypergraphs, with results shown in Table 3. In general, generalized hyperedge augmentation 

(A2) works the best among fabricated augmenting operators, but not naïvely perturbing 

hyperedge (A1). Specifically, among all fabricated augmentations, A2 performs the best in 

10 of 13 data sets. This indicates the nature that higher-order information in structures is 

usually more downstream-relevant.

For our generative augmentation (A6), we find it performs the best in all the data sets. In 

our joint augmenting and contrasting framework, we generate stronger augmentation while 

keeping the hypergraph distribution with adversarial learning. This illustrates the importance 

of exploring the hypergraph structure. We also test our method on 1% label setting in Table 

4. In this setting, Zoo and NTU2012 data sets are not shown because of the extremely 

small data size (each case has less than one training sample). We can find that in the 1% 

label setting A4 (mask) method performs the best in Cora, Citeseer and DBLP-CA. These 

data sets are all originally graphs, and are constructed as hypergraphs in different ways. So 

on these data sets, relatively little higher-order structural information can be explored with 

hypergraph structure perturbation-based contrastive learning.

Comparison between multi-task learning and pretraining.—We then compare the 

multi-task training method with the pretraining method in Table 5. Pretrain_L adopts the 

linear evaluation protocol where a linear classifier is trained on top of the fixed pretrained 

representations. Pretrain_F follows a fully finetuning protocol that uses the weights of the 

learned hypergnn encoder as initialization while finetuning all the layers. MTL denotes the 

multi-task learning method which trains the supervised classification loss and contrastive 

loss together. For all the methods, we use A2 (generalized hyperedge perturbation) as it 

performs the best among fabricated augmentations. From the table, we find MTL achieves 

the best performance in nearly all data sets. Pretrain_L and Pretrain_F can only obtain better 

performance on two small data sets: Zoo and House. We find on most data sets, Pretrain_L 
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makes the model perform worse, which shows that the linear classifier is not enough to 

represent the higher-order information in the hypergraph. Pretrain_F has a much better 

performance compared with Pretrain_L, which indicates the effects of using contrastive 

learning. However, the method switches the objective during finetuning, which would lead 

to the memorization problem and the loss of pre-trained knowledge. Therefore, all our other 

experiments adopt MTL setting to incorporate contrastive self-supervision.

Comparison to the converted graph.—Next we investigate on which graph should we 

contrast on. We first convert the original hypergraph into a conventional graph using the 

clique expansion technique, and we choose the representative HGNN[1] as the backbone 

network for learning on the converted graph. We compare it with two representative 

augmentations: A2 (Here, edge perturbation on the conventional graph) and A4 (feature 

masking). In Table 6, we find that HGNN performs poorly compared with SetGNN. 

Apparently contrastive self-supervision on converted graphs does not bring much benefit. 

The reason is that part of structural information, important to hypergraph representation 

learning, is lost when hypergraphs are converted to graphs. These results indicate the 

importance of designing HyperGNN and contrastive strategies directly on hypergraphs.

Analysis of generative augmentation.—Here we analyze our proposed generative 

hypergraph augmentation (A6). We select ModelNet40 and Yelp as the representatives of 

high-homophily and low-homophily data sets, respectively.

First, we examine the training dynamics of keep ratio and find that they are highly related 

to the data set homophily (Figure 4 (a)). For ModelNet40, the generator keeps only 20% 

relations in the early training stage. This is because the homophily of the data set is very 

high (0.92/0.88) and deleting a lot of edges relatively randomly at the beginning would not 

have a large impact on the model but rather can help model learn structural information. 

Then at a later stage, the generator begins to keep more than 80% relations, which means 

that the model has learned higher-order information and only removes the unnecessary 

relations. For Yelp, a similar conclusion holds. Specifically, as its homophily is pretty low 

(0.57/0.26), the generator keeps most of the relations at the early stage for training and then 

just keeps a very low ratio of related relations at the later training stage.

Next, we investigate what our generator has learned. We visualize the hyperedges in the 

Yelp data set in Figure 4 (b). Yelp is a restaurant-rating data set and the restaurants visited 

by the same user are connected by a hyperedge. We find that some vertices with different 

labels are removed, which could remove extraneous information and improve the hypergraph 

homophily. This indicates that our generator does grasp the higher-order information in the 

hypergraph.

Adversarial robustness.—Besides generalizability, we here show hypergraph contrastive 

learning also boosts robustness. Since there is no existing work developing adversarial 

attack algorithms designated for hypergraphs, we adapt two state-of-the-art attackers from 

the graph domain. We presume the graph attackers are applicable to hypergraphs to a 

certain extent, both of which are non-Euclidean data structures with sharing properties. 

The experiments are performed on five real-world data sets: Cora, Citeseer, ModelNet40, 
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NTU2012 and House. We regard each hypergraph as a bipartite graph and leverage those 

algorithms to conduct attacks to the vertices and hyperedges. The methods include an 

untargeted attack method, minmax attack [46] which poisons the graph structures by adding 

and removing relations to reduce the overall performance; and a targeted attack method, 

nettack [47] which leads the HyperGNN to mis-classify target vertices. Beyond these, we 

also include a random hypergraph perturbation baseline which will randomly drop numerous 

relations in the hypergraph. These three methods are denoted as Net, Minmax and Random. 

Following previous works, for each attack, we perturb 10% of vertices/relations. The results 

in Table 7 show that Random and Minmax attacks can decrease the performance of the 

original model a little on all the data sets, while net attack can decrease the performance 

on most data sets and surprisingly increase the performance on the House data set. This 

performance gain indicates HyperGNN is more robust to structure attack compared with 

GNN as it leverages higher-order information. Based on these, HyperGCL with generalized 

hyperedge augmentation (A2) performs better than feature perturbation (A4), and our 

proposed generative augmentation (A6) can surpass these fabricated baselines on all the 

data sets and thus is the best to defend attacks. We believe this’ll be a beneficial complement 

to our main experiments and we hope for more works on hypergraph attacks.

Fairness.—Furthermore, we claim that hypergraph contrastive self-supervision also 

benefits fairness. There was no related data set before. So we introduce three newly 

curated hypergraph data sets: German [48], Recidivism [49] and Credit [50]. The hypergraph 

construction follows the setting in [1]. The top 5 similar objects in each data set are built as 

a hyperedge. For the accuracy metrics, we use F1-score and AUROC value for the binary 

classification task. For measuring fairness, we adopt the statistical parity ΔSP and equalized 

odds ΔEO. Please refer to Appendix C for detailed information about the data sets and 

metrics. The experimental results in Table 8 show that our generative method still achieves 

better or comparable performances while imposing more fairness.

5 Conclusion

In the paper, we study the problem of how to construct contrastive views of hypergraphs 

via augmentations. We provide the solutions by first studying domain knowledge-guided 

fabrication schemes. Then, in search of more effective views in a data-driven manner, we 

are the first to propose hypergraph generative models to generate augmented views, as well 

as an end-to-end differentiable pipeline to jointly perform hypergraph augmentation and 

contrastive learning. We find that generative augmentations perform better at preserving 

higher-order information to further benefit generalizability. The proposed framework also 

boosts robustness and fairness of hypergraph representation learning. In the future, we 

plan to design more powerful hypergraph generator and HyperGNN while addressing more 

real-world hypergraph data challenges and more hypergraph learning models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The framework of hypergraph contrastive learning (HyperGCL). The ellipses represent the 

hyperedges. Two contrastive views are generated by hypergraph augmentations A1 and A2 
from the augmentation collection A. f ⋅  and ℎ ⋅  are shared encoder and projection head 

respectively. In the figure, we show two examples of hypergraph augmentations. At the top, 

the dotted ellipse denotes the deleted hyperedge. At the bottom, one vertex in the dotted 

hyperedge is removed.
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Figure 2: 
Conversion from hypergraph to equivalent bipartite graph.
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Figure 3: 
Framework of the proposed variational hypergraph auto-encoder (VHGAE). The green lines 

indicate these modules participated in the optimization process.
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Figure 4: 
(a) Training dynamics of the relation keep ratio. (b) Illustration of our proposed generative 

augmentation on the Yelp data set. Each icon represents a restaurant in the data set, and the 

number near the icon is the label of this restaurant. The ellipse denotes the hyperedge.
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Table 1:

Data statistics: ℎe, ℎv are the node homophily and hyperedge homophily in hypergraph. Higher value indicate 

the hypergraph is more homogeneous. Details can be found in Appendix C.

Cora Citeseer Pubmed Cora-
CA

DBLP-
CA

Zoo 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart

| | 2708 3312 19717 2708 41302 101 16242 8124 2012 12311 50758 1290 88860

|ℇ| 1579 1079 7963 1072 22363 43 100 298 2012 12311 679302 341 69906

# 
feature

1433 3703 500 1433 1425 16 100 22 100 100 1862 100 100

# class 7 6 3 7 6 7 4 2 67 40 9 2 11

h e 0.86 0.83 0.88 0.88 0.93 0.66 0.73 0.96 0.87 0.92 0.57 0.58 0.75

h v 0.84 0.78 0.79 0.79 0.88 0.35 0.49 0.87 0.81 0.88 0.26 0.52 0.55
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Table 2:

The proposed augmentation operations for contrastive learning framework HyperGCL and their corresponding 

names.

Name Operation

A0 Identity

A1 Naïve Hyperedge Perturbation

A2 Generalized Hyperedge Perturbation

A3 Vertex Dropping

A4 Attribute Masking

A5 Subgraph

A6 Generative Augmentation
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Table 3:

Results on the test data sets: Mean accuracy (%) ± standard deviation. Bold values indicate the best result. 

Underlined values indicate the second best. 10% of all vertices are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups Mushroom

SetGNN 67.93 ± 1.27 63.53 ± 1.32 84.33 ± 0.36 72.21 ± 1.51 89.51 ± 0.18 65.06 ± 12.82 79.37 ± 0.35 99.75 ± 0.11

Self 68.24 ± 1.12 62.49 ± 1.48 84.38 ± 0.38 72.74 ± 1.53 89.51 ± 0.23 57.35 ± 18.32 79.45 ± 0.32 95.83 ± 0.23

Con 68.89 ± 1.80 62.82 ± 1.21 84.56 ± 0.34 73.22 ± 1.65 89.59 ± 0.13 61.05 ± 14.54 79.49 ± 0.45 95.85 ± 0.31

A0 68.59 ± 1.33 62.25 ± 2.15 84.54 ± 0.42 71.85 ± 1.62 89.62 ± 0.24 62.57 ± 13.84 79.07 ± 0.46 99.77 ± 0.17

A1 72.39 ± 1.34 66.28 ± 1.27 85.17 ± 0.37 75.45 ± 1.54 89.83 ± 0.21 65.80 ± 13.31 79.47 ± 0.32 99.80 ± 0.14

A2 72.58 ± 1.09 66.40 ± 1.35 85.16 ± 0.38 75.62 ± 1.42 90.22 ± 0.23 66.35 ± 13.26 79.56 ± 0.42 99.80 ± 0.17

A3 72.33 ± 1.23 65.79 ± 1.18 85.24 ± 0.28 75.34 ± 1.40 89.85 ± 0.16 65.79 ± 14.05 79.47 ± 0.34 99.81 ± 0.10

A4 72.95 ± 1.19 66.22 ± 0.95 84.88 ± 0.38 75.29 ± 1.56 90.10 ± 0.18 62.59 ± 12.77 79.45 ± 0.48 99.80 ± 0.14

A5 67.96 ± 0.99 63.21 ± 1.25 84.48 ± 0.40 72.61 ± 1.86 89.75 ± 0.24 62.47 ± 12.39 79.42 ± 0.52 99.79 ± 0.10

A6 73.12 ± 1.48 66.94 ± 1.00 85.72 ± 0.38 76.21 ± 1.26 90.28 ± 0.19 66.89 ± 12.44 79.78 ± 0.40 99.86 ± 0.10

NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0) Avg. Rank

SetGNN 73.86 ± 1.62 95.85 ± 0.38 28.78 ± 1.51 68.54 ± 1.89 58.34 ± 2.25 74.97 ± 0.22 59.13 ± 0.20 7.71

Self 73.41 ± 1.65 95.83 ± 0.23 23.49 ± 4.15 67.75 ± 3.29 58.54 ± 2.16 74.76 ± 0.20 58.83 ± 0.21 8.64

Con 73.27 ± 1.53 95.85 ± 0.31 26.14 ± 1.86 68.50 ± 2.52 58.56 ± 2.42 75.17 ± 0.21 59.39 ± 0.20 7.07

A0 73.54 ± 1.93 95.92 ± 0.18 29.43 ± 1.42 67.48 ± 3.21 57.39 ± 2.37 73.14 ± 0.21 56.49 ± 0.60 8.21

A1 74.71 ± 1.81 95.87 ± 0.27 27.18 ± 0.71 68.64 ± 2.99 58.10 ± 3.22 75.42 ± 0.13 60.09 ± 0.25 4.50

A2 74.88 ± 1.66 96.56 ± 0.34 31.39 ± 2.45 69.73 ± 2.60 58.90 ± 1.97 75.50 ± 0.18 60.19 ± 0.20 2.29

A3 74.68 ± 1.74 96.48 ± 0.29 27.57 ± 1.00 67.88 ± 2.90 58.51 ± 2.22 75.29 ± 0.23 60.19 ± 0.20 4.71

A4 74.83 ± 1.75 95.86 ± 0.28 29.64 ± 1.93 69.56 ± 2.89 58.91 ± 2.69 75.43 ± 0.18 59.90 ± 0.24 4.14

A5 74.41 ± 1.86 96.46 ± 0.33 29.24 ± 1.42 68.14 ± 2.97 57.70 ± 2.98 75.26 ± 0.18 59.81 ± 0.22 6.71

A6 75.34 ± 1.91 96.93 ± 0.33 34.64 ± 0.39 70.96 ± 2.27 59.93 ± 1.99 75.62 ± 0.16 60.46 ± 0.20 1.00
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Table 4:

Results on the test data sets: Mean accuracy (%) ± standard deviation. Bold values indicate the best result. 1% 

of all vertexes are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA 20Newsgroups Mushroom

SetGNN 46.48 ± 3.62 47.01 ± 4.31 76.13 ± 1.19 52.29 ± 4.18 85.52 ± 0.54 73.83 ± 1.40 97.73 ± 1.18

Self 45.79 ± 5.34 44.22 ± 4.43 76.71 ± 0.90 51.64 ± 5.37 84.42 ± 0.37 73.91 ± 0.90 92.25 ± 0.89

Con 49.20 ± 4.38 48.56 ± 4.88 77.51 ± 1.08 52.37 ± 4.41 86.47 ± 0.35 74.39 ± 1.23 92.43 ± 0.87

A0 48.50 ± 4.77 46.43 ± 4.24 78.83 ± 1.79 49.87 ± 5.08 87.34 ± 0.73 74.43 ± 1.11 97.32 ± 1.33

A1 56.42 ± 5.02 55.63 ± 3.96 80.13 ± 1.44 60.86 ± 5.91 87.53 ± 0.30 74.68 ± 1.31 97.95 ± 1.15

A2 56.81 ± 4.49 56.10 ± 2.86 80.22 ± 1.24 60.96 ± 6.31 88.10 ± 0.35 74.72 ± 1.16 98.05 ± 1.18

A3 55.94 ± 3.67 55.82 ± 3.40 80.13 ± 1.02 60.51 ± 4.55 87.47 ± 0.36 74.63 ± 1.00 98.04 ± 0.98

A4 58.55 ± 5.14 57.16 ± 4.62 80.11 ± 1.02 60.91 ± 5.15 88.91 ± 0.29 74.67 ± 1.39 97.72 ± 1.12

A5 46.23 ± 3.44 45.07 ± 4.89 75.95 ± 1.32 53.26 ± 4.86 87.12 ± 0.43 74.81 ± 1.04 97.72 ± 1.25

A6 57.45 ± 5.00 56.23 ± 3.27 81.10 ± 0.80 61.76 ± 4.94 88.55 ± 0.41 75.52 ± 0.93 98.28 ± 1.03

ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0) Avg. Rank (↓)

SetGNN 88.34 ± 2.69 27.64 ± 1.10 53.69 ± 2.20 51.85 ± 1.64 65.48 ± 0.45 51.15 ± 0.52 7.62

Self 86.85 ± 3.03 20.77 ± 5.15 53.42 ± 2.25 51.14 ± 1.75 65.23 ± 0.43 51.00 ± 0.41 9.69

Con 87.00 ± 2.99 24.23 ± 0.43 53.58 ± 3.04 51.96 ± 1.87 65.47 ± 0.44 51.13 ± 0.46 7.31

A0 88.75 ± 2.78 27.43 ± 0.60 53.60 ± 2.73 51.70 ± 2.13 65.41 ± 0.47 51.10 ± 0.49 7.46

A1 89.34 ± 2.66 26.18 ± 0.51 54.12 ± 3.29 52.23 ± 2.46 65.96 ± 0.36 51.22 ± 0.35 4.08

A2 89.37 ± 2.69 27.67 ± 0.91 54.42 ± 2.83 52.31 ± 1.44 66.01 ± 0.41 51.32 ± 0.30 2.69

A3 89.31 ± 2.62 26.98 ± 0.66 53.71 ± 2.71 52.11 ± 2.24 65.88 ± 0.50 51.35 ± 0.53 4.38

A4 89.03 ± 2.66 27.45 ± 0.81 53.64 ± 2.61 51.77 ± 2.20 65.55 ± 0.51 51.04 ± 0.47 4.54

A5 89.43 ± 2.68 28.09 ± 0.96 54.07 ± 3.09 51.94 ± 1.84 65.52 ± 0.39 50.97 ± 0.47 6.00

A6 90.22 ± 2.72 29.61 ± 0.71 56.27 ± 4.18 52.55 ± 2.18 66.42 ± 0.40 51.82 ± 0.39 1.23
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Table 5:

Results of different self-supervised mechanisms: Mean accuracy (%) ± standard deviation. Bold values 

indicate the best result. 10% of all vertexes are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups

SetGNN 67.93 ± 1.27 63.53 ± 1.32 84.33 ± 0.36 72.21 ± 1.51 89.51 ± 0.18 65.06 ± 12.82 79.37 ± 0.35

Pretrain_L 52.59 ± 2.33 53.29 ± 2.01 69.90 ± 0.41 48.00 ± 4.79 87.59 ± 0.43 66.82 ± 13.48 71.93 ± 2.99

Pretrain_F 68.39 ± 1.20 63.83 ± 1.68 84.47 ± 0.40 73.12 ± 1.37 89.75 ± 0.23 65.43 ± 13.38 79.44 ± 0.39

MTL 72.58 ± 1.10 66.40 ± 1.35 85.16 ± 0.38 75.82 ± 1.42 90.22 ± 0.23 66.35 ± 13.26 79.56 ± 0.42

Mushroom NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0)

99.75 ± 0.11 73.86 ± 1.62 95.85 ± 0.38 28.78 ± 1.51 68.54 ± 1.89 58.34 ± 2.25 74.97 ± 0.22 59.13 ± 0.20

93.77 ± 2.20 70.06 ± 2.42 96.23 ± 0.31 26.68 ± 0.30 61.22 ± 3.09 54.81 ± 2.39 40.35 ± 4.30 33.30 ± 2.72

99.77 ± 0.15 74.03 ± 1.86 95.88 ± 0.34 28.19 ± 1.42 69.02 ± 4.02 59.20 ± 2.54 75.01 ± 0.27 59.87 ± 0.28

99.80 ± 0.17 74.88 ± 1.66 96.56 ± 0.34 31.39 ± 2.45 69.73 ± 2.60 58.90 ± 1.97 75.50 ± 0.18 60.19 ± 0.20
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Table 6:

Results on converted conventional graphs: Mean accuracy (%) ± standard deviation. Bold values indicate the 

best result. 10% of all vertices are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups

HGNN 67.37 ± 1.45 62.76 ± 1.42 82.16 ± 0.38 66.80 ± 1.79 85.28 ± 0.29 47.84 ± 6.87 70.27 ± 0.73

A2 67.18 ± 1.42 63.52 ± 2.35 82.37 ± 0.34 67.14 ± 1.79 85.22 ± 0.26 46.85 ± 10.15 70.46 ± 1.21

A4 67.24 ± 1.51 63.37 ± 2.56 82.25 ± 0.43 66.88 ± 2.07 85.16 ± 0.25 46.85 ± 9.93 69.35 ± 1.24

Mushroom NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0)

97.15 ± 0.47 70.26 ± 1.70 87.60 ± 0.36 26.91 ± 0.37 58.01 ± 2.47 57.65 ± 2.69 59.48 ± 0.19 53.97 ± 0.29

97.29 ± 0.45 69.91 ± 1.59 87.75 ± 0.33 26.72 ± 0.36 58.08 ± 3.28 57.53 ± 2.80 59.49 ± 0.22 54.04 ± 0.24

97.15 ± 0.55 69.94 ± 1.54 87.65 ± 0.36 26.66 ± 0.45 58.47 ± 2.99 57.73 ± 2.84 59.53 ± 0.22 53.98 ± 0.26
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Table 7:

Results on the test data sets with regard to robustness. Bold values indicate the best result. 10% of all vertexes 

are used for training.

Cora Citeseer ModelNet40

Random Net Minmax Random Net Minmax Random Net Minmax

SetGNN 66.87 ± 1.33 66.26 ± 
1.54

66.58 ± 1.02 62.89 ± 1.57 62.81 ± 
1.32

62.21 ± 1.64 95.74 ± 0.22 95.41 ± 
0.28

93.33 ± 0.26

A2 71.90 ± 1.63 71.16 ± 
0.92

70.86 ± 1.22 66.41 ± 1.08 65.38 ± 
1.47

64.69 ± 0.98 96.09 ± 0.17 95.52 ± 
0.24

93.64 ± 0.26

A4 72.11 ± 1.60 70.49 ± 
1.29

70.52 ± 1.39 65.94 ± 1.24 65.15 ± 
1.70

64.12 ± 1.19 95.79 ± 0.27 95.44 ± 
0.25

93.35 ± 0.24

A6 72.15 ± 1.70 71.94 ± 
1.48

71.98 ± 1.36 66.60 ± 1.61 65.68 ± 
1.09

65.51 ± 1.13 96.58 ± 0.24 96.23 ± 
0.23

94.82 ± 0.33

NTU2012 House (0.6) House (1.0)

Random Net Minmax Random Net Minmax Random Net Minmax

SetGNN 73.84 ± 2.18 73.38 ± 
1.36

70.71 ± 1.89 67.16 ± 2.55 68.88 ± 
2.68

64.78 ± 2.20 56.86 ± 1.93 59.95 ± 
1.92

56.52 ± 2.52

A2 74.50 ± 2.03 73.86 ± 
1.84

71.40 ± 1.64 67.71 ± 2.94 69.59 ± 
2.32

65.23 ± 2.89 57.74 ± 2.70 60.73 ± 
2.30

57.00 ± 1.94

A4 73.73 ± 1.59 73.72 ± 
1.59

71.06 ± 1.53 67.55 ± 2.41 68.85 ± 
1.38

64.97 ± 3.35 57.47 ± 2.72 60.10 ± 
1.74

56.65 ± 2.26

A6 75.06 ± 1.97 74.37 ± 
1.99

72.09 ± 1.98 69.88 ± 3.27 73.14 ± 
2.71

68.84 ± 2.71 60.06 ± 2.07 62.41 ± 
1.77

58.76 ± 2.24
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Table 8:

Results on the test data sets with regard to fairness. 10% of all vertexes are used for training. For fairness 

metrics ΔSP and ΔEO, lower values indicate better performance.

data set Method AUROC F1 ΔSP(↓) ΔEO(↓)

German Credit

SetGNN 59.16 ± 2.51 81.84 ± 0.93 2.65 ± 5.62 4.06 ± 6.76

A2 59.81 ± 3.00 82.26 ± 0.13 0.55 ± 0.95 0.78 ± 0.70

A4 59.66 ± 3.83 80.54 ± 3.52 3.03 ± 6.54 5.07 ± 7.81

A6 59.88 ± 3.04 82.36 ± 0.38 0.95 ± 0.92 0.47 ± 0.56

Recidivism

SetGNN 96.51 ± 0.48 89.84 ± 0.97 8.63 ± 0.50 4.16 ± 0.51

A2 96.34 ± 0.39 90.09 ± 0.53 8.53 ± 0.52 3.92 ± 0.68

A4 96.45 ± 0.35 89.75 ± 0.68 8.49 ± 0.27 3.49 ± 0.66

A6 96.55 ± 0.54 89.22 ± 0.55 8.51 ± 0.25 3.13 ± 0.64

Credit defaulter

SetGNN 73.46 ± 0.17 87.91 ± 0.27 2.79 ± 0.99 0.98 ± 0.69

A2 73.43 ± 0.27 87.82 ± 0.24 2.64 ± 1.32 0.93 ± 0.87

A4 73.58 ± 0.19 87.92 ± 0.25 2.84 ± 1.14 1.38 ± 0.32

A6 73.78 ± 0.16 88.03 ± 0.14 2.58 ± 0.91 0.81 ± 0.37
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