Skip to main content
. Author manuscript; available in PMC: 2023 Jun 1.
Published in final edited form as: Adv Neural Inf Process Syst. 2022 Dec;35:1909–1922.

Table 8:

Results on the test data sets with regard to fairness. 10% of all vertexes are used for training. For fairness metrics ΔSP and ΔEO, lower values indicate better performance.

data set Method AUROC F1 ΔSP(↓) ΔEO(↓)
German Credit SetGNN 59.16 ± 2.51 81.84 ± 0.93 2.65 ± 5.62 4.06 ± 6.76
A2 59.81 ± 3.00 82.26 ± 0.13 0.55 ± 0.95 0.78 ± 0.70
A4 59.66 ± 3.83 80.54 ± 3.52 3.03 ± 6.54 5.07 ± 7.81
A6 59.88 ± 3.04 82.36 ± 0.38 0.95 ± 0.92 0.47 ± 0.56
Recidivism SetGNN 96.51 ± 0.48 89.84 ± 0.97 8.63 ± 0.50 4.16 ± 0.51
A2 96.34 ± 0.39 90.09 ± 0.53 8.53 ± 0.52 3.92 ± 0.68
A4 96.45 ± 0.35 89.75 ± 0.68 8.49 ± 0.27 3.49 ± 0.66
A6 96.55 ± 0.54 89.22 ± 0.55 8.51 ± 0.25 3.13 ± 0.64
Credit defaulter SetGNN 73.46 ± 0.17 87.91 ± 0.27 2.79 ± 0.99 0.98 ± 0.69
A2 73.43 ± 0.27 87.82 ± 0.24 2.64 ± 1.32 0.93 ± 0.87
A4 73.58 ± 0.19 87.92 ± 0.25 2.84 ± 1.14 1.38 ± 0.32
A6 73.78 ± 0.16 88.03 ± 0.14 2.58 ± 0.91 0.81 ± 0.37