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Summary

The joint modeling of longitudinal and time-to-event data is an active area in biostatistics research. 

The focus of this article is on developing a modeling framework for these joint models when the 

longitudinal and time-to-event data do not have a meaningful time-zero. The motivating example 

is the study of a longitudinal assessment of station during child labor and it’s relationship to 

time-to-delivery. A good predictor of delivery type and timing would help obstetricians better 

manage the end of pregnancy and better facilitate delivery. One measure of labor progression 

is station, a measure of the position of the fetus’ head in relation to the pelvis of the pregnant 

women, may be a good marker for delivery time and type. However, women enter the hospital, 

where their station is closely monitored, at arbitrary points in their labor process, resulting in no 

clear time zero. In addition, since delivery may be of various types, the competing risks due to 

type need to be accounted for. We develop a joint model of longitudinal and time-to-event data for 

this situation. The model is formulated through shared random effects between the survival and 

longitudinal processes, and parameter estimation is conducted through a Bayesian approach. The 

model is illustrated with longitudinal data on station where the relationship between station and 

event-time is studied and the model is used to assess the ability of longitudinal measures of station 

to predict the type and timing of pregnancy. We illustrate the methodology with longitudinal data 

taken during labor.
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1. Introduction

Understanding the relationship between longitudinal biomarkers and time-to-event has been 

an important area for methodological research (Rizopoulos (2012), for example). These 

methods have been used for both characterizing the relationship between features of the 

longitudinal biomarker and the event-time distribution as well as to develop dynamic 
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predictors of clinical outcome from the repeated biomarker. This article proposes new 

statistical methodology for the situation where the longitudinal and survival processes have 

no clearly defined time zero and where there are competing risks for the time-to-event 

outcome. We present a shared random parameter model where the longitudinal process 

is linked to the event process through a series of random effects. Competing risks are 

incorporated by separately modeling the type and timing of the clinical event given these 

shared random effects.

The application of interest is on understanding the relationship between a longitudinal 

assessment of labor progression and the type and timing of delivery in women at the 

end of pregnancy. Specifically, researchers are interested in assessing the relationship 

between station, defined as the position of the fetuses in their mother’s pelvis, and eventual 

delivery type and timing. Studying this relationship would provide useful information to the 

obstetrician about monitoring pregnant women for station during labor. The station in labor 

describes the descent of the fetus into the pelvis and is often measured on a −5 to +5 scale 

in centimeters, where the reference point of zero refers to the point where the head crosses 

the midpelvis (halfway out). Since women start getting measured for station once they come 

to the hospital in labor, there is no clear time zero relative to their start of followup. Instead, 

using the point where the station value crosses zero is a natural reference point. There 

are different ways that a fetus can be delivered, and labor progression may influence each 

delivery type differently. To account for this type of competing risk, we model delivery 

type using a polychotomous logistic regression model and then the time-to-delivery given 

the delivery type. The three delivery types are spontaneous which requires no intervention, 

C-section, and those requiring vacuum assistance.

Figure 1 shows a series of individual profiles for women who eventually have a spontaneous 

delivery. The figure demonstrates that the monitoring of station begins at different points in 

labor. Further, the longitudinal profile appears different before and after a station value of 

zero.

McLain and Albert (2014) proposed a model for longitudinal data with a random change 

point and no-time zero that was motivated by repeat labor dilation data. The methodology 

was used to characterize the relationship between key demographic factors and labor 

progression as assessed by repeated measures of a woman’s cervical dilation. Further, this 

modeling strategy was used to predict future dilation measurements as well as the time to 

full dilation for a pregnant women based on prior dilation measurements. The current article 

asks a different, and perhaps the more important question of whether a repeated measure of 

labor progression affects the timing and type of pregnancy outcome.

In this article, we propose a joint model for longitudinal assessments of station with a 

random landmark and time to delivery and mode of delivery as a competing risk. We 

consider a shared random parameter model that links together model components for the 

longitudinal station process (with no time-zero) and both the time and type of delivery. 

Specifically, each model component includes random effects that are shared between these 

three components, inducing realistic dependence between these three model components. To 

this end, we develop an efficient Bayesian computational method for fitting this joint model 

Kim et al. Page 2

Stat Biosci. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



via several modified collapsed Gibbs samplers (Chen et al. 2000; Liu 1994). In addition, 

we derive the deviance information criterion (DIC) for comparing several variations of the 

proposed joint models, which is a modified DIC measure when mixtures of distributions or 

latent variables are present.

The rest of this paper is organized as follows. In Section 2, we provide the methodological 

development of a flexible class of joint models for the longitudinal station measurements 

and the time to delivery as well as the model of delivery. This includes specifying a 

skewed generalized t-distribution for the time to delivery. In Section 3, we discuss the 

prediction of both the timing and type of delivery from repeated station measurements 

taken at various time points that can be irregularly spaced across individuals. The prior and 

posterior distributions, the Markov chain Monte Carlo (MCMC) sampling algorithm, and the 

Bayesian model comparison criteria are presented in Sections 4.1, 4.2, and 4.3, respectively. 

In Section 5, we apply the methodology to longitudinal labor data in order to study the 

association between labor dynamics and delivery time. Finally, we conclude the article with 

some discussion for future research in Section 6.

2. Joint Models

Suppose that i denotes individual i = 1, …, I  and j denotes time point j = 1, …, Ji . We 

assume that each measurement is taken at repeated time points, which are potentially 

irregularly spaced times in the delivery. Further, we assume that there are I individuals in the 

study, each contributing Ji time points, where Ji denotes the number of repeated time points 

on the ith individual. Let ui = ui1, …, ui, p1 ′ and zi = zi1, …, zi, p2 ′ denote the vectors of fixed 

effect covariates, where zi may share common components with ui. Also let α = α1, …, αp1 ′
and γ = γ1, …, γp2 ′ denote the corresponding regression vectors for model components of 

the time to delivery and the mode of delivery, respectively. In addition, β = β1, …, βp3 ′
denotes the vector of regression parameters for the longitudinal measurements. Furthermore, 

we assume that tij
* denotes the jth time for the ith individual after arriving at the hospital, 

where ti1
* = 0 (arriving time). Note that, since the application has three types of delivery 

(spontaneous, vacuum, and C-section), for ease of notation, the model is specified with three 

competing risks.

Let yij denote the jth longitudinal station measurement, Di denotes the mode of delivery such 

as spontaneous, vacuum, or C-section, and Si
* denotes the time to delivery from entry into 

the hospital for the ith individual, separatively. Note that each individual enter the hospital 

with different station measurement so that there is no known time zero when labor starts. 

Furthermore, station measurements were taken on each woman from time of entry into the 

hospital to a few hours before giving birth, resulting in no clear time zero for use as a 

reference point for valid statistical inferences and predictions. Therefore, we re-scale the tij
*

and Si
* such that time zero is the time when a woman’s station is zero (i.e. when a fetus is 

said to be engaged in the pelvis). We consider the joint models with shared random effects 

for the longitudinal measurements, time to delivery, and delivery type. First, we propose the 

following random effects regression model for the longitudinal measurements as
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yij =
K + β1tij + β2tij

2 + b1itij + b2itij
2 + ϵij

y  if  tij ≥ 0
K + β3tij + b3itij + ϵij

y  if  tij < 0,
(2.1)

where K is the mean station when tij = 0, tij = tij
* − μ − b4i is the re-scaled time for the 

jth station measurement on the ith woman with the mean time re-scaling factor μ and 

random effect b4i allowing for heterogeneity, and ϵij
y are random variables for the error 

distributions. A station value of zero, the point at which the head of the fetus crosses 

the mid-pelvis, is a natural reference choice; thus, K = 0. Furthermore, b1i, b2i, and b3i are 

individual-level random effects, characterizing heterogeneity in the station process across 

women. Let ϵi
y = ϵi

y, …, ϵi, Ji
y ′ and bi = b1i, b2i, b3i, b4i ′. In (2.1), we assume that (i) ϵi

y and bi

are independent; (ii) ϵij
y follows a normal distribution with mean 0 and variance σy

2; and 

(iii) the shared random effect bi follows a multivariate normal distribution mean 0 and 

4 × 4 unstructured variance-covariance matrix Ω for i = 1, …, I and j = 1, …, Ji. Furthermore, 

we assume quadratic trend after station zero and a linear form before and set K = 0. Let 

y = y11, …, yI, JI ′, t* = t11
* , …, tI, JI

* ′,  t = t11, …, tI, JI ′, and b = b1, …, bI ′. Also let Dobs
y = y, t*

denote the observed data. Given b and Dobs
y , the likelihood function of μ, β, σy

2  for 

longitudinal station measurements is given by

Ly μ, β, σy
2 ∣ b, Dobs

y =
i = 1 j = 1

N yij ∣ μyij, σy
2 , (2.2)

where μyij = β1tij + β2tij
2 + b1itij + b2itij

2 for tij ≥ 0 and μyij = β3tij + b3itij for tij < 0. Note that 

N ⋅ ∣ a, b  denotes a normal distribution with mean a and variance b.

For time to delivery, we propose the following flexible regression model as

Si = ui
′α + b1iθ1 + b2iθ2 + b3iθ3 + Di1θ4 + Di2θ5 + ϵi

S, (2.3)

where Si = Si
* − μ − b4i is the re-scaled time to delivery for the itℎ woman, θ = θ1, …, θ5

are shared parameters accounting for correlation between yi, Si, and Di = Di1, Di2 ′ which is 

dichotomized. We assume that ϵi
S and bi are independent, and ϵi

S are random variables for the 

flexible error distributions that will allow for long-tailed and skewed distributions. In this 

paper, we propose to use long-tailed and skewed distributions to accomplish this goal. We 

model

ϵi
S = δ ξi − E ξi + ηi, (2.4)

where the first and second terms in (2.4) characterize skewness and long tails, respectively. 

Similar to Kim et al. (2008), we assume that (i) ξi and ηi are independent; (ii) ξi Gξ are 

each independent, where Gξ is the cumulative density function (cdf) of a skewed distribution 

defined on R+ = 0, ∞ ; and (iii) ηi follows a symmetric distribution. Also in (2.4), δ is a 

skewness parameter, where δ = 0 reflects a symmetric distribution. Following Chen et al. 

(1999) and Kim et al. (2008), we assume that Gξ has a known cdfs in order to ensure model 

identifiability. In this paper, we first specify several different distributions for Gξ, and use 
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the DIC (Spiegelhalter et al. (2002)) to determine which Gξ fits the data best. We consider 

the following distributions for Gξ: (a) Gξ is degenerated at 0, denoted by Δ 0 , yielding a 

symmetric distribution; (b) Gξ is a standard exponential distribution ℰ  with probability 

density function (pdf) fℰ ξi = exp   −ξi  if ξi > 0 and 0 otherwise; and (c) Gξ is a half normal 

ℋN  with pdf   fℋN ξi = 2
2π exp   −ξi

2/2  if ξi > 0 and 0 otherwise. Thus given Gξ, the model 

(2.4) yields a skewed distribution. Furthermore, we propose a skewed generalized t model 

for Si, which is motivated by Kim et al. (2008) for a binary response data in a generalized 

linear model. Let fgt, ν1, ν2 ηi  denote the pdf of a generalized t-distribution (Abranowitz and 

Stegun (1972)) that is given by

fgt, ν1, ν2 ηi = 1
πν2

Γ ν1 + 1
2

Γ ν1
2

× 1 + ηi
2

ν2

− ν1 + 1
2 , (2.5)

where ν1 is a shape (or degrees of freedom) and ν2 is a scale parameter. Let ηi fgt, ν1, ν2, then 

E ηi = 0 for ν1 > 1 and Var   ηi = ν2/ ν1 − 2  for ν1 > 2. To ensure identifiability, we assume 

ν2 to be 1 (Kim et al. 2008). We note that based on (2.5), ϵi
S in (2.4) leads to a skewed 

generalized t-distribution for Si. The models defined in (2.3), (2.4), and (2.5) are general and 

flexible, which includes the normal and skewed t models as special cases. Figure 2 illustrates 

the skewed generalized t-distribution for positive, negative, and no skewness.

Let S = S1, …, SI ′, S* = S1
*, …, SI

* ′, U = u1
′ , …, uI

′ ′, D1 = D11, …, DI1 ′, and D2 = D12, …, DI2 ′. 
Also let Dobs

D = S*, U, D1, D2  denote the observed data. Given b and Dobs
S , the likelihood 

function of μ, α, θ, δ, ν1, σS
2  for time to delivery is given by

LS μ, α, θ, δ, ν1, σS
2 ∣ b, Dobs

S =
i = 1

∫  fgt, ν1, ν2 = 1 Si ∣ μSi, σS
2 dGξ ξi , (2.6)

where μSi = ui
′α + b1iθ1 + b2iθ2 + b3iθ3 + Di1θ4 + Di2θ5 + δ ξi − E ξi . Note that fgt, ν1, ν2 = 1 ⋅ ∣ a, b

denotes a pdf of generalized t-distribution with mean a, variance b, ν1 and ν2 = 1.

For the mode of delivery, we assume the multinomial logistic regression model as

P Di = l ∣ z, b = exp   zi
′γl + b1iϕl1 + b2iϕl2 + b3iϕl3

1 + m = 1
L − 1 exp   zi

′γm + b1iϕm1 + b2iϕm2 + b3iϕm3

, (2.7)

where ϕl = ϕl1, ϕl2, ϕl3 ′ are shared parameters accounting for correlation between yi, Si, and 

Di, l = 1, …, L − 1. Note that ϕL = 0. Let D = D1, …, DI ′, Z = z1
′ , …, zI

′ ′, γ = γ1
′ , …, γL − 1

′ ′, and 

ϕ = ϕ1
′ , …, ϕL − 1

′ ′. Also let Dobs
D = D, Z  denote observed data. Given b and Dobs

D , the likelihood 

function of γ, ϕ  for time to delivery is given by

LD γ, ϕ ∣ b, Dobs
D =

i = 1 l = L
P Di = l ∣ z, b 1 Di = l , (2.8)
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where P Di = l ∣ z, b  is given in (2.7) and 1 a  is an indicator function, which is defined as 

1 a = 1 of a is true and 0 otherwise.

The observed joint likelihood function of μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ  is

L μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, Ω ∣ Dobs
y , Dobs

S , Dobs
D

= ∫ Ly μ, β, σy
2 ∣ b, Dobs

y × LS μ, α, θ, δ, ν1, σS
2 ∣ b, Dobs

S × LD γ, ϕ ∣ b, Dobs
D

×
i = 1

N bi ∣ 0, Ω db,
(2.9)

where Ly μ, β, σy
2 ∣ b, Dobs

y , LS μ, α, θ, δ, ν1, σS
2 ∣ b, Dobs

S , and LD γ, ϕ ∣ b, Dobs
D  are given in (2.2), 

(2.6), and (2.8), respectively. Since it is not easy to work directly with the observed joint 

likelihood function of μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ  in (2.9), we develop an efficient MCMC 

algorithm using the fact that the generalized t-distribution can be represented as a gamma 

mixture of normal distributions for ϵi
S as described in Section 4.2.

3. Predicting the time to delivery and delivery type

The joint model in (2.1), (2.3), and (2.7) relates the longitudinal station patterns to the 

probability of a delivery type and time to delivery through an individual’s predicted 

station measurement, and can be used to develop a predictor of the timing and delivery 

type using individualized longitudinal assessments of station. To predict the time to 

delivery and mode of delivery at birth using the longitudinal station measurements, we 

let yp = yt1, …, ytM  denote the longitudinal station measurement taken at time points t1, …, tM, 

where M is the number of repeated measurements in the predictor. Furthermore, let Sp

and Dp denote the time to delivery and mode of delivery we wish to predict. Also let 

Θ = μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ . Then the posterior predictive probability for Dp and posterior 

predictive distribution for Sp based on longitudinal measurements yp can be given by

P Dp = l ∣ yp = ∫  P Dp = l ∣ z, bp π Θ, bp ∣ yp dbpdΘ,

π Sp ∣ yp = ∫  fgt, ν1, ν2 = 1 Sp ∣ μSp, σS
2 π Θ, bp ∣ yp dbpdΘ,

(3.1)

where μSp = u′α + b1
pθ1 + b2

pθ2 + b3
pθ3 + D1

pθ4 + D2
pθ5 + δ ξ − E ξ , bp is a multivariate random 

effects bp N 0, Ω  and π Θ, bp ∣ yp  is the posterior distribution for Θ and bp based on yp. To 

obtain the posterior predictive probability for Dp and posterior predictive distribution for Sp

in (3.1), we sample bp from joint posterior distribution based on test set data (with parameter 

estimates using training dataset). Specifically, to evaluate the prediction accuracy, we divide 

the data into a training and test set data. Note that mode of delivery is treated as a competing 

risk for predicting Sp.
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4. Posterior inference

4.1. Prior and posterior distributions

We assume that μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, and Ω are independent a priori. The 

priors that we assume have as weak information as possible so that the 

data can dominate the posterior computation. Specifically, we assume that, 

μ N 0, σμ
2 , α Np1 0, σα

2I  γ Np2 0, σγ
2I , β Np3 0, σβ

2I , θ N5 0, σθ
2I , ϕ N3 0, σϕ

2I , δ N 0, σδ
2 , ν1

Gamma   a1, b1 , σy
2 IG   a2, b2 , σS

2 IG   a3, b3

, and 

Ω−1 Wisℎart   d0, d0V 0 , where σμ
2, σα

2, σγ
2, σβ

2, σθ
2, σϕ

2, σδ
2, a1, b1, a2, b2, a3, b3, d0, and V 0, are the 

prespecified hyperparameters. Note that Gamma a, b  is a Gamma distribution 

with mean a/b, IG   a, b  is an Inverse-gamma distribution with mean b/ a − 1 , 

and Wisℎart   d, V  denotes a Wishart prior distribution with d degrees of 

freedom and mean dV . The hyperparameters of the prior were specified as 

σμ
2 = 100, σα

2 = 100, σγ
2 = 100, σβ

2 = 100, σθ
2 = 100, σϕ

2 = 100, σδ
2 = 100, a1 = 1, b1 = 0.1, a2 = 2, b2 = 1, a3

= 2, b3 = 1, d0 = 4.1
, 

and V 0 = 0.1I in the analysis. These choices of hyperparameters lead to noninformative 

priors. Let Dobs = Dobs
y , Dobs

S , Dobs
D . Based on the prior distributions specified above, the joint 

posterior distribution of μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, and Ω is thus given by

π μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, Ω ∣ Dobs

= L μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, Ω ∣ Dobs

× π μ π β π σy
2 π α π θ π δ π ν1 π σS

2 π γ π ϕ π Ω ,
(4.1)

where L μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, Ω ∣ Dobs  is defined in (2.9). We can generate a sample from 

this joint posterior distribution using Gibbs sampler and make appropriate inference of the 

various model parameters. A description of the MCMC algorithm is given in Section 4.2.

4.2. Computational Developments

The analytical evaluation of the posterior distribution of Θ = μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, Ω
given in (4.1) is not available. However, we can develop an efficient MCMC sampling 

algorithm to sample from (4.1). For ease of presentation, we consider the standard 

exponential distribution ℰ  for Gξ only as the MCMC sampling algorithms for other choices 

of Gξ are similar. Since it is difficult to work directly with the observed joint likelihood 

function of Θ in (2.9), we use the complete data joint likelihood function of Θ using the 

fact that the generalized t-distribution can be represented as a gamma mixture of normal 

distributions for ϵi
S:ηi ∣ λi N 0,1/λi  and λi Gamma   ν1/2,1/2 , where λi is a mixing variable. 

Let ξ = ξ1, …, ξI ′ and λ = λ1, …, λI ′. Also let Dc = t, S, b, ξ, λ, Dobs  denote complete data set. 

The joint posterior distribution of Θ based on the complete data joint likelihood function can 

be written as
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π Θ ∣ Dc

  ∝
i = 1 j = 1

σy
2 − 1

2exp   − 1
2σy

2 yij − μyij
2

  ×
i = 1

σS
2

λi

− ν1
2 exp   − λi

2σS
2 Si − μSi

2 × exp   −ξi × 2− ν1
2

Γ ν1
2

λi

ν1
2 − 1exp   − 1

2λi

  ×
i = 1

exp   l = 1
L − 11 Di = l zi

′γl + b1iϕl1 + b2iϕl2 + b3iϕl3

1 + m = 1
L − 1 exp   zi

′γm + b1iϕm1 + b2iϕm2 + b3iϕm3

  ×
i = 1

Ω
− 1

2
exp   − 1

2bi
′Ω−1/2bi

  × π Θ ,

(4.2)

where μyij, μSi, and π Θ  are given in (2.2), (2.6), and (4.1), respectively. From 

(4.2), the algorithm requires sampling the following parameters in turn from their 

respective full conditional distributions: (I) ξi ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, λ, Ω, Dobs ; 

Ω ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, ξ, λ, Dobs ; (III) γ, ϕ ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, t, S, b, ξ, λ, Ω, Dobs ;
and (IV) μ, β, σy

2, α, θ, δ, ν1, σS
2, b, λ ∣ γ, ϕ, t, S, ξ, Ω, Dobs . Let 

xi = ui
′, b1i, b2i, b3i, Di1, Di2 ′, X = x1

′ , …, xI
′ ′, wi = zi

′, b1i, b2i, b3i ′, W = w1, …, wI ′, ψ = α′, θ′ ′, φl
= γl

′, ϕl
′ ′

, 

and φ = φ1, …, φL − 1 ′. For (I), observed that

ξi ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, λ, Ω, Dobs N Aξi
−1Bξi, Aξi

−1 1 ξi > 0 , (4.3)

where Bξi = λi Si − xi
′ψ + δE ξi δ/σS

2 − 1 and Aξi = λiδ2/σS
2 for i = 1, …, I. For (II), we observe 

that

Ω−1 ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, ξ, λ, Dobs

   Wishart 4 d0 + I, d0V 0
−1 +

i
bibi

′
−1

. (4.4)

For (III), the conditional posterior densities for φ do not have closed form. Therefore, we 

use the Metropolis-Hastings algorithm (Hastings (1970)) to sample φ from their conditional 

posterior distributions. For (IV), we apply the collapsed Gibbs technique of Liu (1994) via 

the following identity:

μ, β, σy
2, α, θ, δ, ν1, σS

2, b, λ ∣ γ, ϕ, t, S, ξ, Ω, Dobs
= σy

2, λ ∣ μ, β, α, θ, δ, ν1, σS
2, γ, ϕ, t, S, b, ξ, Ω, Dobs

× μ, β, α, θ, δ, ν1, σS
2, b ∣ γ, ϕ, t, S, ξ, Ω, Dobs .

That is, we sample μ, β, α, θ, δ, ν1, σS
2, and b after collapsing out σy

2 and λ. Observe that
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σy
2 ∣ μ, β, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, ξ, λ, Ω, Dobs

  IG a2 + 1
2 i

Ji, b2 + 1
2 i j

yij − μyij
2 , (4.5)

where μyij is given in (2.2). We also observe that

λi ∣ μ, β, σy
2, α, θ, δ, ν1, σS

2, γ, ϕ, t, S, b, ξ, Ω, Dobs

  Gamma   1
2 ν1 + 1 , 1

2 1 + Si − μSi
2

σS
2 , (4.6)

where Si and μSi are given in (2.3). The conditional posterior densities for μ, β, ψ, δ, ν1, σS
2, and 

b do not have closed form. Therefore, we use the Metropolis-Hastings algorithm (Hastings 

(1970)) to sample μ, β, ψ, δ, ν1, σS
2, and b from their conditional posterior distributions.

4.3. Model Comparison

To assess the goodness of fit of the models for different choices of the distributions for ξi

and ηi in (2.4), we use the DIC proposed by Celeux et al. (2006) without integrating out b
analytically in (2.1), (2.3), and (2.7). Although certain numerical integration or Monte Carlo 

methods may be used for evaluating those analytically intractable integrals, those methods 

are computationally intensive to carry out due to the large size of the data. Following the 

suggestions of Celeux et al. (2006), we use the DIC4, which is a modified DIC measure 

when mixtures of distributions or latent variables are present. The measure DIC4 makes use 

of the complete-data likelihood in the presence of latent variables, which is given by

Lc Θ ∣ b, Dobs

  =
i = 1 j = 1

fn yij ∣ μyij, σy
2 × ∫  fgt, ν1, ν2 = 1 Si ∣ μSi, σS

2 dGξ ξi

  ×
i = 1 l = L

P Di = l ∣ z, b 1 Di = l × fmn bi ∣ 0, Ω
(4.7)

where fgt, ν1, ν2 = 1 Si ∣ μSi, σS
2  and P Di = l ∣ z, b  are defined in (2.5) and (2.7), fn ⋅ ∣ a, b  and 

fmn ⋅ ∣ 0, Ω  denote a pdf of normal distribution with mean a and variance b, and multivariate 

normal distribution with mean 0 and variance-covariance matrix Ω, respectively. Then DIC4

can be written as

DIC4 = − 4EΘ, b log   Lc Θ ∣ b, Dobs ∣ Dobs + 2Eb
log   Lc EΘ Θ ∣ Dobs ∣ b, Dobs ∣ Dobs , (4.8)

where the integration for ξi is evaluated numerically. The smaller the DIC value, the better 

the model fits the data. The other properties of the DIC can be found in Spiegelhalter et al. 

(2002) and Celeux et al. (2006).

5. Analysis of the Labor Data

In this section, we used the proposed joint model in (2.1) - (2.7) to analyze data from 

the cohort study introduced in Section 1. The outcome variables were yij, Si
*, and Di, which 
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were defined as a station measurement at the jth time point, time to delivery, and the mode 

of delivery for the ith individual. Di = 1,2, and 3 correspond to spontaneous, vacuum, and 

C-section, respectively. The time point tij
* is the jth time (hours) from time of entry into 

the hospital for the ith individual ti1
* = 0 . We considered two covariates: Age (years) and 

the delivery type. Delivery type was dichotomized D1, D2 = 0,0  for spontaneous, (1, 0) 

for vacuum, and (0, 1) for C-section). In total, we had I = 637 and 2 ≤ Ji ≤ 15, the range 

of the maximum number of repeated station measurements. In addition, 18.4%, 15.3%, and 

66.3% of the women delivered through vacuum, C-section, and spontaneous, respectively. 

The medium delivery times since entry into the hospital were 6.27 hours for vacuum, 5.97 

hours for C-section, and 4.6 hours for spontaneous, respectively. In addition, we divide the 

whole data into two data sets randomly with a 70% and 30% split of the sample into a 

training and test set, respectively (i.e., 446 in the training set and 191 in the test set). We 

used the training set data to develop the predictor, while test set data was used to validate 

the predictor with different accuracy measures. We fitted the proposed joint model in (2.1) - 

(2.7) and estimated all parameters using the training-set data.

To help the numerical stability and to improve convergence for the MCMC sampling 

algorithm, we standardized two covariates. The means and standard deviations were (28.7, 

5.04) for age, (0.16, 0.37) for D1, and (0.15, 0.35) for D2, respectively. In all the Bayesian 

computations, we used 20,000 Gibbs samples, which were taken from every 5th iteration, 

after a burn-in of 6,000 iterations, to compute all the posterior estimates, including means 

(Estimates), SDs, 95% HPD intervals, as well as the DICs. The computer programs were 

written in FORTRAN 95 using IMSL subroutines with double precision accuracy. The 

convergence of the MCMC sampling algorithm for all the parameters was checked based 

on the recommendations of Cowles and Carlin (1996). All trace and autocorrelation plots 

showed good convergence and mixing of the MCMC sampling algorithm.

We are interested in investigating how the goodness of fit might be affected by the choices of 

Gξ for joint model in (2.1) - (2.7) using the DIC discussed in Section 4.3. We considered the 

following distributions for ηi and Gξ: (1) Normal and generalized t GT  for ηi; 2 Δ 0 , ℰ, and 

ℋN for Gξ. Table 1 shows the DIC values for the six models under consideration, with the 

smallest value for DIC (3612.15) corresponding to skewed generalized t-distribution with 

the ℰ for Gξ SGTE , which fits training data the best among all models considered. This 

affirms the need for considering the skewed heavy tail distributions. In addition, the models 

with symmetric distributions for ηi had the larger DIC value, suggesting that these models fit 

data worse than the skewed models, demonstrating the importance of including skewness for 

the model of the time to delivery in (2.1).

The posterior estimates, including the posterior means, posterior standard deviations (SDs), 

and 95% highest posterior density (HPD) intervals of the parameters under the best model 

based on the training set are reported in Tables 2 and 3. We define a posterior estimate to 

be “statistically significant at a significance level of 0.05” if the corresponding 95% HPD 

interval does not contain 0. The results shown in Table 3 indicate that the fixed effects 

parameters β1, β2, and β3 are all statistically significant with the slope before reaching a 

station value of zero being gradual as compared to the much larger increases after reaching 
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this reference time. The estimated mean scaling factor, μ̂, is −2.61, suggesting that the 

typical fetus reaches a zero reference approximately 2.6 hours after entering the hospital 

in labor. Time to delivery (from a zero station) decreases with age (−0.176 hours per year) 

and this time for vacuum assisted and C-section deliveries is 0.152 longer and −0.296 

shorter, respectively, relative to a spontaneous delivery. For a women at the average age 

of 28.7 years who has a spontaneous delivery, the median time to delivery relative to 

reaching a station value of zero is α0 = 7.8 hours (this was computed based on age = 0 on 

the standardized scale and with the random effects and mode of delivery effects set to 

zero). The shared random effects bi1, bi2, and bi3 demonstrate that increases in the slopes 

before and after the zero station value are associated with a decreased time to delivery, 

with this association being substantially stronger for the slope after the zero value. Table 3 

shows the relationship between longitudinal station measurements and the type of delivery. 

An increased subject-specific rate of change before and after the zero station value was 

associated with a decreased risk of a C-section compared with the reference category of a 

spontaneous delivery. There was no effect of the dynamics of labor progression on the risk 

of a vacuum assisted delivery as compared to this reference category.

We fitted the model with the training-set data and evaluated it’s performance on the test-set 

data. Figure 3 shows a plot of deciles of the predicted probabilities versus the corresponding 

sample proportions corresponding to those deciles for each delivery type. The plot shows 

that for spontaneous deliveries (the type that is not controlled by the obstetrician), the 

predictive model is well calibrated. Further the predictive probabilities range from a lower 

decile of 0.55 to an upper decile of 0.9, showing a large amount of potential discrimination. 

Figure 4 shows the predicted versus the observed delivery times for spontaneous deliveries. 

The figure demonstrates that for predicted values less than 2 hours, the model prediction is 

accurate (all subjects with predictive values less 2 hours had an observed delivery time of < 

2 hours). However, the predicted delivery time is not as accurate when the predicted values 

are greater than 2 hours.

6. Discussion

This article proposed a joint model of longitudinal and time-to-event data when there is no 

natural time zero and when there are competing risks. For the labor example, station values 

are measured longitudinally and the time of study entry is not a natural reference point 

since expecting mothers come to the hospital at different points in their late pregnancy. The 

competing risk aspects need to be considered since delivery type is an important component 

of the endpoint and time-to-delivery may be influenced by the type of delivery. The model 

led to important scientific observations. First, the dynamics in labor (longitudinal station 

process) is associated with delivery time such that the time to delivery is shorter when the 

velocity of station is higher. This is particularly pronounced in the later stage of labor (after 

the station value crosses zero). The type of delivery is also associated with station velocity. 

Most notably, a C-section is much more likely when the velocity (before and after a station 

value of zero) is delayed relative to the typical profile. This later observation is consistent 

with clinical experience.
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For the labor progression application, the reference time (time zero) used is the time from 

when the station value is zero. The proposed approach allows us to use all the subjects’ 

data to estimate, including those who started the observation process before and after having 

reached time zero. In our application, we had such data. The model may be only weakly 

identifiable in situations where the observation process begins after a dilation value of zero. 

In this latter case, we recommend that the model not be used.

Although, the model is useful for understanding etiology through a close examination of 

the model parameters, the prediction of delivery times was not that good in some situations. 

Our prediction results demonstrated that prediction was accurate when the time to delivery 

was less than approximately 2 hours, while it was less accurate for longer range predictions. 

Although this is a bit disappointing, it is not surprising that a single longitudinal biomarker 

would be able to accurately predict delivery time among spontaneous pregnancies. The 

model can be extended to incorporate multiple longitudinal biomarkers in the future. Plots of 

the deciles of risk shows that there is a fairly large range in predictive probabilities and that 

the predictive model is well calibrated. Thus, the model may be very useful for predicting an 

individual woman’s risk of a spontaneous delivery.

The proposed modeling framework addresses the issue of relating a longitudinal biomarker 

to survival when there is no clearly defined time zero. Although this was motivated by a 

study of labor progression where women come to the hospital at different times during their 

labor process, the methodology would apply to any study of the effect of a disease severity 

score on survival where subjects are enrolled at varying levels of initial disease severity. 

Another example comes from studying the relationship between disability and survival in 

multiple sclerosis. Disease severity in multiple sclerosis is often characterized using the 

expanded disability status scale (EDSS) which ranges between 0 and 10 in 0.5 increments. 

The proposed method may be used to assess the relationship between changes in EDSS and 

survival in a population where subjects enroll in the study at different levels of disability.
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Figure 1: 
Representative station measurement trajectories resulting in a spontaneous delivery as a 

function of time from study entry (in hours). The red line represents the time of the 

spontaneous delivery.
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Figure 2: 
CDF plots of the skewed generalized t-distribution. Black line: symmetric, Red line: positive 

skewed, and Green line: negative skewed.
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Figure 3: 
Decile plots of the predicted probability versus the corresponding observed proportions.
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Figure 4: 
Plots of predicted time to delivery from last observed station value
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Table 1:

DIC Values

Gξ Normal GT

Δ 0 4278.64 4174.57

ℰ 4081.16 3612.15

ℋN 4140.03 3818.06

Stat Biosci. Author manuscript; available in PMC 2023 May 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 19

Table 2:

Posterior estimates under the best model

Parameter Posterior Mean Posterior SD 95% HPD Interval

Longitudinal Measurements 
yij

β1 tij : tij ≥ 0 −0.792 0.025 (−0.840, −0.743)

β2 tij
2 : tij ≥ 0 0.137 0.007 (0.125, 0.150)

β3 tij : tij < 0 1.687 0.294 (1.153, 2.355)

σy
2 0.158 0.008 (0.143, 0.174)

μ: mean scaling factor −2.610 0.193 (−2.987, −2.253)

Time to Delivery 
Si

α0 (intercept) 7.830 0.216 (7.408, 8.257)

α1 (age) −0.176 0.068 (−0.304, −0.040)

θ1 bi1 −5.367 0.736 (−6.834, −3.912)

θ2 bi2 −48.766 3.099 (−54.667,−42.536)

θ3 bi3 −0.091 0.616 (−1.337, 1.224)

θ4 (mode of delivery) 0.152 0.070 (0.010, 0.286)

θ5 (mode of delivery) −0.296 0.114 (−0.538, −0.079)

δ (skewness) 1.101 0.125 (0.863, 1.353)

σt
2 0.664 0.517 (0.114, 1.643)

ν1 13.857 9.866 (2.195, 34.350)
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Table 3:

Posterior estimates under the best model

Parameter Posterior
Mean

Posterior
SD

95% HPD Interval

Mode of delivery 
Di

γ10 (intercept) (vacuum) −1.509 0.142 (−1.784,−1.230)

γ11 (agle) (vacuum) −0.133 0.138 (−0.401, 0.139)

γ20 (intercept) (C‐section) −2.118 0.467 (−2.979,−1.468)

γ21 (age) (C
− section

0.337 0.180 (−0.010, 0.692)

ϕ11 bi1  (vacuum) 0.310 0.813 (−1.298, 1.915)

ϕ12 bi2  (vacuum) −4.148 3.159 (−10.223, 2.136)

ϕ13 bi3  (vacuum) −0.155 0.574 (−1.309, 1.008)

ϕ21 bi1  (C − section −3.831 2.228 (−8.348,−0.018)

ϕ22 bi2  (C − section) −16.161 4.405 (−24.730, −7.532)

ϕ23 bi3  (C − section −3.910 2.453 (−9.329,−0.800)

Variance of the random effects Ω11 0.109 0.016 (0.080, 0.141)

Ω12 −0.005 0.002 (−0.009,−0.002)

Ω13 −0.109 0.031 (−0.170,−0.053)

Ω14 0.538 0.103 (0.341, 0.738)

Ω22 0.004 0.001 (0.003, 0.005)

Ω23 −0.003 0.004 (−0.012, 0.004)

Ω24 0.027 0.016 (−0.003, 0.059)

Ω33 0.276 0.134 (0.068, 0.547)

Ω34 −1.210 0.339 (−1.893, −0.596)

Ω44 6.846 0.997 (5.072, 8.905)
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