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Abstract

In recent years, several deep learning models recommend first to represent Magnetic Resonance 

Imaging (MRI) as latent features before performing a downstream task of interest (such as 

classification or regression). The performance of the downstream task generally improves when 

these latent representations are explicitly associated with factors of interest. For example, we 

derived such a representation for capturing brain aging by applying self-supervised learning 

to longitudinal MRIs and then used the resulting encoding to automatically identify diseases 

accelerating the aging of the brain. We now propose a refinement of this representation by 

replacing the linear modeling of brain aging with one that is consistent in local neighborhoods 

in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding 

so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain 

ages are in close proximity of each other) and progression-consistent, i.e., the latent space is 

defined by a smooth trajectory field where each trajectory captures changes in brain ages between 

a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally 

tractable, we further propose a strategy for mini-batch sampling so that the resulting local 

neighborhoods accurately approximate the ones that would be defined based on the whole cohort.

We evaluate LNE on three different downstream tasks: (1) to predict chronological age from 

T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish 

Normal Control (NC) from Alzheimer’s Disease (AD) and stable Mild Cognitive Impairment 

(sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 

participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI); and (3) to distinguish 

no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from 

diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and 
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NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of 

the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the 

strength of the proposed method over existing self-supervised methods in extracting information 

related to brain aging, which could help study the impact of substance use and neurodegenerative 

disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-

embedding.
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1. Introduction

The application of deep learning to neuroimaging studies partly owes it success to the ability 

to learn powerful representations from raw magnetic resonance imaging (MRI) (Lipton 

et al., 2015; Santeramo et al., 2018; Gao et al., 2019; Cui and Liu, 2019; Ghazi et al., 

2019; Ouyang et al., 2020). The interpretability and generalizability of the representations 

generally depend on the ability of the underlying latent space to explicitly encode factors 

aiding in performing a downstream task (Wang et al., 2021; Li et al., 2020; Kim and Mnih, 

2018; Burgess et al., 2018; Xie et al., 2016; Guo et al., 2017; Zhao et al., 2019a). For 

example, encoding the continuum of brain age in the latent space can aid in the downstream 

task of differentiating subjects with cognitive impairment from healthy controls (Zhao et al., 

2021a; Louis et al., 2019).

A useful approach for learning such a stratified space is to model the similarity of training 

samples within a neighborhood (Sabokrou et al., 2019; Wang et al., 2021; Li et al., 2020). 

A neighborhood refers to a region in the latent space such that samples in that region 

are considered to be similar. This concept is frequently used by self-supervised learning 

techniques, which encourage related samples to be mapped into the same neighborhood 

while unrelated samples are not (Sabokrou et al., 2019; Wang et al., 2021; Li et al., 2020). 

For example, the self-supervised approach by Dufumier et al. (2021) derived a latent space 

so that cross-sectional T1-weighted (T1-w) brain MRIs of subjects with similar age were 

mapped in close proximity to each other.

Another example is Longitudinal Neighborhood Embedding (LNE) (Ouyang et al., 2021), 

which was the first attempt at exploring the neighborhood concept within the context 

of applying self-supervised learning to longitudinal images. Specifically, we view the 

longitudinal T1-w brain MRIs of a subject as a trajectory in the latent space. To encode 

brains with similar brain age (which is unknown) to exhibit similar trajectories, the 

projection of the longitudinal MRIs onto that space is done so that trajectories within a 

neighborhood are maximally aligned (Fig. 1, lower right-hand box). The derived latent 

space explicitly captures brain aging, which resulted in better predictions of chronological 

age from T1-w brain MRIs compared with encodings derived from other self-supervised 

methods (i.e., Auto-Encoder (AE), Variational Auto-Encoder (VAE) (Kingma and Welling, 

2013), Simple Framework for Contrastive Learning (SimCLR) (Chen et al., 2020), and 
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Longitudinal Self-Supervised Learning (LSSL) (Zhao et al., 2021a)). When deriving these 

representations from the T1-w MRIs studies of the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI), the LNE-based classifier was most accurate in distinguishing Normal 

Control (NC) from patients diagnosed with Alzheimer’s Disease (AD), and patients 

diagnosed with stable Mild Cognitive Impairment (sMCI) from those with progressive Mild 

Cognitive Impairment (pMCI).

We now review the progression-consistent neighborhood in the LNE model (Ouyang et 

al., 2021) and further improve on its modeling of neighborhoods by learning to derive a 

latent space so that MRIs of similar brain age are in close proximity of each other. We 

do so by (1) automatically partitioning the latent space into clusters where each cluster 

defines an age-consistent neighborhood (orange blobs in Fig. 1). We then extend the loss 

function of LNE with a term that encourages samples to be close to their assigned cluster 

centroid and far from others (see upper right-hand box in Fig. 1). Moreover, (2) we observed 

that identifying neighbors of a sample requires computing distance from all other samples, 

which is usually computationally impracticable to repeat in each iteration. Consequently, 

we propose to confine each mini-batch to samples from the same or nearby clusters so that 

the neighborhood built within the mini-batch should approximate its construction based on 

all samples (see also green box in Fig. 1). Beyond the two innovations introduced in our 

conference publication (Ouyang et al., 2021), this work now

(3) creates synthetic brain MRIs at different brain ages to visualize the effects of aging and 

disease,

(4) quantitatively evaluates the quality of neighborhoods,

(5) expands the comparison to other self-supervised methods (i.e., Momentum Contrast 

(MoCo) (He et al., 2020) and Bootstrap Your Own Latent (BYOL) (Grill et al., 2020)), and

(6) evaluates the approach on a new image modality (i.e., fractional anisotropy (FA) derived 

from diffusion weighted imaging (DWI)) provided by a dataset previously not considered 

(i.e., data acquired by the National Consortium on Alcohol and NeuroDevelopment in 

Adolescence (NCANDA)).

Specifically, we evaluate our method on three longitudinal MRI datasets:

• SRI: encode brain age as captured by T1-w MRIs (i.e., cortical thickness is 

reducing while ventricles are enlarging with age) of 274 healthy individuals 

(baseline age: 20 to 90 years) to predict their chronological age,

• ADNI: encode brain age from T1-w MRIs of 632 subjects (consisting of NC, 

sMCI, pMCI, or AD) to distinguish in the downstream task differences in aging 

progression between NC and AD and between sMCI and pMCI,

• NCANDA: encode the aging of micro-structural brain integrity based on the 

FA images of 764 adolescents (baseline age: 12–21 years) (Pohl et al., 2016b) 

to then distinguish no-to-low from moderate-to-heavy drinkers, whose micro-

structural brain development can be delayed (Zhao et al., 2021b).

Ouyang et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Across these datasets, the 2D visualization of the latent space confirms that neighborhoods 

are defined by smooth trajectory vector fields and the resulting representations led to more 

accurate predictions on the downstream tasks than alternative self-supervised, pre-trained 

models.

2. Related works

2.1. Longitudinal neuroimaging studies

Analysis of longitudinal MRIs traditionally relies on applying statistical approaches to a set 

of a priori selected brain measurements (e.g., volume and cortical thickness of the region 

of interest). Applied to each measurement is a general linear model (GLM) to compute the 

average developmental trajectory of a cohort (Fjell et al., 2009; Sabuncu et al., 2011; Frings 

et al., 2012) or a linear mixed effect model (LME) capturing subject-specific trajectories 

(Bernal-Rusiel et al., 2013a,b; Poulet and Durrleman, 2021). However, these univariate 

analyses ignore the multivariate correlations underlying the high-dimensional information 

captured by brain MRIs (Habeck and Stern, 2010).

One way to capture such correlations is via data-driven supervised learning (Lipton et 

al., 2015; Santeramo et al., 2018; Gao et al., 2019; Cui and Liu, 2019; Ghazi et al., 

2019; Ouyang et al., 2020). These models reduce the longitudinal MRIs to a sequence of 

informative representations by, for example, a Convolutional Neural Network (CNN) to 

extract representations with a Recurrent Neural Network to predict a label (e.g., age or 

diagnosis group) (Lipton et al., 2015; Santeramo et al., 2018; Gao et al., 2019; Cui and Liu, 

2019; Ghazi et al., 2019; Ouyang et al., 2020). However, these methods generally need to be 

trained on a large number of carefully labeled MRIs, which is often expensive or unrealistic 

to acquire (Carass et al., 2017). To reduce this need, a recent trend in deep learning is to train 

models by utilizing the repeated measures, and temporal order in the longitudinal setting via 

self-supervision (Louis et al., 2019; Zhao et al., 2021a; Ouyang et al., 2021; Couronné et al., 

2021).

2.2. Self-supervised learning

Self-supervised models reduce the need for ground-truth labels by first learning 

representations based on a pretext task that is loosely related to the supervised downstream 
task of interest (Kolesnikov et al., 2019). Example of pretext tasks are colorization (Zhang 

et al., 2016), super-resolution (Dong et al., 2014), Jigsaw (Noroozi and Favaro, 2016), 

and contrastive learning (van den Oord et al., 2018; Sabokrou et al., 2019; Caron et al., 

2020; Hassani and Khasahmadi, 2020; Tian et al., 2020), i.e., learning representations by 

distinguishing between similar and dissimilar images. These methods build similar (positive) 

pairs by, for example, augmenting samples (Chen et al., 2020), generating multiple views of 

the same scene (Tian et al., 2020), and performing dictionary look-up (He et al., 2020). In 

computer vision, positive pairs of images are also defined by their temporal proximity in a 

video sequence (Misra et al., 2016; Wang and Gupta, 2015).

Analogous to videos, a longitudinal MRI dataset capturing the slow progression of disease 

consists of individual MRIs that are similar to each other. Thus, this sequence of MRIs can 
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be used to disentangle the time-varying effect (e.g., aging and disease progression) from the 

static factors (e.g. sex), which is critical for the success of longitudinal analyses (Ellwood-

Lowe et al., 2018; Garcia and Marder, 2017; Tan et al., 2012). For example, Couronné et 

al. (2021) achieved disentanglement by identifying the order of longitudinal MRIs. Other 

works captured the time-varying effects by explicitly modeling the aging direction in the 

latent space (Zhao et al., 2021a; Louis et al., 2019; Ouyang et al., 2021). Louis et al. 

(2019) represented both brain aging and disease progression along linear directions while 

also explicitly modeling disease on-set and pace of progression. Inspired by the prior model, 

LSSL (Zhao et al., 2021a) also encoded the process of brain aging as a linear direction in the 

latent space but then encouraged the representation between two MRIs of the same subject 

to be maximally aligned with this direction. To capture more complex aging patterns, the 

proposed LNE approach derives a latent space in which age progression can be non-linear.

2.3. Modeling neighborhood in the latent space

Neighborhoods in the latent space capture similarities among samples and thus are critical 

for learning informative representations (Sabokrou et al., 2019; Fortuin et al., 2019; 

Manduchi et al., 2019, 2021). For example, neighborhoods are defined by the relative 

position of objects in the physical space (Gupta et al., 2018; Sadeghian et al., 2019; Zhao 

et al., 2019b) or the similarity of the semantic labels and appearance (Wei et al., 2020). 

Another example is using the output of clustering algorithms to define neighborhoods 

according to clusters (Sabokrou et al., 2019; Li et al., 2020) or by the topological 
characteristics of the resulting low dimensional embedding (Fortuin et al., 2019; Manduchi 

et al., 2019, 2021).

However, defining neighborhoods in the context of self-supervised learning is still 

a challenge as (1) defining neighborhoods in high dimensional latent spaces is 

computationally expensive or intractable, and (2) the representations defining the 

neighborhood are iteratively updated (since the encoder changes during each iteration of 

the training), and hence it is computationally-challenging to update the neighborhood on 

the whole data set in each iteration. One way of dealing with the computational complexity 

associated with (1) and (2) is to define neighborhoods specific to a mini-batch, but how to 

relate those neighborhoods to the entire data set is unclear. Our LNE model aims to address 

this challenge in the context of longitudinal MRIs.

3. Method

The longitudinal MRIs of a subject can be encoded by a set of MRI pairs x1, x2, Δt , 

where the MRI x1 was scanned before the MRI x2 and the time interval between those 

two scans is Δt. Let Enc ⋅  be the encoder that maps an MRI to the latent space, then 

z1 ≔ Enc x1  and z2 ≔ Enc x2  are the latent representations of x1 and x2. Now we view 

the latent representations of the MRI pair as a trajectory capturing brain aging (see blue 

arrows in Fig. 1). One way to encode this trajectory is by the initial point z1 and direction 

(or progression) Δz 1, 2 = z1 − z2 /Δt 1, 2 , where the length of Δz 1, 2  should relate to the 

speed of brain aging. For simplicity, we denote Δz 1, 2  as Δz. Meanwhile, the latent space 
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should be stratified by brain age, i.e., representations z1, z2 of subjects with similar brain 

ages should be in close proximity of each other in the latent space. To derive a latent 

space with these properties, we first introduce in Section 3.1 the pairwise training strategy 
applied to the set S of all longitudinal MRI pairs derived from all training subjects. We 

then expand the objective function so that the representation of the first MRI z1 (initial 

points) with similar brain ages are in close proximity to each other in the latent space 

(Section 3.2). Finally, we ensure that the normalized vectors Δz define a smooth vector 

field in the latent space (shown by blue box in Fig. 1) by having the embedding enforce 

the progression of nearby trajectories to have similar directions (Section 3.3). To make 

the learning process computationally tractable, training is confined to mini-batches. We 

introduce a sampling strategy such that neighborhoods constructed within the mini-batch 

approximate construction of neighborhoods taking into account the entire data set (Section 

3.4).

3.1. Pairwise training strategy

We train the embedding on all MRI pairs x1, x2, Δt  to account for the variance in the 

number of MRIs associated with each subject. This also substantially increases the number 

of training samples compared to the common approach of Recurrent Neural Networks that 

view each longitudinal MRI as a single training sample (Ouyang et al., 2020). At each 

iteration of the training, our self-supervised learning approach derives an Enc ⋅  and a 

decoder Dec ⋅ , which reconstructs the MRIs x1 ≔ Dec z1  and x2 ≔ Dec z2  based on the 

latent representation. Then we ensure that the latent representation does not reduce to a 

trivial constant solution by deriving an Enc ⋅  and Dec ⋅  that minimize the following 

reconstruction loss (Zhao et al., 2021a; Grill et al., 2020):

Lrecon ≔ E x1, x2, Δt ρ S x1 − x1
2
2
+ x2 − x2

2
2

. (1)

E denotes the expectation, ∥ ⋅ ∥2 represents the Euclidean norm, and ρ S  is the sampling 

strategy on S, which will be described in Section 3.4.

3.2. Age-consistent neighborhood

To ensure that the initial points z1 with similar brain age are in close proximity to each other, 

we start an epoch by mapping each MRI pair in S into the latent space, i.e., z1 = Enc x1 . 

Next, we perform k-means clustering on z1 for M times, where each run differs in the 

number of clusters K = km m = 1
M  (in Fig. 1 orange blobs are the clustering results from one 

run). We then record the set of centroids of the clusters C = ck
m , where ck

m is the centroid 

for the kth cluster of the mth run. By doing so, each z1 is associated with M centroids. We 

refer to the neighborhood around each centroid ck
m as age-consistent neighborhood Ω ck

m . To 

ensure this consistency, we minimize the ProtoNCE loss (Li et al., 2020), which encourages 

z1 to be more similar to its assigned centroids compared to other centroids:
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LProtoNCE ≔ E x1, x2, Δt ρ S
1

M ∑
m = 1

M
log exp z1 ⋅ cs

m/ϕs
m

∑j = 1
r exp z1 ⋅ cj

m/ϕj
m , (2)

where cs
m is a positive centroid assigned to z1 in the mth run of k-means clustering. To 

reduce computational complexity, the normalization term is based on r negative centroids, 

which are a subset of centroids to which z1 is not assigned. ϕ denotes the estimation of 

concentration of each centroid. Specifically, a cluster Ω c  has a large concentration when 

the average distance between the centroid c and the points z1 within the cluster is small or 

when the cluster contains more samples. This normalization term ϕ should be small for a 

large concentration. Therefore, ϕ is defined as:

ϕ = ∑j = 1
Ω c zj

1 − c 2

Ω c ⋅ log Ω c + α , (3)

where Ω c  is the number of samples in the age-consistent neighborhood Ω c  and α is 

a smoothing parameter to prevent small clusters from having overly-large ϕ. By doing 

so, the similarity between embedding z1 and centroid cs
m in a cluster is normalized by its 

concentration ϕ, yielding clusters with similar concentrations.

3.3. Progression-consistent neighborhood

Deriving an encoding so that longitudinal MRIs with similar (unknown) brain age have 

similar age progression results in a latent space defined by a smooth vector field and 

thus encourages consistency across progressions within a neighborhood. In each iteration 

during training, a neighborhood is encoded as a directed graph G. Specifically, each node i
represents a vector Δz with z1 defining the location of the node. For each node i, we compute 

the Euclidean distances P i, j = zi
1 − zj

1
2 to other nodes. The 1-hop neighborhood Ni of Node 

i is then defined by the Nnb nearest nodes with respect to the Euclidean distance, which is 

encoded by the directed edges from node i in the directed graph G. Thus, the adjacency 

matrix of G is:

Ai, j ≔ exp − P i, j
2

2σi
2 , j ∈ Ni

0, j ∉ Ni

. (4)

where σi ≔ max P i, j ∈ Ni − min P i, j ∈ Ni  so that neighbors that are closer to node i have higher 

edge weights.

Next, we aim to define a representation that captures the vector field within the 

neighborhood. Inspired by the process of graph diffusion (Klicpera et al., 2019), we define 

a neighborhood-specific trajectory Δℎ (e.g., the purple arrow in the lower right green box in 

Fig. 1) as the weighted average of Δz from its neighbors, which, for node i is
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Δℎi ≔ ∑
j ∈ Ni

Ai, jDi, j
−1Δzj, (5)

where the diagonal matrix D is the out-degree matrix of the graph G encoding the sum of the 

weights for outgoing edges at each node.

To encourage the local smoothness of the vector field, we encourage the vector Δz to be 

maximally aligned with the neighborhood-specific trajectory Δℎ, i.e., a zero angle between 

Δz and Δℎ. This notion is captured by the progression loss:

Lprog ≔ E x1, x2, Δt ρ S 1 − cos θ Δz, Δℎ , (6)

By minimizing the loss, the resulting vector field maintains the local consistency in the 

neighborhood and captures the (global) non-linear direction of aging. As a result, subjects of 

similar ages will have similar learned representations (as demonstrated in prior works (Zhao 

et al., 2021a; Ouyang et al., 2021)).

3.4. Sampling strategy for mini-batches

To have the autoencoder derive a latent space with age- and progression-consistent 

neighborhoods, we add the ProtoNCE loss (Eq. (2)) and the progression loss (Eq. (5)) to 

the standard mean squared reconstruction loss, i.e.,

L ≔ E x1, x2, Δt ρ S Lrecon + λprotoLProtoNCE + λprogLprog , (7)

with λprog and λproto being the weighting parameters. The objective function encourages the 

low-dimensional latent space of the images to be informative Lrecon  while maintaining 

the consistency of embeddings z within the age-consistent neighborhood LProtoNCE  and the 

smoothness of the vector fields representing age progression Lprog . In terms of convergence 

of the auto-encoder, the convergence of LProtoNCE was proven in (Li et al., 2020) and the 

two loss functions Lrecon and Lprog are differentiable. However, the minimization problem is 

computationally too complex to be performed on the entire data set so we instead perform 

it on mini-batches. To increase the likelihood of neighborhoods computed on mini-batches 

being accurate approximates of those derived on the entire data set, the rest of this section 

will focus on a sampling strategy for constructing mini-batches.

Inspired by Wu et al. (2017), Harwood et al. (2017), we aim to sample the mini-batch 

from a local region in the latent space. We do so by sampling from nearby clusters derived 

in Section 3.2. Specifically, when sampling a mini-batch from S, we first randomly select 

a centroid c1, e.g., c1 = ck
m from run m. From the same run, We then order the centroids 

with increasing Euclidean distance to c1, i.e., δ Cm = c1, c2, …, ci, …, ckm  with ci being the 

i − 1 closest centroid of c1. We then sample the image pairs without replacement from each 

neighborhood according to this order δ Cm  until the number of samples reach the desired 

size of the mini-batch. To keep the same number of iterations with random sampling without 

replacement, in each epoch, S /Nbs mini-batches are sampled. The entire sampling strategy 
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is summarized by Algorithm 1, which is a way to select samples in a mini-batch and thus 

does not affect the mentioned convergence properties of the objective function (Eq. (7)).

Note, our method can be regarded as a dual contrastive learning method. For Δz of an MRI 

pair, the sample pairs in the corresponding progression-consistent neighborhood serve as 

positive pairs, and the cosine loss is the corresponding contrastive loss. With respect to z1, 

its corresponding centroids serve as positive pairs and other centroids as negative pairs.

4. Experimental setting

4.1. Datasets

We first evaluated the proposed method for predicting chronological age from 582 T1-

w MRIs of 274 healthy individuals (Male/Female: 138/136) with age ranging from 20 

to 90 years (age: 49.8 ± 15.9 years) recruited at SRI International (SRI). T1-weighted 

Inversion-Recovery Prepared SPGR images were acquired on a 3T GE scanner using an 

eight-channel phased-array head coil (TR = 6.55/5.92 ms, TE = 1.56/1.93 ms, TI = 300/300 ms, 
matrix = 256 × 256, thick = 1.25 mm, skip = 0 mm, 124 slices). Each subject had up to 13 scans 

with an average of 2.3 MRIs spanning an average time interval of 3.8 years.

The second data set comprised 2389 T1-w MRIs from 632 subjects (at least two and 

up to six visits per subject) from ADNI1 (Mueller et al., 2005), which consisted of 185 

NC (Male/Female: 95/90, age: 75.6 ± 5.1 years), 119 subjects with AD (Male/Female: 

58/61, age: 75.2 ± 7.6 years), 193 subjects diagnosed with sMCI (Male/Female: 124/69, 

age: 75.6 ± 6.6 years), and 135 subjects diagnosed with pMCI (Male/Female: 84/51, age: 

75.9 ± 5.4 years). There was no significant age difference between the NC and AD 

cohorts (p = 0.55, two-sample t-test) or between the sMCI and pMCI cohorts p = 0.75 . 

MRIs from ADNI were acquired via a 1.5T 3D MPRAGE sequence defined across GE, 

Siemens, and Phillips scanners (TR/TE = 2300 − 3000/3 − 4 ms; flip angle = 8 − 9∘; section 

thickness = 1.2 mm; 256 reconstructed axial sections) (Jack et al., 2008). The third data 

set is provided by NCANDA (distribution release: NCANDA_PUBLIC_6Y_REDCAP_V04 

(Pohl et al., 2022c), NCANDA_PUBLIC_6Y_STRUCTURAL_V01 (Pohl et al., 2022a), 

and NCANDA_PUBLIC_6Y_DIFFUSION_V02 (Pohl et al., 2022b); distributed to 

the public according to the NCANDA Data Distribution agreement https://www-

niaaa-nih-gov.stanford.idm.oclc.org/research/majo r-initiatives/national-consortium-alcohol-

and-neurodevelopment-adole scence/ncanda-data), consisting of 3830 DWI MRIs (processed 

to yield FA maps as described next) from 764 adolescents with ages between 12 and 24 

years (Male/Female: 381/383, age: 16.2 ± 2.5 years). Scans were acquired on 3T GE or 

Siemens scanners with protocols described in (Pohl et al., 2016b). Each visit was labeled 
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as no-to-low or moderate-to-heavy alcohol drinking based on the youth-adjusted Cahalan 

drinking score (Zhao et al., 2021b). The demographics of the three datasets are summarized 

in Table 1.

4.2. Data preprocessing

In line with our prior studies (Zhao et al., 2021a; Ouyang et al., 2021, 2020), all longitudinal 

T1-w MRIs were preprocessed by a pipeline composed of denoising, bias field correction, 

skull stripping, affine registration to a template, re-scaling to a 64 × 64 × 64 volume, and 

transforming image intensities to z-scores. NCANDA DTI scans were skull-stripped by 

aligning B0 images to the corresponding T1-W MRI. Bad single shots were removed, 

and corrections were applied for structural and eddy-current distortion. The UCL Camino 

Diffusion MRI toolkit (Zhao et al., 2021b) was used to create the FA maps.

Next, we split the data set into training, validation, and testing sets. After randomly 

selecting 10% subjects as the validation set, the remaining subjects were split into 5 folds 

for cross-validation (folds split based on subjects). For ADNI and NCANDA, stratified 

cross-validation was conducted to keep the same ratio between cohorts for downstream tasks 

in each fold. The same data splitting was used for pre-training and training of the regression 

model to ensure that the same individuals selected to create the representations were not part 

of the test sets used for measuring the accuracy of the regression model. To increase the size 

of the training set by a factor of 10, we performed data augmentation as in (Ouyang et al., 

2021), i.e., by applying the same random shift (within 4 pixels), rotation (within 2 degrees), 

and random flipping of brain hemispheres to each pair of MRIs. By doing so, we preserve 

the intrasubject changes that our model aims to learn (i.e., aging and disease effects). This 

augmentation strategy also allowed for direct comparison with our previous works (Zhao et 

al., 2021a; Ouyang et al., 2021).

4.3. Implementation details

Regarding the architecture, our model was based on an Encoder–Decoder structure (Kingma 

and Welling, 2013) (see also Fig. 2). Specifically, let EBk denote an Encoder Block, 

i.e., a stack of a Convolution layer (k channels, kernel size of 3 × 3 × 3) followed by 

a BatchNorm, LeakyReLU (with the slope of 0.2), and a MaxPool layer (kernel size 

of 2), and DBk as Decoder Block, i.e., a stack of a Convolution layer (k channels, 

kernel size of 3 × 3 × 3) followed by a BatchNorm, LeakyReLU (with the slope of 0.2) 

and a MaxPool layer (kernel size of 2). Then the architecture of our model can be 

described as EB16−EB32 − EB64 − EB16 − DB64 − DB32 − DB16 − DB16 followed by a convolution 

layer for the final reconstruction. The networks were trained for 50 epochs by the Adam 

optimizer (Kingma and Ba, 2014) with a learning rate of 5 × 10−4 and weight decay 

of 10−5. The regularization weights were set to λprog = 1.0 and λproto = 1.0. To make the 

algorithm computationally efficient, we built the graph dynamically on the mini-batch of 

each iteration. Hyperparameters are set to mini-batch size Nbs = 64, neighbor size Nnb = 5, 

number of clusters Nkm = N /5, N /10, N /20 , where N is the number of subjects, and smooth 

parameter α = 10. We denote the original LNE (Ouyang et al., 2021) described in Sections 

3.1 and 3.3 as LNE*, and the proposed method as LNE.
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4.4. Evaluation

We first visualized the vector field Δz  in 2D space by projecting the 1024-dimensional 

representations z1 and z2  to their first two principal components. Next, we quantitatively 

evaluated the quality of the representations by using them for downstream tasks. The 

classifier was designed as a multi-layer perceptron (Haykin, 2004) containing two fully 

connected layers of dimension 1024 (2048 if z1 and Δz were used) and 64 with 

LeakyReLU activation (Maas et al., 2013). In a separate experiment, we fine-tuned the 

LNE representation by incorporating the encoder into the classification models. On the 

SRI dataset, we used the representation z to predict the chronological age of each MRI to 

show that age is disentangled in the latent space, despite not being used to train the model. 

Accuracy metrics were Coefficient of determination (R2) (Nagelkerke et al., 1991) and 

root-mean-square error (RMSE). For ADNI, the diagnosis label remained the same across 

all visits of a subject, so we predicted the label associated with each image pair based on 

both z and trajectory Δz to highlight the aging speed between visits (an important marker for 

AD). To enable fair comparison, the competing methods also used z and Δz in downstream 

tasks. In addition to classifying NC and AD, we also attempted the more challenging task 

of distinguishing pMCI from sMCI. To account for the different number of samples in 

each cohort, we measured the classification accuracy via the balanced accuracy (BACC) 

(Brodersen et al., 2010). We also computed the area under the ROC curve (AUC) (Fawcett, 

2006) and F1 score (Sasaki et al., 2007) for reference. Note, all 4 cohorts (NC, sMCI, pMCI, 

AD) were included in pre-training as the method was impartial to diagnosis, i.e., labels were 

omitted for training. For NCANDA, we used the representation z to distinguish no-to-low 

from moderate-to-heavy drinkers at each given visit and computed BACC, AUC, and F1 to 

evaluate the accuracy of the classification. As there is a significant age difference between 

the two cohorts of NCANDA, no-to-low and moderate-to-heavy cohorts were matched with 

respect to age on the test set.

We compared the recorded accuracy to those of models using the same overall architecture 

but the encoders were pre-trained by other representation learning methods, including self-

supervised methods (AE, VAE (Kingma and Welling, 2013), SimCLR (Chen et al., 2020), 

MoCo (He et al., 2020), BYOL (Grill et al., 2020)), and a longitudinal self-supervised 

method (LSSL (Zhao et al., 2021a)). We modified the training strategy of SimCLR, MoCo, 

and BYOL to adapt to our longitudinal neuroimaging setting. As in Chen et al. (2020), the 

self-supervised training viewed two MRIs of the same subject as a positive pair while two 

MRIs from different subjects were a negative pair.

Moreover, we performed an ablation study to evaluate the contribution of each component 

of LNE. We noticed that methods could achieve similar regression or classification accuracy 

even when the quality of neighborhoods produced by those methods is very different. We 

evaluate the quality of the progression-consistent neighborhood according to the Silhouette 

Coefficient (SC) (Rousseeuw, 1987), which is defined by the ratio between the mean 

distance between a sample to other samples within its neighborhood versus samples that 

are outside the neighborhood, i.e., characterizes the density of the neighborhood:

Ouyang et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SC = 1
N ∑i = 1

N mean  P i, j ∉ Ni − mean  P i, j ∈ Ni

mean  P i, j ∉ Ni
. (8)

Note, 0 < SC < 1 and larger values suggest higher quality, i.e., a better approximation of the 

neighborhood defined on the whole data set. In addition, we compute the Revised Variance 

Ratio Criterion (RVRC) (Caliński and Harabasz, 1974) to compare the variance of distance 

between a sample with other samples within its neighborhood to the variance in the distance 

to samples outside the neighborhood:

RV RC = 1
N ∑i = 1

N var P i, j ∉ Ni

var P i, j ∈ Ni
. (9)

Note, larger values of RVRC suggest a higher quality of the neighborhood.

5. Results & discussion

5.1. Healthy aging

We first evaluated the proposed methods for encoding healthy brain aging with respect to 

the SRI dataset. Fig. 3 illustrates the vector field derived on one of the five folds by MoCo 

and the proposed method. We observe that the proposed method yielded a smooth field 

with a non-linear global aging direction from lower left to upper right, which indicates the 

disentanglement of the aging effect in the latent space (Fig. 3(b)). Note, such aging direction 

was solely learned by the self-supervised training on MRI pairs with an average interval 

between scans of 3.8 years (without using their age). On the contrary, without regularizing 

the longitudinal changes, MoCo did not lead to a clear disentanglement of brain age in the 

latent space (Fig. 3(a)).

We then utilized the latent representation z to predict the chronological age of the subjects 

(Table 2). With the frozen encoder, the proposed method achieved the best R2 score of 

0.63 and RMSE of 10.0 years, which are significantly better (p < 0.01, paired two-sample 

t-test on RMSE) than the second-best method LSSL (R2 = 0.59; RMSE=10.8 years). These 

results confirmed our expectation that a pre-trained self-supervised model that explicitly 

modeled brain aging and progression leads to more accurate age prediction in the proceeding 

analysis. Using a fine-tuned encoder, both LNE and LSSL achieved an R2 score of 0.74 and 

RMSE of 8.4 years. Visualizing the fine-tuned latent space via t-SNE (Van der Maaten and 

Hinton, 2008), the Supplemental Figure S1 displays a latent space produced by LNE that is 

stratified by age, suggesting that the derived representation is a good starting point for age 

prediction.

5.2. Alzheimer’s disease classification and progression of cognitive impairment

Fig. 4(c) shows the trajectories by diagnosis groups according to the encoding produced 

by LNE. While the initial points z1  of different diagnosis groups were uniformly spread 

across the latent space, vectors of AD (pink) and pMCI (brown) were significantly (p < 0.01, 

two-sided t-test, see also Figure S2) longer (i.e, progressed faster) than NC (cyan) and 

sMCI (orange) suggesting that the proposed method identified cohort difference in the 
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progression speed of brain age. This finding aligned with previous AD studies (Toepper, 

2017) suggesting that AD and pMCI are associated with accelerated brain aging. Similar to 

previous experiments, MoCo did not capture the aging direction and the differences between 

diagnosis groups (Fig. 4(a)). Though LSSL (Fig. 4(b)) captured the direction of brain aging 

in the latent space, it ignored that brain aging is a non-linear process. The non-linear curve 

by LNE seems to be a more accurate representation of brain aging, given that it resulted in a 

significantly more accurate classifier compared to LSSL (Tables 3 and 4)

We visualized the effect of aging on the brain by creating synthetic MRIs. For AD and 

NC, we separately fitted a linear mixed effect model to the 2D space shown in Fig. 4(c) in 

order to encode the global trajectory of each cohort. As the 1st component of PCA roughly 

corresponds to (brain) aging, we then mapped the chronological age range to the value 

range of this coordinate. For a given age and diagnosis group, we then computed an average 

representation in 2D, i.e., the 1st coordinate was defined by the given age, and the 2nd 

coordinate was the average of all subjects in the given cohort. This average was converted 

to 1024-dimension by the inverse transform of PCA, and then the decoder reconstructed the 

corresponding MRI. Fig. 5(a) shows the normal morphological changes between the MRI 

at a specific age and at the age of 65 years, which, as expected, increase with older age 

and focus on the ventricles and frontal lobes. When we subtract the synthetic brain MRIs 

of NC from AD at the same age (Fig. 5(b)), the difference between the cohorts decreases 

with age, suggesting that subjects with NC and AD converge to the similar aging pattern 

at older ages. These results agree with recent findings that brain atrophy of early-onset AD 

patients is distinctly different from age-matched controls, but less so when comparing older 

AD patients to older controls (Rhodius-Meester et al., 2017).

As the prior findings suggest that the length of Δz is informative, we used both z1 and 

Δz generated by each method as the features for classification. According to Tables 3 and 

4, the representations learned by the proposed method yielded significantly more accurate 

predictions than all baselines (p < 0.01, DeLong’s test). Note that the accuracy of our model 

with the frozen encoder even closely matched up to other methods after fine-tuning. This 

was to be expected because only our method and LSSL explicitly modeled the longitudinal 

effects, which led to a more informative Δz. Compared to modeling aging as a linear process 

by LSSL, the focus of our method was to capture potentially non-linear effects underlying 

the morphological change over time, which led to more informative trajectories according 

to the improved accuracy scores of the proceeding classifier. Moreover, as suggested in 

Table 5, LNE achieved higher or similar accuracy in sMCI vs. pMCI classification compared 

to other state-of-the-art methods that relied only on structural MRIs (Cui and Liu, 2019; 

Shen et al., 2021; Nguyen et al., 2021). Accurately distinguishing those two cohorts is of 

interest to clinicians as differences in brain structure might reveal why some MCI patients 

develop AD later in life (a.k.a. pMCI) while others do not (a.k.a., sMCI). Note, while the 

proposed self-supervised approach is explicitly designed to model brain aging in the latent 

space, the resulting representations can potentially be used to improve the accuracy of other 

state-of-the-art methods developed for different tasks, such as Graph Convolution Network 

modeling relationships between regions (Nguyen et al., 2021) and auxiliary information 

from other modalities (Shen et al., 2021). Finally, visualizing the fine-tuned latent space of 
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this experiment (see Supplemental Figure S3) revealed a manifold stratified according to the 

Mini Mental State Exam (MMSE) (Balsis et al., 2015).

5.3. Influence of alcohol on adolescent microstructural brain development

On the NCANDA data set, MoCo (Fig. 6(a)) again failed to capture brain aging (a.k.a. brain 

development), while LNE disentangled a brain development direction along the 1st PCA 

component (Fig. 6(b)). When age-matching the visits of no-to-low with moderate-to-heavy 

alcohol drinkers (which were generally older than the no-to-low drinkers), the moderate-to-

heavy drinkers had a significant shorter progression trajectory (p < 0.01, t-test, see also 

Fig. 6(c)), which aligns with the finding that alcohol consumption during adolescence 

delays micro-structural brain development (Bava and Tapert, 2010; Zhao et al., 2021b). This 

qualitative assessment is also supported by the accuracy scores reported in Table 6, where 

the frozen encoder based on our method achieved a significantly (p < 0.01, DeLong’s test) 

higher balanced accuracy (i.e., 63.7%), higher AUC (i.e., 66.1), and higher F1 (i.e., 62.5) 

than LSSL (BACC = 62.1%,  AUC = 64.3,  F1 = 62.2), the second-best method. The fine-tuned 

encoder based on LNE was also significantly more accurate BACC = 71.2%, AUC = 74.0 , 

than any other method (p < 0.01, DeLong’s test).

5.4. Ablation study

We quantitatively assessed the contribution of the mini-batch sampling strategy (SS) and 

the age-consistent neighborhood mapping by recording the balanced accuracy and the 

quality of the neighborhoods on all four downstream tasks based on frozen encoders. 

For ADNI, we confined computing the neighborhood quality to the two cohorts specific 

to the downstream tasks. As shown in (Table 7), adding both SS and the age-consistent 

neighborhood mapping (ProtoNCE) obtained the best scores in three settings compared to 

omitting either component, while omitting both components (LNE*) resulted in the worst 

scores in all four settings. Regarding the neighborhood quality metrics, including either 

component on LNE* led to significant improvement (p < 0.01, t-test), and adding both 

achieved the best neighborhood quality. Moreover, we quantitatively evaluated the effect 

of the number of clusters used in the k-means algorithm (Table 8). Our default setting 

is Nkm = N /5, N /10, N /20 , where N is the number of subjects. Comparing with smaller 

number of clusters (more samples in each cluster), the default setting achieved higher or 

similar BACC, and the quality of the neighborhoods was higher on the two classification 

tasks performed on ADNI based on frozen encoders.

5.5. Computational costs

Compared to existing self-supervised methods (e.g. SimCLR (Chen et al., 2020), MoCo (He 

et al., 2020), LSSL (Zhao et al., 2021a)), the extra computational cost comes from k-means 

clustering taking around 2 min for each epoch on ADNI. The computational cost of the other 

components of our approach is similar to SimCLR and MoCo (i.e., the computational cost 

of their NCE loss is similar to the proposed ProtoNCE loss) or negligible, i.e., mini-batch 

sampling and performing operations on matrices of the dimension of the batch size to derive 

progression-consistent neighborhoods.
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5.6. Limitations

LNE only explicitly models brain aging, while other time-dependent factors are simplified 

to accelerating aging (e.g., AD) or decelerating aging (e.g., effect of alcohol consumption 

in adolescents). Another simplification is the independence between brain aging and other 

static factors, such as sex. On the SRI dataset, this assumption was supported by a post-hoc 

analysis that revealed that the speed of brain aging (the length of Δz) was not significantly 

different (p > 0.1, t-test) between the sexes.

Moreover, the age-consistent neighborhood was built based on the clusters formed by the 

k-means algorithm, thus the number of clusters needs to be defined a priori, which increases 

the complexity of the hyperparameter tuning. In addition, k-means is initially applied to the 

representations resulting from randomly initialized model weights. This could potentially 

lead to instability at the beginning of the training. However, we found that the training of the 

model first focuses on minimizing the reconstruction and progression loss. The optimization 

minimizes the ProtoNCE loss (that is based on k-means clusters) in later iterations when the 

latent space is more informative as it is stratified by brain age.

Finally, our model generated progression-consistent neighborhoods via an encoding that 

ensured that longitudinal MRIs with similar brain ages also had similar progression 

trajectories. However, the brain of an old healthy subject might be of similar brain age 

to a younger subject diagnosed with AD while their progression trajectories might not be 

similar. One possible way to model the different progression patterns for brains with similar 

brain age is by jointly considering the progression speed and representation z1 in defining 

progression-consistent neighborhoods.

6. Conclusion

In this work, we proposed a self-supervised representation learning framework that derives 

a latent space explicitly modeling brain aging. With the age-consistent neighborhood, brain 

MRIs of similar brain ages are mapped in close proximity to each other. By modeling 

progression-consistent neighborhoods, the resulting encoding yielded a smooth vector 

field in the latent space while maintaining a globally consistent progression trajectory 

that represented brain aging. The novel mini-batch sampling strategy encouraged the 

progression-consistent neighborhood on the mini-batch to approximate its construction 

with respect to the whole data set. On the macro-structural SRI data, the latent space 

was stratified by age (Fig. 3), which illustrated the ability of our approach to capture the 

progression of healthy aging (in that cohort). It also successfully modeled the accelerated 

aging effect caused by cognitive impairment as captured by the T1w MRI acquired by ADNI 

data, and the decelerated micro structural brain development in NCANDA adolescents 

induced by alcohol drinking. The informative representations lead to better chronological 

age prediction (SRI), and better capability of differentiating diagnosis groups (ADNI) and 

alcohol drinking levels (NCANDA) compared to other self-supervised methods. These 

results suggested that the proposed LNE method is superior to existing self-supervised 

methods for modeling brain aging. The learned latent space is stratified by brain age and the 
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trajectory represents the speed of brain aging, which enables LNE to be used for detecting 

the effect of diseases and substances that cause brain aging to become abnormal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the latent space derived from the proposed method. All trajectories form a 

vector field (blue box) modeling brain aging (red curve). Each trajectory is assigned to a 

cluster centroid (orange star). During training, mini-batches are sampled from neighboring 

clusters (orange blob) until it reaches the desired size for the mini-batch. Mapping into 

a neighborhood is regularized according to brain age and progression consistency. For 

example, z1 in the cyan trajectory in the upper-right box is first encouraged to be similar 

(inward red arrow) to its corresponding cluster centroid and dissimilar (outward gray arrow) 

to other centroids. Furthermore, as shown in the lower right green box, we encourage the 

direction of this vector to be consistent with Δℎ (purple), a vector aggregated from the 

neighborhood of z1. (blue circle).
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Fig. 2. 
The network structure of the proposed method. Blue blocks correspond to the encoder that 

reduces an input MRI to a 1024-dimensional latent representation z, from which the decoder 

(green) reconstructs the MRI.
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Fig. 3. 
Experiments on healthy aging: Latent space of (a) MoCo (He et al., 2020) and (b) the 

proposed LNE projected into 2D PCA space of z1 and z2. Arrows represent Δz and are 

color-coded by the age of z1.
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Fig. 4. 
Experiments on ADNI: Latent space of (a) MoCo (He et al., 2020), (b) LSSL (Zhao et 

al., 2021a), and (c) the proposed LNE projected into 2D PCA space of z1 and z2.Arrows 

represent Δz and are color-coded by the diagnosis of the subject. Only LNE encodes brain 

aging as a non-linear process.
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Fig. 5. 
Visualization of the difference between synthetic generated brain MRIs. (a) Synthetic MRIs 

of normal controls at a given age minus the one at age 65 years; (b) Synthetic MRI of 

normal controls subtracted from those diagnosed with AD at the corresponding age. Red 

suggests having positive intensity difference and blue suggests negative.

Ouyang et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Experiments on NCANDA: Latent space of (a) MoCo (He et al., 2020) and (b) the proposed 

LNE projected into 2D PCA space of z1 and z2. Arrows represent Δz and are color-coded by 

the label of z1. (c) Boxplot of the norm the speed of aging (i.e., Δz) for the two groups as 

encoded by LNE.
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Table 1

Demographics of the three datasets.

Dataset Cohorts # of subjects Gender
(M/F)

Age
(Yrs)

SRI Healthy 274 138/136 49.8 ± 15.9

ADNI

NC 185 95/90 75.6 ± 5.1

AD 119 58/61 75.2 ± 7.6

sMCI 193 124/69 75.6 ± 6.6

pMCI 135 84/51 75.9 ± 5.4

NCANDA All 764 381/383 16.2 ± 2.5

Note, visits of an NCANDA participant are not always assigned to just one cohort, i.e., the participant can be a no-to-low drinker at some visits 
while a medium-to-heavy drinker at others.
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Table 2

Chronological age prediction on the SRI dataset.

Methods Chronological age prediction

Frozen Fine-tuned

R2 ↑ RMSE ↓ R2 ↑ RMSE ↓

No pretrain – – 0.72 8.7
†

AE 0.53 11.4
† 0.69 9.3

†

VAE (Kingma and Welling, 2013) 0.51 11.6
† 0.69 9.4

†

SimCLR (Chen et al., 2020) 0.56 11.1
† 0.73 8.9

†

MoCo (He et al., 2020) 0.58 10.9
† 0.73 8.6

BYOL (Grill et al., 2020) 0.54 11.3
† 0.72 9.0

†

LSSL (Zhao et al., 2021a) 0.59 10.8
† 0.74 8.4

LNE 0.63 10.0 0.74 8.4

The best accuracy scores are in bold.

†
Significant (p < 0.05, paired two-tailed t-test) lower accuracy scores compared to LNE in term of RMSE.
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Table 3

Classification accuracy for NC vs. AD (ADNI data).

Methods NC vs. AD

Frozen Fine-tuned

BACC AUC F1 BACC AUC F1

No pretrain – – – 79.4 83.1 80.3

AE 72.2 75.4 74.9 80.7 84.5 82.1

VAE (Kingma and Welling, 2013) 66.7 70.0 71.5 77.0 81.3 78.2

SimCLR (Chen et al., 2020) 72.9 75.9 75.4 82.4 86.2 83.4

MoCo (He et al., 2020) 73.2 76.4 76.4 82.8 85.4 83.8

BYOL (Grill et al., 2020) 73.0 76.4 75.9 82.3 85.3 82.7

LSSL (Zhao et al., 2021a) 74.2 77.8 77.0 82.1 85.3 83.4

LNE 82.1 85.4 83.0 83.5 85.8 83.5

The highest accuracy scores are in bold. The classifier based on the LNE encoding was significantly more accurate than the alternative methods for 
both frozen and fine-tuned encoder (p < 0.05, DeLong’s test).
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Table 4

Classification accuracy for sMCI vs. pMCI (ADNI data).

Methods sMCI vs. pMCI

Frozen Fine-tuned

BACC AUC F1 BACC AUC F1

No pretrain – – – 69.3 71.6 70.9

AE 62.6 65.4 62.8 69.5 71.8 71.1

VAE (Kingma and Welling, 2013) 61.3 64.8 62.9 63.8 65.9 64.3

SimCLR (Chen et al., 2020) 63.3 66.3 64.4 69.5 71.9 70.6

MoCo (He et al., 2020) 64.6 66.5 65.7 70.8 72.4 71.4

BYOL (Grill et al., 2020) 64.2 66.4 64.9 70.3 72.2 71.4

LSSL (Zhao et al., 2021a) 69.4 71.8 70.5 71.2 73.7 72.8

LNE 71.1 73.7 71.8 73.5 75.6 74.4

The highest accuracy scores are in bold. The classifier based on the LNE encoding was significantly more accurate than the alternative methods for 
both frozen and fine-tuned encoder (p < 0.05, DeLong’s test).
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Table 5

Comparison of the proposed method with other traditional methods and deep-learningbased methods in sMCI/

pMCI classification on ADNI dataset.

Method Type Modalities sMCI/pMCI BACC

Cross-sectional

Liu et al. (2018) D MRI 465/205 62.2

Zu et al. (2016) N MRI, PET 56/43 69.0

Suk et al. (2014) N+D MRI 128/76 63.8

Lin et al. (2018) D MRI 100/164 73.0*

Huang et al. (2019) D MRI, PET 441/326 76.9

Zhou et al. (2019a) N MRI, PET, SNP 205/157 74.3*

Zhou et al. (2019b) N MRI, PET 114/71 78.3

Zeng et al. (2021) D MRI, clinical measures 82/95 87.8*

Nguyen et al. (2021) D MRI 129/171 74.0

Yuan et al. (2021) N MRI, SNP 115/113 82.4

Shen et al. (2021) N MRI 59/55 65.7

Longitudinal

Gray et al. (2012) N MRI, PET 64/53 62.7

Cui and Liu (2019) D MRI 236/167 71.7

Platero and Tobar (2020) N MRI, clinical measures 215/206 77.1

Ours D MRI 193/135 73.5

‘D’ denotes deep-learning methods, and ‘N’ denotes non-deep-learning methods.

*
Refers to ACC scores, i.e., classification accuracy not accounting for imbalance between cohort sizes. The proposed method achieved the 

second-highest accuracy among all methods that were solely based on structural MRI.
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Table 6

Classification accuracy for no-to-low vs. moderate-to-heavy drinkers (NCANDA data).

Methods No-to-low vs. moderate-to-heavy

Frozen Fine-tuned

BACC AUC F1 BACC AUC F1

No pretrain – – – 69.3 71.8 69.2

AE 58.9 60.2 59.5 69.8 72.2 69.6

VAE (Kingma and Welling, 2013) 56.7 58.2 57.4 66.9 68.4 67.3

SimCLR (Chen et al., 2020) 60.2 62.8 60.1 70.2 73.1 69.7

MoCo (He et al., 2020) 61.4 63.9 61.3 70.6 73.2 69.8

BYOL (Grill et al., 2020) 60.4 62.7 60.2 70.3 73.1 70.0

LSSL (Zhao et al., 2021a) 62.1 64.3 62.2 70.4 73.2 70.6

LNE 63.7 66.1 62.5 71.2 74.0 70.5

The highest accuracy scores are in bold. The classifier based on the LNE encoding was significantly more accurate than the alternative methods for 
both frozen and fine-tuned encoder (p < 0.05, DeLong’s test).

Med Image Anal. Author manuscript; available in PMC 2023 May 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ouyang et al. Page 33

Ta
b

le
 7

A
bl

at
io

n 
st

ud
ie

s 
on

 m
od

el
s 

pr
e-

tr
ai

ne
d 

re
pr

es
en

ta
tio

ns
 a

nd
 d

ow
ns

tr
ea

m
 ta

sk
s 

w
ith

 f
ro

ze
n 

en
co

de
r.

M
et

ho
ds

A
ge

 p
re

di
ct

io
n

N
C

 v
s.

 A
D

sM
C

I 
vs

. p
M

C
I

no
-t

o-
lo

w
 v

s.
 m

od
er

at
e-

to
-h

ea
vy

 d
ri

nk
er

s

R
M

SE
SC

R
V

R
C

B
A

C
C

SC
R

V
R

C
B

A
C

C
SC

R
V

R
C

B
A

C
C

SC
R

V
R

C

L
N

E
* 

(O
uy

an
g 

et
 a

l.,
 2

02
1)

10
.3

0.
72

†
88

.9
†

81
.9

†
0.

76
†

98
.4

†
70

.6
†

0.
78

†
10

1.
2†

62
.8

†
0.

70
†

86
.5

†

L
N

E
*+

Pr
ot

o
10

.1
0.

74
†

91
.2

†
82

.0
0.

79
†

10
2.

3†
70

.8
†

0.
80

†
10

3.
7†

63
.2

†
0.

72
†

89
.3

†

L
N

E
*+

SS
10

.0
0.

79
99

.6
82

.2
0.

83
†

10
4.

1†
70

.9
0.

85
†

10
6.

8†
63

.4
†

0.
78

†
10

0.
5†

L
N

E
10

.0
0.

81
10

3.
2

82
.1

0.
87

10
6.

5
71

.1
0.

88
10

8.
2

63
.7

0.
81

10
2.

3

Si
lh

ou
et

te
 C

oe
ff

ic
ie

nt
 (

SC
) 

an
d 

re
vi

se
d 

V
ar

ia
tio

n 
R

at
io

 C
ri

te
ri

on
 (

R
V

R
C

) 
w

er
e 

co
m

pu
te

d 
on

 th
e 

pr
e-

tr
ai

ne
d 

re
pr

es
en

ta
tio

ns
 to

 e
va

lu
at

e 
th

e 
qu

al
ity

 o
f 

th
e 

ne
ig

hb
or

ho
od

. +
Pr

ot
o 

m
ea

ns
 a

dd
in

g 
th

e 
ag

e-
co

ns
is

te
nt

 n
ei

gh
bo

rh
oo

d 
re

gu
la

ri
za

tio
n 

to
 L

N
E

*,
 a

nd
 +

SS
 d

en
ot

es
 th

e 
m

in
i-

ba
tc

h 
sa

m
pl

in
g 

st
ra

te
gy

.

† Si
gn

if
ic

an
t l

ow
er

 s
co

re
s 

co
m

pa
re

d 
to

 L
N

E
, w

hi
ch

 in
cl

ud
es

 b
ot

h 
Pr

ot
o 

an
d 

SS
.

Med Image Anal. Author manuscript; available in PMC 2023 May 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ouyang et al. Page 34

Table 8

Ablation studies on the number of clusters used in k-means clustering.

Number of clusters NC vs. AD sMCI vs. pMCI

N km BACC SC RVRC BACC SC RVRC

{N/20,N/40,N/80} 81.8
†

0.77
†

102.1
†

70.7
†

0.78
†

103.1
†

{N/10,N/20,N/40} 82.2 0.82
†

104.2
†

70.8
†

0.84
†

105.8
†

{N/5,N/10,N/20} 82.1 0.87 106.5 71.1 0.88 108.2

The highest scores are in bold. N refers to the number of subjects, i.e., N = 304 for NC vs. AD and N = 328 for sMCI vs. pMCI.

†
Significantly lower scores (p < 0.05, DeLong’s test for BACC, and paired two-tailed t-test for SC and RVRC) than the default setting, i.e., 

Nkm = N /5, N /10, N /20 .
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