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SUMMARY

The successful transplantation of stem cells has the potential to transform regenerative medicine 

approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or 

aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate 

regulation, and insufficient integration with host tissues constitute significant challenges. The 

success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, 

specific lineage differentiation, assembly, and maintenance of long-term function. Advances in 

biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical 

cues and emulating tissue microenvironments. This review highlights leading biomaterials-based 

approaches for enhancing stem cell transplantation.

INTRODUCTION

Adult multicellular tissues maintain a healthy tissue state by constantly turning over cells 

through a careful balance of cell death and cell division (Biteau et al., 2011). However, 

pathologies due to degenerative diseases, aging, cancers, or idiopathic tissue injuries result 

in loss-of-functional tissue. Due to the limited ability of the adult tissue to regenerate, with 

the exception of gut, cornea, skin, and liver, external interventions are needed to restore 

native tissue and its normal physiological functions (Iismaa et al., 2018; Yun, 2015).

Stem cells are promising interventions because of their ability to self-renew and promote 

tissue repair and regeneration. The regenerative potential of stem cells and stem cell-derived 

tissue-specific cells depends on genetics, epigenetics, and their complex extracellular 

microenvironment, which collectively informs the stem cells’ differentiation pathways 

(Mahla, 2016; Zakrzewski et al., 2019). However, most studies have demonstrated that 

stem cell-based therapies provide only modest improvement in tissue function, which could 

be attributed to pre-/post-transplantation challenges such as low differentiation efficiency 
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and survival, poor localization and retention at the transplant site, and lack of proper tissue 

integration (Caplan et al., 2019; Cismaru and Cismaru, 2017; Ntege et al., 2020). The lack 

of appropriate intrinsic and extrinsic biophysiochemical cues are often key contributing 

factors responsible for the limited success of stem cell transplantation as they regulate cell 

differentiation, proliferation, protein synthesis, matrix production, and cell survival (Guilak 

et al., 2009; Wagers, 2012; Xue et al., 2022).

Mimicking the complex in vivo milieu for transplanted stem cells has proved to be 

challenging for first generation biomaterials, which mainly consisted of inert, biocompatible 

materials (Hildebrand, 2013; Marin et al., 2020). In recent years, however, biomaterials 

developed for regenerative therapies have evolved to include more biofunctional 

capabilities. These biofunctional materials can better mimic the complex physiological 

microenvironment by providing essential biophysiochemical signals to retain stemness, 

direct differentiation, promote reprogramming, manipulate genomic and epigenomic traits, 

or select for functional phenotypes (Cha et al., 2012; Facklam et al., 2020; Mitrousis et al., 

2018). In addition, optimal delivery methods and the incorporation of biomolecules in these 

biofunctional materials can protect stem cells and stem cell-derived tissue-specific cells after 

transplantation from stress, hypoxia, and immune attack, thus facilitating long-term viability 

and maintenance.

Biomaterials interact with the stem cells based on the common principle of dynamic 
reciprocity and tissue-specific tensional homeostasis (Eichinger et al., 2021; Kimura et al., 

2020; Stamenović and Smith, 2020; Thorne et al., 2015; Xu et al., 2009). Biomaterials can 

be modeled to present cell and tissue-specific structural framework and biophysiochemical 

cues that support proliferation, differentiation, cell fate, and morphogenetic movement. 

These functional effects are achieved through bidirectional interactions between the 

regenerating tissue and the surrounding microenvironment based on the underlying 

phenomenon of dynamic reciprocity. Tensional homeostasis incorporates the viscoelasticity 

of the biomaterial construct into the overall mechanical properties of the microenvironment. 

This resulting unified paradigm of biomaterials and stem cells interact to direct tissue 

regeneration and homeostasis upon transplantation (Eichinger et al., 2021; Kimura et al., 

2020; Thorne et al., 2015; Xu et al., 2009).

In this review, biomaterial-based advances to improve the physiological outcome of stem 

cell transplantation are described. The review does not aim to provide a comprehensive list 

of all biofunctional materials described in the literature but highlights strategies that employ 

different biomaterial design paradigms. The ability of biomaterials to provide necessary 

biophysiochemical signals for stem cells pre-/post-transplantation is also discussed. 

Emerging theranostic biomaterial approaches in regenerative medicine that can provide 

both real-time, noninvasive monitoring and tracking capabilities and therapeutic effects 

to promote tissue regeneration are briefly described. We focus on in vivo studies in the 

heart, brain, spinal cord, eye, and pancreas, where recent advancements in biomaterial-based 

approaches have been used to overcome transplantation challenges.
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BIOMATERIAL PARADIGMS FOR SUCCESSFUL STEM CELL 

TRANSPLANTATION

Transplanted stem cells are expected to replace and repair the diseased tissue through 

cellular regeneration or supporting endogenous repair by inducing key biophysiochemical 

factors. Hence, long-term survival, retention, integration, and favorable immune regulation 

are intertwined and remain prerequisites for successful stem cell transplantation. However, 

pre-/post-transplantation survival of the stem cells remains a significant challenge and 

substantially limits the treatment’s efficacy. Noticeably, there are several mechanisms 

contributing to the loss of stem cell grafts, including unwarranted mechanical stress during 

culture and delivery. Further, cell death due to the absence of sufficient cell adhesive ligands 

affects cell retention and integration. Oxidative stress, lack of growth factors, and limited 

vascularization leading to insufficient access to nutrients and oxygen also contribute to the 

loss of a graft (Hayward et al., 2021; Stokes et al., 2017; Zhao et al., 2019). The success 

of stem cell transplantation depends on creating a suitable microenvironment that supports 

long-term stem cell survival and function.

Biomaterial-based approaches have been shown to address many of these aspects to improve 

the outcome of stem cell transplantation- as the properties of the biomaterial construct can 

be tuned to coincide with the different phases of tissue regeneration (Figure 1).

Biomaterial-based stem cell transplantation for improved delivery and retention

Biomaterials that have been utilized for stem cell transplantation are mainly classified 

into two categories—injectable and implantable biomaterials (Wang et al., 2020; Zhao et 

al., 2019). Although stem cell transplantation can be minimally invasive with traditional 

injection-based procedures, it is often difficult to achieve high cell retention and recapitulate 

the native tissue microenvironment. This is primarily due to a mismatch in the mechanical 

properties between the injectable material and physiological stiffness (Gattazzo et al., 2014; 

Hayward et al., 2021; Rozario and DeSimone, 2010). Transplanted cells use specialized 

proteins to sense and integrate biophysiochemical cues at the molecular, cellular, and tissue 

levels. Thus, the lack of relevant binding motifs on injectable or implantable biomaterials 

contribute to the challenge in recapitulating the microenvironment for the cells. With the 

recent advances in the use of these biomaterials, one can successfully achieve a more 

hospitable cellular niche. This facilitates the necessary mechanical properties, cell-cell 

interactions, and biophysiochemical signals that are important for regulating pathways 

necessary for graft survival (Cha et al., 2012; Perestrelo et al., 2018; Smith and Gerecht, 

2016).

Injectable biomaterial-based stem cell transplantation

Injectable biomaterial-based stem cell transplantation is usually carried out using hydrogels 

due to their potential to recapitulate the microenvironment. They are typically fabricated 

by physically or chemically cross-linking oligomer precursors. Ionically, cross-linked 

alginates using divalent calcium ions and self-assembling peptide (SAP) amphiphiles 

(PAs) are used widely for stem cell delivery (Lee et al., 2019). Stimuli-responsive 

hydrogels such as thermoresponsive poly(N-isopropylacrylamide (PNIPAAm) (Li et al., 
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2014), poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) (Thakur et al., 

2016), methyl cellulose (MC), polyethylene glycol (PEG)-poly(lactic-co-glycolic acid) 

(PLGA-PEG) triblock polymer, pH-sensitive cationic chitosan hydrogel, polyethylenimine 

(PEI), and zwitterionic poly(2-(methacryloyloxy) ethyl phosphorylcholine) (PMPC) blocks 

have also been used for stem cell delivery (Zhang et al., 2020). Click chemistry, Diels-Alder 

reaction, Schiff base reaction, photo-cross-linking, and electrostatic cross-linking are some 

other methods for cross-linking macromolecules to form hydrogels (Geng et al., 2021; 

Lee, 2018). Hydrogels can be used as microcarriers (mixed and cross-linked with stem 

cells), microcapsules (encasing individual cells or cell clusters), or composites of both 

microcapsules and microcarriers (Fischer et al., 2020; Kupikowska-Stobba and Lewińska, 

2020). Microcapsules provide a large surface area for the stem cells to interact with while 

allowing for better diffusion dynamics of nutrients and waste, whereas microcarriers have 

interconnected porous structures that facilitate cellular migration, interaction, and integration 

(Kupikowska-Stobba and Lewińska, 2020; Lee et al., 2021). Mechanical stresses, such as 

shear and extensional stress, are other significant challenges for injectable stem cell delivery 

methods using Newtonian fluids. The stem cells experience higher flow resistance near 

the syringe wall, higher velocity at the center of the syringe, and higher extensional force 

at the syringe needle interface due to the comparatively smaller needle diameter (Avila 

et al., 2021; Lee, 2018; Shrestha et al., 2020; Thakur et al., 2016). These mechanical 

stresses are detrimental to the stem cells, resulting in rapid necrosis and triggering apoptosis 

that ultimately leads to loss of the graft post-transplant. In a detailed study examining 

needle gauge, syringe size, flow rate, and vehicle on cell-experienced biomechanical forces, 

the smallest bore size 32G needle produced significantly higher ejection pressures for 

all vehicles, and high flow rates with viscous vehicles tended to reduce the viability of 

injected cells. It was identified that 5-μL/min ejection using a 26G needle increased neuronal 

differentiation of neural stem cells (NSCs) (Wahlberg et al., 2018). Alginate, hyaluronic acid 

(HA), and HA MC have shear-thinning properties and exhibit characteristic plug flow that 

prevent the stem cells from experiencing mechanical stress and improve the retention and 

viability of retinal stem cells (RSCs), mesenchymal stem cells (MSCs), and adipose stem 

cells (ASCs) (Aguado et al., 2012; Choi et al., 2020; Vianney et al., 2016). Further, it has 

been demonstrated that the protective effects from material encapsulation such as alginate 

are directly due to the mechanical gelation and not the chemistry of the material (Aguado et 

al., 2012).

Implantable biomaterial-based stem cell transplantation

Implantable biomaterial-based stem cell transplantation is usually invasive but can be a 

promising strategy due to the ability to better mimic a more complex in vivo cellular 

microenvironment. Stem cells transplanted onto scaffolds demonstrate the formation of 

more complex tissue architecture, improvement in cell retention, and better integration with 

host tissue by allowing the migration of transplanted and host cells (Adu-Berchie and 

Mooney, 2020; Mitrousis et al., 2018; Stieglitz and Schuettler, 2013). Macroporous scaffolds 

were successfully used for correcting cranial defects by transplanting MSCs (Liu et al., 

2014) and displayed improved osteogenesis and host cell infiltration. Implantable stem cell 

delivery systems can also be advantageous in preventing anchorage-dependent cell death 

or anoikis (Mitrousis et al., 2018; Qi et al., 2015; Zhang et al., 2013). The prosurvival 
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anchorage-dependent signals are mediated by the binding of cell surface receptors to the 

extracellular matrix (ECM) that activates focal adhesion kinase (FAK), phosphoinositide 

3-kinase (PI3K), protein kinase B (AKT), and mitogen-activated protein (MAP), although 

insufficient binding to ECM sites leads to anoikis (Martino et al., 2018; Vachon, 2011). 

For example, arginylglycylaspartic acid (RGD)-functionalized microporous alginate gels 

improved cell release by providing more anchoring points for cells to generate traction 

forces and by inducing differential stress relaxation (Chen et al., 2012). Tissue remodeling 

is further influenced by the biomaterial degradation behavior and surface topography, which 

accelerate and provide precise control over morphogenesis and cell functions (Figure 1). 

PLGA/poly(L-lactic acid) (PLLA) porous scaffolds were investigated as substrates for 

human embryonic stem cell (hESC) adhesion, differentiation, and capacity to form complex 

tissue architectures (Li et al., 2016; Serbo and Gerecht, 2013). Semi-interpenetrating 

polymer networks (sIPNs) poly-NIPAAm-lignocellulose scaffolds were used for short-term 

pluripotency maintenance, whereas nanofibrillar polyamide matrices showed improvement 

in self-renewal, morphogenesis, and tissue organization (Dai et al., 2021; Mahou et al., 

2017; Masullo et al., 2021).

Biomaterial-based endogenous regeneration

Stem cells are usually expanded and differentiated outside the body, where they are later 

combined with bioactive factors and biomaterial constructs in vitro. However, exogenous 

stem cell culture followed by transplantation has several major drawbacks, namely donor 

tissue morbidity, insufficient robust and reliable differentiation, and immunogenicity 

(Bowers et al., 2019; Chai and Leong, 2007; Hotaling et al., 2015; Jackson, 2016; Khan 

and Reddy, 2014). Biomaterial-assisted endogenous tissue regeneration, also called in situ 
tissue regeneration, is designed to eliminate the need for exogenous stem cell manipulation 

while improving recruitment, renewal, differentiation, migration, vascularization access, 

immune compatibility, and tissue integration. This strategy involves the implantation of 

stem cell-free biomaterials such as polymer scaffolds which have a significant capacity 

for incorporating nutrients, oxygen, and bioactive molecules that are vital for supporting 

cellular functions (Bae et al., 2012; Gholipourmalekabadi et al., 2016; Hoganson et al., 

2008; Ghavidel Mehr et al., 2014; Yu et al., 2016; Figure 1). The biophysiochemical 

cues from the scaffolds can trigger chemotaxis and differentiation toward specific cell 

lineages, whereas topologic features, structure, porosity, stiffness, and degradation behavior 

can influence tissue organization by altering cell adhesion, infiltration, cell concentration, 

and vascularization (Badylak, 2015; de Vries et al., 2020; Gattazzo et al., 2014; Jansen et 

al., 2015). Synchronized scaffold disintegration and endogenous tissue regeneration have 

a better capacity for load transfer and increased mechanical integrity. Newly regenerated 

tissue can then assume the functions that were initially provided by the scaffold while 

replacing damaged host tissue. It has been shown that silk fibroin-based hydrogels can 

accelerate endogenous bone regeneration by more than 200% compared with untreated 

controls (Ribeiro et al., 2018). Electroconductive quaternized chitosan-g-polyaniline (QCSP) 

and benzaldehyde group-functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) 

(PEGS-FA) hydrogels were shown to be effective in wound repair with higher expressions 

of vascular endothelial growth factor (VEGF) and transforming growth factor β (TGF-β) 

(Ertas et al., 2021; Mahou et al., 2017; Xu et al., 2019). HA and PEG microrods have 
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been successfully used to promote cardiac and bone tissue healing while reducing the 

foreign body reaction (FBR) (Le et al., 2018; Rivera et al., 2021). HA hydrogels with 

bisphosphonate and dextran with bone morphogenic protein 2 (BMP-2) were reported to 

be effective in inducing endogenous bone regeneration (Hulsart-Billström et al., 2013). 

Supermolecular PEG-derivative hydrogels functionalized with ureidopyrimidinone and 

loaded with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) 

were used for cardiac tissue regeneration in preclinical studies of chronic myocardial 

infarction (MI) (Mol et al., 2019; Salimath et al., 2012). Further polynucleotides were also 

successfully used for endogenous tissue regeneration. In situ chondrogenesis and inhibition 

of endochondral ossification were achieved using gene-activated scaffolds by activating 

Sry-related HMG box (SOX) family genes such as SOX-5, SOX-6, and SOX-9 transcription 

factors (Raftery et al., 2020).

Biomaterials to modulate the host tissue niche

The ability of biomaterials to modulate the host tissue niche is critical to achieving 

successful stem cell transplantation. Apart from using biomaterials to recapitulate the 

microenvironment for stem cells, the manipulation of the host tissue niche to create 

a conducive microenvironment around the ailing tissue is vital. Biomaterial-aided stem 

cell delivery systems can be engineered to favorably stimulate the host tissue niche by 

incorporating necessary components such as cytokines, growth factors, mechanical stimuli, 

vascularization, and immune modulators (Adu-Berchie and Mooney, 2020; Chen et al., 

2019; Dziki et al., 2017; Voog and Jones, 2010; Waldeck et al., 2017; Figure 1). To 

support the in vivo differentiation of stem cells and endogenous differentiation of recruited 

adult stem cells, a series of appropriate cytokines and growth factors are necessary. These 

cytokines and growth factors can be incorporated into biomaterial scaffolds to prolong 

their residence at the stem cell transplantation site (Adu-Berchie and Mooney, 2020; 

Gschwind et al., 2001; Oyler-Yaniv et al., 2017). The cytokines’ temporal control and 

release kinetics should be considered based on the desired differentiation stage. Control of 

the growth factors’ concentration, release behavior, and duration of exposure is necessary 

to maximize stem cell survival while minimizing potential deleterious consequences. For 

example, BMP-2 has been used successfully after spinal fusion treatment, but prolonged 

exposure to high concentrations of BMP-2 may lead to ectopic bone formation and 

spinal inflammation (Nguyen et al., 2017). Growth factors can be immobilized to the 

biomaterial by physical blending for rapid release, whereas chemical bonding methods 

such as protein-protein bonding have been used to achieve long-term release kinetics 

based on dissociation constants. Glial cell line-derived neurotrophic factor (GDNF) can 

be blended or covalently immobilized on PLLA nanofiber scaffolds using amine-reactive 

N-hydroxysuccinimide (NHS)-maleimide chemistry to improve the survival of transplanted 

stem cells (Chemmarappally et al., 2020; Puhl et al., 2020). MSCs were transplanted on 

beta-tricalcium phosphate (beta-TCP) scaffolds with epidermal growth factor (EGF), which 

resulted in a 3-fold increase in survival of MSCs due to the activation of the MAP-kinase 

pathway (Alvarez et al., 2015). Similarly, stem cells encapsulated in alginate microcapsules 

with BMP-2 and TGF-β3 together led to effective osteogenesis without neoplastic side 

effects (Gonzalez-Fernandez et al., 2016). NSCs were transplanted in the spinal cord 

using PLGA microspheres with dibutyryl cyclic-AMP to improve their differentiation 
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toward neuronal lineage (Kim et al., 2011). To further enhance the outcome of stem cell 

transplantation, host vasculature plays a vital role as it ensures nonobstructive supplies of 

oxygen, nutrients, cytokines, and growth factors with a maximum allowable distance of 

150–200 μm for their efficient diffusion. Biomaterials’ physiochemical properties such as 

stiffness, elasticity, degree of cross-linking, along with the incorporation of cell adhesive 

ligands, growth factor-binding sites, and protease cleavage sites can be modified/controlled 

independently with high precision for angiogenesis (Fakoya, 2017; Li et al., 2017; Serbo 

and Gerecht, 2013). The angiogenic growth factor VEGF was immobilized on collagen 

scaffolds for cardiac repair, which resulted in an increase in blood vessel density and 

thickness maturation, with parallelly improved recruitment of myofibroblasts resulting in 

efficient cardiac repair (Miyagi et al., 2011). HA hydrogels used to co-deliver fibronectin 

and integrins in a stroke injury model led to the generation of mature blood vessels 

with reduced tortuosity and leakiness due to better ECM deposition followed by pericyte 

coverage (Erning and Segura, 2020; Li et al., 2017). The transplantation of endothelial cells 

on aligned fibrin-collagen I scaffolds seeded with primary hepatocytes showed significantly 

improved vascularization leading to improved hepatic regeneration (Hosseini et al., 2019).

Biomaterials for creating an immune-privileged environment

Biomaterials that can reduce fibrosis and create an immune-privileged environment hold 

vital importance for improving acute and long-term stem cell transplantation outcomes. 

Stem cell graft survival and integration with host tissue are affected by contact-dependent 

blood-mediated reactions, adverse immune reactions, FBRs, and fibrosis. The immune 

reaction is regulated by T cells and macrophages (Sadtler et al., 2016; Zhang et al., 

2021a). T helper (TH) cells recognize the molecular signatures of specific proteins and 

activate an immune response, whereas macrophages (M) produce toxic compounds to 

attack foreign bodies. The balance between tissue regeneration and degeneration is well 

maintained by TH1, TH2, M1, and M2 cells, where TH1 and M1 are associated with a 

proinflammatory immune response and tissue damage, whereas TH2 and M2 cell types 

induce anti-inflammatory responses and mediate implant integration and tissue regeneration.

Biophysiochemical properties such as hydrophilicity, topography, surface coating, surface 

charge, porosity, encapsulation, biomaterial-protein adsorption, and biomaterial-cellular 

interaction and mechanics can be tuned to induce a favorable immune response (Kharbikar 

et al., 2021a). Both immune-evasive and immune-engaging biomaterials have been produced 

to create immune-privileged environments for stem cell transplantation. For example, 

rectangular cross-linked polymeric microrod topographies were used successfully to reduce 

fibrosis and improve cardiac outcomes in an infarct model (Le et al., 2018). Hydrophilic 

PEG and zwitterionic polymer-decorated biomaterials displayed decreased protein binding, 

thereby preventing complement activation and immune cell adhesion on the graft. TH2-

polarizing cytokines such as IL-4 or anti-inflammatory molecules such as dexamethasone 

have been incorporated in biomaterials to induce anti-inflammatory M2 macrophage 

phenotype, reduce fibrosis, and improve tissue integration (Banuelos and Lu, 2016; Ladd 

et al., 2008; Spellberg and Edwards, 2001). Cell transplantation in combination with 

chondroitinase ABC (ChABC) demonstrated improvement in the recovery of spinal cord 

injury (SCI). This strategy inhibited chondroitin sulfate proteoglycans (CSPGs) responsible 

Kharbikar et al. Page 7

Cell Stem Cell. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for glial scar formation while improving the plasticity of adult neuronal cells (Bradbury 

and Burnside, 2019; Hu et al., 2021; Lee et al., 2010). Polylactic acid (PLA) scaffolds 

loaded with brain-derived neurotrophic factor (BDNF), a growth factor known to modulate 

inflammation, were used successfully to bridge transection defects in SCI and demonstrated 

improved neural rewiring in the spinal cord (Bradbury and Burnside, 2019; Houlton et al., 

2019; Tuinstra et al., 2012).

Theranostic biomaterials for stem cell transplantation

Theranostic biomaterials combine prognostic, diagnostic, and monitoring capabilities. They 

are used to noninvasively monitor transplanted stem cells while predicting pathological 

anomalies and providing therapeutic effects to promote regeneration and repair in real time 

(Kharbikar et al., 2021b; Patra et al., 2019). Theranostic capabilities have been incorporated 

into biomaterials such as implantable scaffolds and injectable hydrogels to noninvasively 

monitor and evaluate the functional and regenerative outcomes simultaneously in vivo 
(Kharbikar et al., 2021b; Sajesh et al., 2019). HA and gelatin scaffolds incorporating 

fluorophores were used successfully to monitor neuronal stem cell proliferation and track 

scaffold degradation using multispectral near-infrared (NIR) imaging for neural tissue 

regeneration (Park et al., 2019; Yang et al., 2019a). Silica scaffolds functionalized with 

calcium phosphate, BMP-2, and integrated with superparamagnetic iron-based metal oxide 

nanoparticles (SPIONs) coated with gold nanoparticles (NPs) were used to regenerate 

mineralized dentin tissue and monitor the implant using computer tomography and magnetic 

resonance imaging (MRI) (Mastrogiacomo et al., 2017; Yang et al., 2019a). The gene-

editing system, CRISPR-associated Cas9, was coated onto SPIONs and delivered with 

guide RNA and donor RNA into cells in vitro, which enabled the real-time monitoring 

of transfection (Hryhorowicz et al., 2019). In this system, theranostic biomaterials were 

used to noninvasively monitor viability and quantitatively assess the functions of the 

transplanted stem cells via reporter genes using bioluminescence imaging. Suicide genes 

incorporated in the stem cell-laden biomaterial transplants provide an opportunity for 

therapeutic intervention by inactivating transplanted stem cells if imaging detects any 

abnormalities or after treatment completion. TGL triple-fusion reporter gene-GFP, firefly 

luciferase, and herpes simplex virus type 1 thymidine kinase suicide gene were used as part 

of biomaterial-facilitated stem cell transplantation strategies (Li and Xiang, 2013; Ou et al., 

2013).

METHODOLOGIES FOR ENGINEERING BIOMATERIAL TRAITS FOR STEM 

CELL TRANSPLANTATION

Engineering intrinsic biomaterial properties

Biomaterials used for stem cell transplantation aim to recapitulate aspects of the native 

microenvironment and can serve as a template to direct tissue regeneration (Ali and 

Payne, 2021; Liu et al., 2018; Marin et al., 2020; O’Neill et al., 2016; Ratner, 

2011, 2015). Important biomaterial considerations include biocompatibility, bioactivity, 

biodegradability, tunable biophysiochemical properties, and cost. Biocompatibility of the 

implanted biomaterial must be ensured such that successful integration and appropriate 
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response from host tissue is achieved without risk of adverse side effects. Therefore, 

sufficient testing and evaluation of the biomaterials must be performed to determine 

potential toxicity concerns. Reactivity of the material’s chemical constituents, degradation 

products, reaction by-products, potential unreacted monomers, etc., requires assessment 

for toxicity battery. Evaluations include cytotoxicity, sensitization, hemocompatibility, 

pyrogenicity, implantation, genotoxicity, and carcinogenicity among others to assure safety 

for use in humans (US Food and Drug Administration, 2020). The FDA regulates the 

standards and toxicity threshold limits that are acceptable for biomaterials/medical devices 

that come into contact with the human body. Biomaterial biodegradability should be 

engineered and optimized to facilitate the dynamic regeneration of the tissue (Deshayes 

and Kasko, 2013). Biomaterial degradation by-products must be nontoxic and ideally be 

broken down and eliminated via natural metabolic pathways (Marin et al., 2020; Ratner, 

2011). It is crucial to consider the proinflammatory mechanisms of biomaterials used in 

stem cell transplantation as all biomaterials can potentially activate an adverse FBR. As 

such, biomaterials are usually categorized into three main classes–biotolerant, bioactive, 

and bioinert. Biotolerant materials are disconnected from host tissues through a fibrous 

layer; bioactive materials interact with host tissue by means of chemical or topographic 

interactions, whereas bioinert materials have no direct physical interaction with host tissues 

(Hildebrand, 2013; Marin et al., 2020).

Another key parameter to consider is the structural design of the scaffold that should 

provide an appropriate environment for cells to recreate microscopic/macroscopic tissue 

anisotropies (Crouch et al., 2009; Jell et al., 2009; Kharbikar et al., 2021a). The engineered 

biomaterial architecture should facilitate cell migration and vascularization while presenting 

a biological interface with the required ligand density for the adhesion of transplanted and/or 

newly recruited stem cells. The engineering of biomaterial architecture and mechanical 

properties are intertwined and essential for tuning precise biomechanics relative to biology 

as the dynamic forces experienced by the implanted stem cells play a major role in 

defining cell fate (Gattazzo et al., 2014; Jansen et al., 2015). Finally, issues related to 

biomaterial manufacturing including fabrication complexity, good manufacturing practice 

(GMP), manufacturing rate, sterility, and cost-effectiveness should be considered (Abdeen 

and Saha, 2017; Greenberg-Worisek et al., 2018; Johnson and Procopio, 2019; Sanz-Nogués 

and O’Brien, 2021; Tarabah, 2015).

Engineering extrinsic biomaterial properties

Engineering biomaterial constructs to recapitulate biophysiochemical microenvironments is 

a challenging proposition considering the complexity of the native stromal niche, which 

instructs cellular behavior and steers self-organization toward the desired regeneration 

(Brassard and Lutolf, 2019; Martino et al., 2018; Prasadh et al., 2020; Shinohara et al., 

2017; Voog and Jones, 2010; Zhu et al., 2019). Further, transplanted stem cells on the 

biomaterial construct receive and generate various biophysiochemical cues by means of 

intrinsic signals (transcription factors and epigenetic regulations). However, these intrinsic 

signals may also be informed by extrinsic-engineered biomaterials traits. These extrinsic 

characteristics actively modulate the native environment that dictates regenerative outcomes. 
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This modulation is in congruence with the timelines for wound healing, biomaterial 

degradation dynamics, and the state of the transplanted stem cells (Figure 1).

Static and dynamic biophysical properties of the biomaterial constructs can be achieved 

by modifying various parameters in biomaterial processing conditions such as molecular 

weight, composition, gelation, cross-linking, etc. (Avila et al., 2021; Kharbikar et al., 

2021a; Mitrousis et al., 2018; Qi et al., 2015; Shrestha et al., 2020; Thakur et al., 2016; 

Willerth and Sakiyama-Elbert, 2019; Wong et al., 2004; Zhang et al., 2013; Zhao et al., 

2021). These processing variables can be used to fabricate biomaterial constructs with 

large ranges of static biomechanical properties that can mimic the rigidity and stiffness 
of any host tissue under treatment. The desired dynamic stiffness and rigidity can be 

achieved by using biomaterials that can undergo hydrolytic degradation, which reduces 

stiffness and rigidity to the appropriate modulus and achieves the required biophysical cues 

over time. The reduction in rigidity and stiffness in the forward direction is identified 

as softening (Kapfer et al., 2011; Paul et al., 2018; Sadtler et al., 2016; Salta et al., 

2010). Similarly, dynamic stiffness and rigidity in the reverse direction, identified as 

hardening, can be achieved by means of lazy cross-linking spanning the desired timescale 

(Carver et al., 2016; Carver and Goldsmith, 2013; Gattazzo et al., 2014; Kiang et al., 

2013; Tanaka et al., 2020; Zadpoor, 2017). Dynamic softening and hardening can be 

combined to achieve reversible biomechanics with bidirectional control over the stiffness 

and rigidity of biomaterial constructs. The viscoelastic properties of biomaterial constructs 

further compliment the dynamic biomechanics. These viscoelastic properties can be tweaked 

by using equilibrium reactions of different strengths such as hydrophobic interactions, 

electrostatic interactions, and dynamic covalent linkages to achieve tunable stress-strain 

relaxations that have been known to modulate stem cell behavior (Kharbikar et al., 2021a). 

Human MSCs were demonstrated to express early tissue-specific lineage differentiation 

markers when cultured on biomaterial constructs having viscoelastic properties matching the 

host tissue. For example, neuronal-specific differentiation in human MSCs was observed 

when the biomaterial construct had a modulus close to that of brain tissue (0.1–1 kPa). 

Similar observations were made for human MSCs induced into myogenic and osteogenic 

lineages when cultured on substrates with moduli of muscle (8–17 kPa) and osteoid-like 

bone (25–40 kPa) (Lee et al., 2016; Li et al., 2021a; Neuss et al., 2011; Pittenger et al., 

2019; Sivasubramaniyan et al., 2019; Yoon et al., 2018). Intestinal stem cells (ISCs) showed 

yes-associated protein (YAP) activation and underwent organogenesis when an initially stiff 

biomaterial softened upon degradation, which led to a dissipation of stress experienced 

by the cells (Chen and Guan, 2018; Gjorevski and Ordóñez-Morán, 2017). PNIPAAm-

based constructs displayed 2D and 3D volumetric microenvironmental stiffening triggered 

by physiological temperature (Chen and Guan, 2018; Ma et al., 2018; Rana and de La 

Hoz Siegler, 2021). Chemical stimuli-triggered protein multimerization was used to create 

mechanically cyclical biomaterial constructs, where were able to stimulate transcriptional 

reprogramming in human MSCs. It was found that human MSCs on alginate constructs 

with rapid stress relaxation showed enhanced spreading, proliferation, and osteogenic 

differentiation (Foight et al., 2019; Uto et al., 2020).

Static and dynamic biochemical properties can be valuable for introducing specific 

biochemical factors to the transplant that are required to maintain and stimulate specific 
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biological functions (Iacovacci et al., 2016; Li et al., 2021a; Muncie and Weaver, 2018; Popa 

and Atanase, 2022). Bioactive proteins, peptides, and small molecules can be chemically 

or physically tethered throughout or in specific patterns on the biomaterial construct 

(Bertlein et al., 2017; de Sousa Araújo et al., 2021; Finbloom et al., 2021; Geng et al., 

2021; Kharbikar et al., 2021a; Rivera et al., 2021). Biomaterial constructs with dynamic 

biochemical controls can be designed to achieve biofunctionalization over time. Biochemical 

decoration of biomaterials can be achieved by using reactive handles which can be exploited 

by cell-secreted bioactive molecules (Bhardwaj et al., 2022; Chesmel et al., 1995; Quintana 

et al., 2018). Reversible biofunctionalization or immobilization can be used to recapitulate 

dynamic bidirectional signaling. Soluble biochemical presentation can also be achieved by 

modulating the release rate from the biomaterial constructs via restricted diffusion or affinity 

interactions (Almeida and Bártolo, 2014; Chesmel et al., 1995; Ekdahl et al., 2011; Puleo 

and Bizios, 2009; Salta et al., 2010; Yu et al., 2011).

Topographic interfacial properties on biomaterial constructs, ranging from nano- to micro-

scale, are among some of the critical determinants for modulating stem cell behavior. 

Engineered spatiotemporal surface topographies include size, shape, length, width, spacing, 

depth, roughness, wettability, and isotropic/anisotropic geometric arrangements, which 

can strongly influence stem cell behaviors such as adhesion, alignment, growth, and 

differentiation (Caldorera-Moore and Peppas, 2009; Primavera et al., 2020; Shapira et 

al., 2014). The regulatory effects of nanoscale topographic structures are due to their 

modulation of focal adhesion (FA) formation by the clustering of integrins and other 

adhesion molecules, which alters cytoskeletal organization (Chen et al., 2014; Cimmino 

et al., 2018). Topographic cues in the form of pores, grooves, pillars, or pits can be created 

using a variety of nano-/micro-patterning techniques (Curtis et al., 2001; Kharbikar et al., 

2021a, 2015; Kim et al., 2012; Le et al., 2019; Sun et al., 2018; Tsimbouri et al., 2014). The 

synergistic combinations of multiple nano-/micro-topographies have been used to fabricate 

complex hierarchical topographic features to mimic biological interfaces at the molecular, 

cellular, and tissue levels (Liu et al., 2016a; Miao et al., 2016; Zheng et al., 2020a). 

Hierarchical multiscale nano-/micro-grooves patterned on PLGA constructs demonstrated 

improved differentiation and adhesion of MSCs (Kim et al., 2019; Miao et al., 2016). 

Similarly, longitudinal nanogrooves (200 nm) in vivo showed a higher density, renewal, and 

alignment of neurofilaments for improved regeneration of nerves (Huang et al., 2015; Xue 

et al., 2021). Additionally, electrical, magnetic, and optical conditioning of stem cells on 

biomaterial constructs have been explored (Chueng et al., 2016; Du et al., 2017; Gelmi and 

Schutt, 2021; Hofer and Lutolf, 2021; Höpner et al., 2021; Moysidou et al., 2021; Muzzio 

et al., 2021; Wang et al., 2019). The combinatorial effects of interfacial topography and 

pulsatile electric potential on stem cells showed enhanced proliferation and differentiation 

of cardiac myocytes and cardiac fibroblasts (Bloise et al., 2018; Thavandiran et al., 2013). 

Electrical potential conditioning on biomaterials has been shown to play a major role in 

hESC differentiation into conductive tissues such as those from cardiac and neural lineages 

(Tenreiro et al., 2021).
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Biomanufacturing—Top-down and bottom-up

Biomanufacturing or biofabrication for stem cell-based regenerative therapies involves 

building biomaterial constructs. These biomaterial constructs can recapitulate 3D 

spatiotemporal native cellular and stromal microenvironments to direct stem cell survival, 

fate, and functions. Manufacturing of the biomaterial constructs broadly follow two distinct 

approaches: top-down and bottom-up (Abdeen and Saha, 2017; Ahn et al., 2022; Guzzi 

and Tibbitt, 2020; Nichol and Khademhosseini, 2009; Rainer et al., 2012; Tiruvannamalai-

Annamalai et al., 2014; Zhang et al., 2022).

The top-down approaches use porous scaffold structures with ECM-like architecture that 

are populated with stem cells and perfused with bioactive molecules. The porosity of the 

scaffold is expected to allow vasculature integration to ensure nutrient and oxygen supply. 

The bottom-up approaches use modular engineering to create intricate, microstructural 

functional building blocks that are then used to create complex tissue (Nichol and 

Khademhosseini, 2009; Vlahos et al., 2017). Common fabrication methods include solvent 

casting, gas foaming, particle leaching, phase separation, freeze-drying, bioprinting, soft 

lithography, photolithography, stereolithography, laser sintering, and additive photo-cross-

linking (Babbar et al., 2020; Gill et al., 2015; Kharbikar et al., 2021a, 2015; Montero 

et al., 2020; Norman and Desai, 2006; Rey and St-Pierre, 2019; Baskapan and Callanan, 

2021). Other important methods including encapsulation, directed assembly, self-assembly, 

microfluidics, and construct-free are reported (Bernards et al., 2012; Cao and Desai, 2020; 

Desai and Shea, 2017; Ernst et al., 2018; Farina et al., 2019; Finbloom et al., 2021; Kang et 

al., 2014; Kharbikar et al., 2021a; Mendelsohn and Desai, 2010; Nyitray et al., 2014; Rivera 

et al., 2021; Schweicher et al., 2014). Some of the aforementioned fabrication methods are 

reported to be amenable with both top-down and bottom-up approaches.

Biomaterial constructs are fabricated predominantly as scaffolds, microcarriers, microgels, 

and micro-/macro-encapsulation devices to achieve self-organization upon implantation, 

regenerate and replace the ailing tissue, and have better scale-up for clinical use (Fischer 

et al., 2020; Lee et al., 2021; Patel et al., 2021; Shapira et al., 2014; Zhong et al., 2021). 

The bioreactor is particularly important to realize the potential of biomaterial-facilitated 

stem cell-based regenerative therapies (DiStefano et al., 2018; Greuel et al., 2019; Mihara 

et al., 2017; Radisic et al., 2008). The biomaterial scaffold-bioreactor system should be 

capable of generating spatial gradients of regulatory signals and dynamically changing the 

microenvironment. This system should also be capable of monitoring cellular behavior and 

responses in real time. A detailed discussion on the various biomanufacturing approaches is 

out of the scope of this review.

KEY TRANSLATIONAL DEVELOPMENTS IN BIOMATERIAL-FACILITATED 

STEM CELL TRANSPLANTATION

The development of biofunctional materials can provide essential insights into the design of 

optimal environments for stem cells. Knowledge from stem cell-biomaterial interactions and 

the native biophysiochemical microenvironment can help identify relevant design parameters 

to achieve better outcomes for stem cell therapies in vivo. We describe recent studies in 
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biomaterials-facilitated stem cell regenerative and reparative therapies for cardiovascular, 

brain/spinal cord, ophthalmic, and pancreatic tissues. Table 1 highlights key examples of 

biomaterial-based approaches for stem cell regenerative strategies that have capabilities to 

promote, improve, and support tissue function.

Cardiovascular regeneration

Cardiovascular diseases (CVDs) account for about 31% of annual morbidity and mortality 

worldwide (Roth et al., 2020). Due to the poor prognosis of current pharmacological 

and surgical interventions, as well as the limited regenerative potential of mature 

cardiomyocytes, stem cell transplantations hold great promise to regenerate and restore 

cardiovascular tissue function. However, stem cell-based clinical trials have shown limited 

functional recovery of the myocardium and vasculature mainly due to low survival and 

retention of transplanted stem cells (Banerjee et al., 2018). The emerging biomaterial-

facilitated stem cell transplantation methods are poised to improve the overall outcomes 

of stem cell therapy.

Both biochemical and biophysical attributes of the biomaterial play important roles in 

facilitating the efficacy of stem cell transplantation for cardiovascular purposes. Notably, 

the abilities to recapitulate appropriate architecture in the native cardiac microenvironment 

as well as bestow mechanical properties that can withstand the contractile mechanisms of 

the heart are imperative. By providing a 3D structural scaffold for the transplanted cells, 

not only is cell retention in the target site greatly increased, but the ability to provide key 

physical cues to aid in stem cell differentiation into functional myocytes can be achieved 

(Segers and Lee, 2011). Mechanical stiffness, nanotopographic architecture, physical stretch, 

and anisotropic patterns have all been shown to guide the differentiation of stem cells 

with success (Mohindra and Desai, 2021; Segers and Lee, 2011). Proteins, growth factors, 

genes, and microRNA (miRNA) have all also been used to modulate the biochemical 

microenvironment to one that is more amenable to cardiac repair (Li et al., 2009; Padin-

Iruegas et al., 2009; Yang et al., 2019b).

To repair the damaged postinfarct myocardium and prevent maladaptive left ventricular (LV) 

remodeling, a dynamic, multicellular 4D hydrogel-based cardiac construct was developed. 

Beam-scanning stereolithography printing was used to fabricate a physiologically adaptable 

design that mimicked spatiotemporal architecture and relevant biophysiochemical properties 

(Figure 2A1). A triculture of human-induced pluripotent stem cell (hiPSC) cardiomyocytes 

(CMs), human mesenchymal stromal cells, and human endothelial cells (hECs) in the bioink 

consisting of gelatin methacrylate (GelMA) and PEG diacrylate (PEGDA) was used to 

print the 4D cardiac tissue construct with anisotropic nonlinear microstructure to imitate 

epicardial fibers and the surrounding vascular network. In vivo evaluation in a rodent 

model exhibited high levels of cardiomyocyte maturation, engraftment, and vascularization 

with excellent functional contraction-relaxation and electrophysiological behavior (Cui et 

al., 2020; Figures 2A2–2A6). Another approach was developed to address the drawbacks 

of traditional injectable cellular cardiomyoplasty. A porcine myocardial ECM-derived, 

nonthrombogenic injectable scaffold, which could be delivered using minimally invasive 

catheter procedures, was developed for cardiac repair post-MI. Post-transplant analysis 
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showed minimal negative LV remodeling, reduced infarct fibrosis, and increased cardiac 

muscle. Infarcted pigs that were treated with percutaneous transendocardial injections 

showcased favorable outcomes as echocardiography indicated significant improvement in 

cardiac functions, ventricular volumes, and global wall motion scores post-treatment (Huang 

et al., 2020).

The clinical translation of cardiac regenerative therapies has been hampered by delivery 

challenges such as poor stem cell retention at the transplant site, short half-life of biologics, 

and adverse off-target effects due to systemic delivery. To improve overall regenerative 

outcomes of stem cell transplantations, a multimodal thermoplastic polyurethane (TPU) 

epicardial device called Therepi was developed. The Therepi device encapsulated stem cells 

as well as small and large molecules and enabled their sustained and repeated administration 

directly to the epicardium. The repeated localized administration of cardiac progenitors 

and macromolecules using the epicardial reservoir enhanced ejection fraction, fractional 

shortening, and stroke work (Whyte et al., 2018). With clinical safety and efficacy in mind, 

a next-generation fluid-driven refillable pouch for minimally invasive cell delivery to the 

heart was developed. This design eliminated the need for more invasive open-chest surgery 

and enabled opportunities for repeat dosing. These pouches consisted of a cover membrane, 

a semipermeable membrane, and a compressible solid skeletal structure that allowed for 

facile delivery to the heart via two small incisions. Upon pericardial implantation in rodent 

MI models, pouches that were refilled with MSCs yielded much more favorable therapeutic 

effects, including smaller infarct size, greater infarct wall thickness, and increased viable 

cardiac tissue (Mei et al., 2021). Another unique technology that was developed was 

based on a microneedle (MN) patch integrated with cardiac stromal cells (CSCs) to further 

improve stem cell retention and integration. Polyvinyl alcohol (PVA) polymeric MNs were 

fabricated using micromolding and applied to create conduits between host myocardium 

and therapeutic CSCs. This allowed CSCs to secrete regenerative paracrine factors into the 

injured myocardium and promote repair while the transplanted patch received nutrients 

from the heart via the same MN conduits (Figures 2B1 and 2B2). The evaluation of 

the MN-CSC patch in the rat MI model showed significant augmentation of cardiac 

function, cardiomyogenesis, angiogenesis, and a reduction of scar tissue (Tang et al., 2018; 

Figures 2B3–2B6). Alternatively, to improve angiogenesis and reduce immune response, 

an injectable porous aldehyde-capped PEG hydrogel matrix containing mesoporous silica 

nanoparticles (MSNs) encapsulating miRNA-21 was developed. The injectable hydrogel 

matrix facilitated the delivery of acidic pH stimuli-responsive miRNA-21 to treat post-MI 

tissue. The MSN/miRNA-21 complex demonstrated the successful remodeling of the local 

infarcted myocardium microenvironment by inhibiting M1 macrophage polarization into an 

inflammatory phenotype. This biomaterial technology rescued cardiomyocytes, promoted 

neovascularization, and effectively reduced infarct size (Li et al., 2021b).

Central nervous system regeneration

Central nervous system (CNS) degenerative disorders are difficult to cure due to the 

inherently limited capacity for neuroregeneration and inflammatory microenvironment at 

the site of disease or injury (GBD 2017 US Neurological Disorders Collaborators et al., 

2021). Stem cell transplants for treating CNS injuries, and diseases have been limited 
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due to poor viability and retention, inefficient integration, low neural plasticity, and 

uncontrolled differentiation of transplanted stem cells, which is further aggravated by 

the proinflammatory microenvironment (Badyra et al., 2020; He et al., 2020). Biomaterial-

facilitated stem cell transplants could successfully treat neurological disorders by generating 

functional neural tissue and rebuilding damaged neural circuits.

The use of biomaterials to deliver trophic factors and provide physical cues to transplanted 

cells is imperative for successful cell-based therapies for neural repair. Diffusion-based 

protein delivery and protein immobilization are some important strategies used to achieve 

appropriate spatiotemporal signals in sustained and/or localized manners (Bruggeman et 

al., 2019). Hydrogel co-delivery of factors such as GDNF and BDNF has been shown to 

increase dopaminergic cell survival and improve differentiation of hESC-derived cortical 

progenitors and vascularization in animal models (Moriarty et al., 2019; Nisbet et al., 2018). 

Similarly, the incorporation of ECM molecules such as laminin can yield enhanced neuronal 

survival, adhesion, and differentiation (Somaa et al., 2017). Biomaterial architecture can 

be modulated to provide appropriate fiber alignment, width, and interfiber distance. This 

design enabled optimal neural cell adhesion, provided axon support, and modulated stiffness 

to better match the mechanical properties of the brain (Nisbet et al., 2009). Reports have 

also demonstrated that the co-delivery of cells with hydrogels can promote the survival and 

function of cells while reducing host inflammation (Zhong et al., 2010).

The development of a 3D cell assembly method called synthetic matrix-assisted and 

rapidly templated (SMART) assembly has paved the way for the potential treatment of 

SCI and traumatic brain injury (TBI). SMART assembly uses a 2D manganese dioxide 

nanosheet for the rapid assembly of hiPSC-derived NSCs (hiPSC-NSCs) into hybrid 

3D neurospheres (Figures 3A1 and 3A2). This strategy demonstrated efficient in vivo 
survival, spatiotemporal distribution, differentiation, and functional recovery in rodent 

SCI models (Figures 3A3 and 3A4). SMART neurospheres were used to deliver Notch 

inhibitors N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). 

Imaging studies demonstrated the successful downregulation of Notch signaling pathways 

associated with gliogenesis. This resulted in the mitigation of local inflammation while 

enhancing neurogenesis and axonal elongation at the CNS disease/injury sites. It also 

enabled in vivo tracking of drug delivery using MRI (Rathnam et al., 2021). Another 

3D micro-scale biomaterial-aided stem cell transplantation technology was developed to 

ameliorate neurodegenerative dysfunction and CNS injuries by in situ reprogramming 

neurons. A tunable 3D microtopographic electrospun poly(desaminotyrosyl tyrosine ethyl 

ester carbonate) (pDTEc) polymer scaffold with “thin” and “thick” dual fiber topography 

demonstrated successful in situ neuronal reprogramming of iPSCs when grafted into 

organotypic hippocampal brain slices. The injectable micro-scale fibrous scaffolds were 

used as transplantation vehicles and demonstrated neurite outgrowth, survival, and electrical 

activity after transplantation (Carlson et al., 2016). Another biomaterial-based strategy 

to enhance the efficacy of cell therapy in SCI is hydrogel-assisted transplantation of 

patient-derived Schwann cells (SCs). A thixotropic physically cross-linked engineered 

recombinant protein (C7) and a thermoresponsive multiarm, PEG-PNIPAAm copolymer 

conjugated with proline-rich peptides (P) hydrogel, known as shear-thinning hydrogel for 

injectable encapsulation and long-term delivery (SHIELD), was developed (Figures 3B1 
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and 3B2). Its physical properties were designed to mimic neural tissue stiffnesses at the 

SCI lesion. The SHIELD showed excellent spatial distribution of SCs post-transplantation 

while reducing cystic cavitation and neuronal loss in endogenous tissue. It also showed 

a substantial increase in forelimb strength and coordination in the cervical contusion 

rodent model (Marquardt et al., 2020; Figures 3B3 and 3B4). Another biomaterial 

platform was developed to coordinate large-scale chronic structural and functional repair 

of the brain after severe TBI. Chondroitin sulfate-engineered (eCS) matrices loaded 

with neurotrophic factors fibroblast growth factor 2 (FGF-2) and BDNF were implanted 

into the intracortical region after TBI and stroke. These biomaterial constructs proved 

successful in achieving complex structural and functional repair of brain tissue by promoting 

chronic neurogenesis and neuroplasticity. It enhanced proliferation of endogenous NSCs 

and neurotrophic factor expression and thus effectively mitigated significant volume 

loss and improved vascular density and reach-to-grasp function recovery after TBI 

(Latchoumane et al., 2021). It also advanced our understanding of biomaterials, dynamics 

of cell-microenvironment interactions, and their effect on stemness, self-renewal, lineage 

commitment, cell physiology, and metabolism. A biomaterial-facilitated multicellular stem 

cell transplantation platform was developed to improve axonal regeneration. A multichannel 

PLGA scaffold was used to cotransplant activated SCs and bone marrow-derived MSCs in 

a transection gap in a SCI rodent model. This strategy subsequently exhibited significant 

neurogenesis and recovery of motor function with robust bundles of nerve fibers with mature 

myelin sheaths and normal electrophysiology (Yang et al., 2017).

In another significant development, a multifunctional hydrogel was engineered to promote 

efficient maturation of NSCs and neural regeneration to treat SCI. A synthetic bioabsorbable 

SAP hydrogel called hNSC-HYDROSAP was designed to support human NSC (hNSC) 

differentiation in 3D serum-free conditions. This biomaterial construct facilitated hNSC 

distribution, survival, induction of electrically active neuronal phenotype, and formation 

of entangled neuronal networks. hNSC-HYDROSAP was shown to improve behavioral 

recovery and reduce glial scar formation in a SCI rodent model (Marchini et al., 2019). 

Finally, another study used a photoresponsive thixotropic self-healing injectable hydrogel for 

delivering neuroprotective proteins for axonal regeneration. Photoreceptor (PR) His6-CarHC 

proteins were assembled into a macroscopic photoresponsive Zn2+-coordinated hydrogel 

system. The oligomeriation was achieved using metal/His6-tag interactions in combination 

with adenosylcobalamin (AdoB12). This biomaterial formulation, which was designed to 

release neuroprotective leukemia inhibitory factor (LIF), resulted in enhanced neuronal 

survival and axon regeneration in vivo in rodents (Jiang et al., 2020).

Ocular regeneration

Disease, injuries, or aging can cause pathological changes in specific tissues in the 

human eye resulting in vision deterioration or loss. Examples include age-related macular 

degeneration (AMD), corneal scarring, glaucoma, and hereditary dystrophies. Over 285 

million people suffer from visual impairment, of which 13.7% are blind and 86.3% are 

suffering from progressive vision loss (He et al., 2020). The advent of stem cell transplants 

such as limbal epithelial stem cells (LESCs), ESCs, MSCs, and iPSCs has created new 

avenues to repair regenerate, stabilize, and enhance the function of the anterior and 
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posterior segments of the eye (Mead et al., 2015). However, the effectiveness of traditional 

stem cell transplants has been hampered by issues such as low viability, poor retention, 

hyperproliferation, hypoxia, and fibrosis (Caras et al., 2021; Rama et al., 2010).

For degenerative ocular disorders, stem cell-based therapies in combination with biomaterial 

and bioactive molecules are being developed to address some of the challenges associated 

with stem cell transplants. Biomaterial strategies can provide valuable biophysiochemical 

cues to better mimic the native physiological properties of ocular tissue, such as the Bruch’s 

membrane, stroma, and retina (Nair et al., 2021). Scaffolds made from ECM proteins 

such as collagen I with a nanofibrous configuration similar to that of native Bruch’s 

membrane have supported RPE cell attachment and morphology (Warnke et al., 2013). 

Surface topography also has a significant impact on cell behavior, including alignment, 

proliferation, and protein expression (Mahdavi et al., 2020). Combinations of biochemical 

cues with material scaffolds increased human retinal progenitor cell adhesion, reduced 

hyperproliferation, and induced differentiation to PR phenotypes (Lawley et al., 2015). 

However, a drawback of natural scaffolds is their poor mechanical strength and fast 

degradation rate. Synthetic biomaterials can overcome these limitations and, being more 

inert in nature, may prove beneficial in reducing potential immunogenic response upon 

implantation (Christiansen et al., 2012). As biomaterial-facilitated stem cell transplantation 

remains an active area of research, several biomaterials in combination with stem cells 

have been investigated with mixed success. Examples include the transplantation of retinal 

pigment epithelium (RPE) using collagen, PLGA, PLLA, gelatin, or Bruch’s membrane to 

treat AMD or the use of amniotic membranes seeded with LESCs to treat corneal damage 

(Jemni-Damer et al., 2020; Williams et al., 2018). In this section, we discuss the recent 

developments in biofunctional materials for the regeneration and repair of ocular tissues.

The avascular environment of corneal tissue limits its regenerative potential. 

Proinflammatory cascade in the injured cornea further aggravates injury by inducing stromal 

apoptosis and overproduction of ECM by myofibroblasts, leading to fibrosis. The fibrotic 

response is mediated by cytokines such as interleukin 1 (IL-1), tumor necrosis factor alpha 

(TNF-α), and TGF-β and recruitment of neutrophils, macrophages, and lymphocytes that 

promotes inflammation. Although taking advantage of the immune modulatory capability 

of the ECM, a micro- and ultra-fine porcine urinary bladder matrix (UBM) scaffold was 

developed. The UBM matrix scaffold successfully promoted an antiinflammatory type 

2 immune response by recruiting CD4+ TH2 helper T cells. This resulted in increased 

production of IL-4 and reduced the differentiation of corneal stromal cells into alpha-smooth 

muscle actin-positive (αSMA+) myofibroblasts. Thus, UBM created a proregenerative and 

reparative microenvironment that led to corneal regeneration, reduced corneal hazing, and 

diminished scarring in the rodent corneal wound model (Wang et al., 2021a). Another 

approach is focused on the regeneration of RPE for treating degenerative retinal diseases 

such as retinitis pigmentosa (RP). hESC-derived RPE cell sheets were developed and 

transplanted on a human amniotic membrane (hAM)-based scaffold (Figures 4A1 and 4A2). 

The transplantation of hESC-derived RPE cell sheets on the hAM scaffold improved visual 

acuity, retinal electrophysiology, morphology, and PR viability in a rodent model (Figures 

4A3–4A5). In addition, hESC-RPE-hAM scaffolds revived the damaged Bruch’s membrane 

of the choroid, a common place of injury in AMD, thus opening an avenue to treat AMD, 
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Bietti’s corneoretinal dystrophy (BCD), and other ocular degenerative diseases (M’Barek et 

al., 2017).

Yet another key development is biomimetic and biosynthetic corneas as alternatives to donor 

corneas. The biosynthetic cornea was developed using recombinant human collagen that was 

cross-linked using ethyl(dimethylaminopropyl) carbodiimide N-hydroxysuccinimide (EDC-

NHS) coupling followed by molding. The biosynthetic corneas were implanted in human 

patients with distorted corneas and were monitored for 2 years. The implanted biosynthetic 

corneas were stably anchored by the recruitment of stromal cells at the implant interface 

in patients without rejection, and no peripheral or central vascularization was observed. 

This strategy demonstrated tear film-aided oxygen and nutrient supplementation and reduced 

observed infection. Successful re-epithelization and nerve restoration were observed in the 

biosynthetic cornea, regaining its sensitivity to mechanical stimulation, which is essential to 

protect the eye from injury. The biosynthetic cornea enabled the endogenous regenerative 

repair of resected corneal tissue without the use of donor human corneal tissue (Fagerholm 

et al., 2010).

Significant developments are also underway for retinal tissue replacements. Adult human 

RPE stem cell (hRPESC)-derived RPE were grown and polarized on porous polyethylene 

terephthalate (PET) polymeric substrates to achieve architecture similar to that of native 

RPE (Figure 4B1). These constructs were successfully transplanted subretinally and 

improved neural retinal health and polarity of hRPESC-derived RPE. Moreover, it also 

prevented uncontrolled cellular proliferation and did not induce an immune reaction (Figures 

4B2–4B4). Such approaches pave the way for new biomaterial-assisted stem cell transplants 

to treat AMD (Stanzel et al., 2014). For example, a 3D poly(glycerol sebacate) (PGS) 

biomaterial scaffold was developed to treat severe PR degeneration and later stages of 

inherited retinal disorder (IRD). The 3D PGS scaffold with mechanical properties that 

match the retina was fabricated by polymer micromolding and was used to transplant 

human PSC-derived PRs. Using this approach, a multilayer, multicellular high-density PR 

replacement was achieved in a rodent model (Lee et al., 2021). Similarly, PLGA scaffolds 

loaded with clinical-grade iPSC-RPE cells were developed for the treatment of dry and 

wet AMD. The PLGA scaffold was loaded with autologous iPSC-derived RPE and was 

subretinally transplanted. It led to significant improvement in integration and functionality 

of RPE in rodent and porcine AMD models (Salas et al., 2021). A critical biomaterial-based 

endogenous gene modification technology was developed to treat retinal degeneration, 

especially RP. CK30PEG-TAT gDNA NPs with a full-length genomic form of rhodopsin 

genes (gRho) with all endogenous regulatory elements including an endogenous promoter, 

enhancers, suppressors, and introns were transduced into primary retinal cells. It showed 

successful structural and functional rescue of PRs in rhodopsin knockout (RKO) mice 

(Zheng et al., 2020b). The biomaterial microtissue intervention was developed to remedy 

ocular surface conjunctival disorders (OSCDs), which severely affect vision. One approach 

integrated conjunctival stem cell (CjSC) expansion strategies with digital light processing 

(DLP)-bioprinted gelatin methacryloyl injectable scaffolds. The bioprinted CjSC-hydrogel 

microtissue, delivered to bulbar conjunctival epithelium, enhanced viability, renewal, and 

differentiation of the CjSCs into conjunctival goblet cells. It further demonstrated marked 

potential as a platform for the treatment of diseases such as ocular cicatricial pemphigoid, 
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Stevens-Johnson syndrome, and toxic epidermal necrolysis (Zhong et al., 2021). Scaffold 

containing stem cell-derived exosomes have also been used for tissue regeneration, including 

ocular tissues. Stem cell-derived exosomes-loaded onto thermosensitive hydrogels were used 

for the treatment and regeneration of the corneal epithelium and stroma. The sustained 

release of iPSC-MSC-derived exosomes containing miR-432-5p was incorporated into 

thermosensitive chitosan-based hydrogels (CHI hydrogels) containing corneal stromal stem 

cells to modulate collagen synthesis. This biomaterial construct acted by suppressing 

translocation-associated membrane protein 2 (TRAM2) to avert the deposition of ECM. This 

multipronged approach diminished scar tissue formation and accelerated corneal healing 

(Tang et al., 2022).

Beta-cell regeneration

The pancreas consists of two parts: exocrine and endocrine. Pancreatitis and pancreatic 

cancers affect the exocrine pancreas, whereas diabetes mellitus (DM) and neuroendocrine 

cancers affect the endocrine pancreas. The exocrine pancreas possesses excellent intrinsic 

regenerative capacity, whereas, in contrast, adult endocrine islets have limited regenerative 

capacity, resulting in substantial beta-cell loss, particularly in autoimmune type 1 diabetes 

(T1D). Diabetes affects more than 422 million people worldwide and can lead to life-

threatening microvascular, macrovascular, and neurological disorders (Lin et al., 2020; 

Mobasseri et al., 2020). Stem cell-derived beta-cell transplantation is one promising 

approach for the restoration of endocrine tissue function and the treatment of T1D. However, 

the lack of a suitable native microenvironment, robust vasculature, and destruction of cell-

cell/cell-ECM interactions leads to nutritional deficiency, hypoxia, adverse immune reaction, 

and fibrosis. These challenges have resulted in the limited wide-spread application of stem 

cell-based therapies for diabetes (Desai and Tang, 2018; Kerper et al., 2021; Sneddon et al., 

2018).

Over the years, multiple biomaterial-facilitated stem cell transplantation approaches 

have been developed to address these challenges, including micro-/macro-encapsulation 

immunoprotective devices, prevascularized devices, 3D scaffolds, and oxygen-releasing 

biomaterials. Through these biomaterial strategies, there are opportunities to provide 

biophysiochemical signals to improve cellular viability, protect against host immune 

reactions, and enable sufficient transfer of nutrients and oxygen. Biomaterial co-delivery 

of small molecules, cytokines, chemokines, and immunomodulatory molecules may prove 

helpful in extending cell survival, preserving cell function, and minimizing immune 

response (Chendke et al., 2019; Coronel et al., 2020; Liu et al., 2016b). Surface topographic 

modulation of pancreatic cell function via micropatterned collagen sheets that mimicked 

the microstructural architecture of pancreatic tissue improved islet-like cluster organization 

and insulin secretion levels in cells (Seo et al., 2020). Importantly, the appropriate selection 

of inert biomaterials, size-scale used, surface modification, and porosity have all been 

found to minimize host immune response to the implanted device. Minimizing pore size 

prevented undesirable antibody and immune cell interactions with the encapsulated cells 

and affected macrophage elongation and phenotype transition to prohealing phenotypes 

(Tylek et al., 2020). Here, we discuss recent developments in biomaterial-assisted stem cell 

transplantation technologies for beta-cell replacement.
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Macro-encapsulation devices (MEDs) for islet transplantation are well established for 

creating physical immune barriers to block the attack of immune cells on transplanted 

islets. Despite this, encapsulation systems have inherent challenges such as limited 

and crowded cell-loading capacity, slow response dynamics for glucose sensing, and 

poor insulin release due to reliance on diffusion kinetics. To overcome this challenge, 

convective nutrient transport has been incorporated in the MEDs, and traditional planar 

geometry was changed to a 3D polymeric capsule geometry to build a convection-

enhanced MED (ceMED). This design change helped increase loading capacity multifold, 

enhance cell viability, and improve glucose equilibration. The transplantation of beta-cells 

using ceMEDs in immunocompetent diabetic rodent models demonstrated vasculature-

independent improvement in glucose-stimulated insulin response, diabetic correction, and 

reduced FBR (Yang et al., 2021). To further address challenges relating to limited nutrient 

access for encapsulated stem cells, an alternative approach was devised by incorporating 

internal nutrient reservoirs inside the MEDs. The MEDs were designed to incorporate 

internal, zero-order monolithic alanine and glutamine compartments that were fabricated in 

polycaprolactone (PCL) polymer. The incorporation of the amino acid reservoirs enabled 

the supply of amino acids to the encapsulated islets and enhanced the viability of insulin-

producing beta-like cells in nutrient-limiting conditions in poorly vascularized subcutaneous 

space (Chendke et al., 2019).

Several biomaterial-based technologies have been developed to modulate the local immune 

system for transplanted stem cell-derived beta-cells. For example, immunosuppressive 

hybrid alginate exosomes (umbilical cord MSC-derived XO) microcapsules (AlgXO) 

were synthesized and used for islet encapsulation. The XO released from the AlgXO 

capsules successfully attenuated the local immune microenvironment by suppressing 

proinflammatory macrophages by interfering with the NF-κB pathway. Successful long-

term xenotransplantation of islets encapsulated in AlgXO in an immunocompetent 

T1D rodent model was achieved with lower inflammatory response and enhanced 

functional performance (Mohammadi et al., 2021). In an important development for 

achieving xenotransplantation, a multilayer, nanothin microencapsulation approach was 

successfully demonstrated. Neonatal porcine-derived islets were microencapsulated in 

nanothin multilayers of an antioxidant tannic acid and poly(N-vinylpyrrolidone) (PVPON) 

that maintained normoglycemia while reducing proinflammatory innate immune response in 

a rodent model (Barra et al., 2021).

Another technological development interfaced biological components with electronic 

systems to build an electrogenetic cellular insulin release system (egCIRS) (Figures 5A1 

and 5A2). The bioelectronic interface between stem cell-derived beta-cells and an electronic 

device allowed for direct control over insulin release to restore euglycemia. The egCIRS 

exploited the electrogenetic interoperability between cellular metabolism and electronics to 

trigger controlled vesicular insulin release. This was achieved by electrically modulating 

membrane polarization, causing ectopic expression of calcium and potassium channels on 

the beta-cells (Electroβ cells). The engineered Electroβ cells encapsulated in the device 

demonstrated the potential of wireless electrical stimulation of vesicular insulin release 

to attenuate postprandial hyperglycemia in a T1D rodent model comparable with that of 

transplanted human islets (Krawczyk et al., 2020; Figures 5A3 and 5A4).
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To ensure adequate oxygenation for encapsulated beta-cells, approaches have been 

developed to also address the limited passive diffusion of oxygen (O2) due to placement 

in poorly vascularized microenvironments under ischemic conditions. A poly(vinylidene 

fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer was used to fabricate an air-filled 

scaffold called speedy oxygenation network for islet constructs (SONIC), which mimicked 

the natural gas-phase tracheal O2 delivery system of mealworms (Figure 5B1). The SONIC 

scaffold system design was shown to overcome the distance limitation for O2 diffusion with 

10,000-fold higher O2 diffusivity than that of hydrogels. It demonstrated therapeutic efficacy 

and islet survival in diabetic immunocompetent rodent models (Wang et al., 2021b; Figures 

5B2–5B5).

CONCLUSIONS AND OUTLOOK

The importance of biomaterials in the context of regenerative medicine is becoming 

increasingly evident. Biomaterials can be customized to provide biophysical and 

biochemical cues that are needed for regeneration. They can also be used to further our 

understanding of cell-microenvironment interactions and their effects on stemness, self-

renewal, lineage commitment, cell physiology, and metabolism (Abdeen and Saha, 2017; 

Chai and Leong, 2007). In other words, biomaterials can be used to create a better home for 

stem cells.

Although current strategies have primarily focused on introducing a single biomaterial 

component, combinatorial biomaterial strategies with synergistic effects could lead to 

improved outcomes for stem cell transplantation. Multifunctional biomaterials with state-

dependent cellular behavior should be designed to regulate coordinated sequences of stem 

cell renewal, differentiation, and functional performance, among other behaviors (Brassard 

and Lutolf, 2019; Guilak et al., 2009; Li et al., 2021c; Perestrelo et al., 2018; Sharma 

et al., 2019b; Vunjak-Novakovic and Scadden, 2011; Xia and Izpisua Belmonte, 2019). 

Developing long-term and functional, multicellular biomaterial constructs that can be 

effectively integrated into an immunocompetent host is still a huge challenge. Although 

strategies have emerged recently that concurrently regulate two to three facets of the 

regenerative responses, more work is needed to modulate intracellular (growth, function) 

and extracellular (immunogenicity, mechanics) factors. Combinatorial biomaterials are the 

next frontier in creating more efficacious regenerative therapies.

Regulatory pathways are an additional challenge facing the utilization of biomaterial-

engineered stem cell transplants as viable regenerative therapies. Devices, drugs, and 

biological products are all governed by different regulations within the United States. 

Therefore, biologic/device combination products such as stem cell/biomaterial strategies 

require special regulatory consideration to ensure that both constituent parts and the 

combination product are found to have sufficient quality, safety, and efficacy. The FDA’s 

Office of Combination Products (OCP) is responsible for assigning a primary agency center 

that will take the lead for the review and regulation of a specified combination product 

(George, 2019; US Food and Drug Administration, 2006). Assignment of the product’s lead 

center (i.e., Center for Devices and Radiological Health, Center for Biologics Evaluation 

and Research, and Center for Drug Evaluation and Research) is determined based on 
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the evaluation of which constituent serves the primary mode of action (PMOA) of the 

final combination product. The PMOA is defined as “the single mode of action of a 

combination product that provides the most important therapeutic action of the combination 

product” (eCFR, 2017). As appropriate, the lead center may often collaborate with other 

agencies to evaluate the information provided for regulatory submission (George, 2019; 

US Food and Drug Administration, 2006; US Government, 2022). Given the sheer breadth 

of possible combination products and that devices and biologics are typically developed 

and manufactured in accordance with different regulations, it is understandable that there 

is no gold-standard development approach and regulatory guidance that can be accurately 

applied to all combination products. Hence, existing guidance needs to be adapted to fully 

address the regulatory demands of each unique combination product. Although biomaterial-

engineered stem cell strategies may require significant regulatory considerations, several 

innovative programs such as the breakthrough therapy and regenerative medicine advanced 

therapy designation in the United States, the PRIME initiative in EU, and the Sakigake 

designation in Japan are being developed to enable patient access to experimental 

regenerative medicines (Cogle et al., 2003; Prestwich et al., 2012; Qiu et al., 2020). 

Finally, any cell-based strategy must consider the issues of accessibility and affordability for 

widescale clinical translation. Overcoming these limitations promises to revolutionize and 

transform regenerative medicine to address our critical need for alternatives to allogeneic 

organ transplantation.
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Figure 1. Biomaterial-facilitated stem cell transplantation with engineered biophysiochemical 
traits for tissue regeneration.
(A) Biomaterial recapitulated microenvironments present essential and complex 

biophysiochemical cues to retain stemness, direct differentiation, promote reprogramming, 

manipulate genomic and epigenomic traits, and select for functional phenotypes while 

dictating stem cell fate during regeneration and repair.

(B) Optimal biomaterial-based methods of stem cell administration by injection or 

transplantation may improve cell retention and integration with host tissue by allowing for 

the migration of transplanted and host cells. The intrinsic biomaterial properties (bioinert, 
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bioactive, and biotolerant) and the engineered extrinsic bioactive properties, including 

biophysical (porosity, pressure, elasticity, force, topography, etc.), biochemical (hormones, 

cytokines, peptides, growth factors, and immune modulators), and physiochemical 

(hydrophilicity, temperature, pH, oxygen, nutrients, charge, light, and magnetic field), of 

the material can protect stem cells after transplantation from stress, hypoxia, starvation, and 

immune attack, thus facilitating long-term viability and maintenance of the graft.

(C and D) Optimally designed biomaterial constructs should possess dynamic properties that 

closely align with the different phases of tissue regeneration after implantation. Matching 

the appropriate timescale of material characteristics including hydration, degradation, bulk 

erosion, mass loss, and metabolization to regenerative and reparative processes can be 

beneficial to facilitate tissue regeneration and enable new tissue to overtake functions 

initially provided by the scaffold while replacing damaged host tissue.
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Figure 2. Biomaterial-facilitated stem cell-based regenerative therapies for cardiovascular 
applications
(A) (A1) An engineered design of a 4D biomaterial patch with enhanced biomechanical 

properties using stretchable architecture to accommodate changes in cardiac tissue curvature 

during diastole and systole. (A2–A4) In vivo implantation of the 4D patches in rodent 

models of ischemia reperfusion MI demonstrated high engraftment of cardiomyocytes on the 

patch at week 3. Scale bars, 100 μm. (A5) Immunostaining of α-actinin (green) and human-

specific CD31 (red) showed cellularization of the patch after 4 months. Scale bars, 50 μm. 

(A6) Quantification of von Willebrand factor staining depicted increased vascularization of 

the patch from 10 weeks to 4 months. Data are presented as means ± SD, *p < 0.05 and **p 

< 0.01 (Cui et al., 2020).

(B) (B1) Microneedle (MN) patches integrated with cardiac stromal cells (CSCs) is a 

promising strategy for cardiac regeneration after MI. (B2) DiO-labeling of CSCS (green) 

demonstrated successful incorporation of the cells onto the MN patch (red). Scale bars, 500 

μm. (B3 and B4) Treatment with MN patches in porcine models of acute MI improved 

ejection fraction and fractional shortening after 48 h. Data are presented as means ± SD, *p 

< 0.05 and **p < 0.01. (B5 and B6) immunostaining demonstrated an increased presence of 

proliferating cardiomyocytes and vasculature in post-MI rat hearts treated with MN-CSCs. 

Data are presented as means ± SD, *p < 0.05. Scale bars, 200 μm (Tang et al., 2018). Figures 

reproduced with permission.
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Figure 3. Biomaterial-facilitated stem cell-based regenerative therapies for central nervous 
system applications.
(A) (A1 and A2) SMART spheroids were developed to improve cell-cell and cell-matrix 

interactions and achieve controlled drug release to enhance in vivo neuronal differentiation 

of transplanted stem cells, thereby leading to functional recovery in models of SCI. (A3) 

Injection of SMART neurospheres (spheroids assembled from NSCs) achieved long-term 

stem cell survival and neuronal differentiation along with reduced glial scar and functional 

recovery 1 month postinjection. Data are presented as means ± SEM, *p < 0.05 and **p < 

0.01. (A4) Treatment with SMART neurospheres resulted in faster recovery rates at 1 month 
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based on the Basso mouse scale (BMS) scoring. Data are presented as means ± SEM, *p < 

0.05 (Rathnam et al., 2021).

(B) (B1 and B2) SHIELD, an injectable shear-thinning hydrogel, was designed to improve 

cell survival and engraftment after transplantation by incorporating celladhesive ligands and 

employing self-healing and thixotropic characteristics. (B3) immunostaining quantification 

of the lesion and perilesion regions in spinal cord sections revealed a significant reduction 

of the pan-macrophage marker ED1 in animals treated with Schwann cells (SCs) in 

SHIELD compared with injury only controls, whereas no significant differences were 

observed between the groups for Iba1, microglia marker, or Tomato lectin, vasculature 

marker. Data are presented as means ± SEM, *p < 0.05. (B4) Forelimb coordination 

significantly increased in SHIELD-delivered SCs-treated animals after 4 weeks as measured 

by a decrease in the percentage of missed steps with the horizontal ladder walk test. Data are 

presented as means ± SEM, *p < 0.05 and $p = 0.970 comparison between before injury and 

4-week SCs in SHIELD (Marquardt et al., 2020). Figures reproduced with permission.
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Figure 4. Biomaterial-facilitated stem cell-based regenerative therapies for ocular tissues
(A) (A1) A grafting strategy devised to introduce tissue-engineered human embryonic 

stem cell-derived retinal pigment-epithelial (hESC-RPE) cell sheets to the subretinal space 

of the eye via injection while maintaining polarity of the hESC-RPE cell sheet. (A2) 

Immunostaining of the tissue construct demonstrated the organization of hESC-RPE cells in 

a monolayer (TYRP1 = red, DAPI/nuclei = blue). Scale bars, 50 μm. (A3) An optokinetic 

test determined that treatment with transplanted hESC-RPE cell sheets significantly 

improved visual acuity compared with sham at various time points post-transplantation 

(4, 6, and 13 weeks). Data are presented as means ± SEM, *p < 0.05, **p < 0.01, and 

***p < 0.001. (A4) Outer nuclear layer (ONL) thickness was increased in rats treated with 

hESC-RPE cell sheets. Data are presented as means ± SEM, *p < 0.05 and **p < 0.01. 

(A5) Histological analysis confirmed that more photoreceptor cell nuclei were preserved 

after transplantation in rat eyes with hESC-RPE cell sheets compared with hESC-RPE cell 

suspensions. Scale bars, 50 μm (M’Barek et al., 2017).

(B) (B1) Human RPE stem cell-derived RPE monolayers grown on PET membranes were 

being evaluated for their potential as a cell-replacement therapy for age-related macular 

degeneration. (B2) After 1 week, retinal tissue loss was observed over the implant center 

but remained stable for the duration of later time points, pointing to a future challenge 

that remains for hRPE xenografts. Scale bars, 200 μm (rows 1–3) and 250 μm (row 4). 

(B3) Immunostaining for human-specific marker SC121 (red) confirmed survival of the 

human RPE monolayer subretinally for 1 month, although costaining of SC121 with apical 
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membrane markers MCT1 and ezrin (top left and right, respectively) (green) confirmed 

that the RPE was still polarized. The absence of Ki67, phosphohistone H3, and caspase-3 

(bottom, from left to right, respectively) indicated that neither proliferation nor apoptosis 

was occurring. (B4) TEM imaging revealed polarized fetal and adult hRPE cells on the PET 

carriers. Scale bars, 2 μm. Inset scale bars, 0.2 μm (Stanzel et al., 2014). Figures reproduced 

with permission.
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Figure 5. Biomaterial-facilitated stem cell-based regenerative therapies for pancreatic tissues
(A) (A1 and A2) A strategy employing wireless electrical stimulation of engineered 

electrosensitive beta-cells (Electroβ cells) housed inside of a bioelectronic device enabled 

electrogenic control of insulin release from cells that could be used for type 1 diabetes 

therapy. The bioelectronic implant was placed subcutaneously in a mouse, whereas a 

field generator provided the necessary wireless energy transmission. (A3) Electroβ cells 

re-established postprandial glucose metabolism and achieved fast vesicular secretion after 

electrostimulation in insulin-deficient type 1 diabetic mice. Data are presented as means ± 

SEM, *p < 0.05, **p < 0.01, and ***p < 0.001. (A4) Moreover, it was found that blood 

glucose levels could be quickly restored to normoglycemia after electrostimulation and that 

glycemia could be controlled over long periods of time without experiencing hypoglycemia. 

Data are presented as means ± SEM, *p < 0.05, **p < 0.01, and ***p < 0.001 (Krawczyk et 

al., 2020).

(B) (B1) A novel biomimetic scaffold design called SONIC utilized continuous air channels 

to improve oxygen diffusivity within cell encapsulation systems and was inspired by the 

tracheal systems in mealworms. (B2) Diabetic C57BL/6 mice implanted with SONIC 

devices with rat islets demonstrated long-term controlled blood glucose readings spanning 

6 months until device retrieval, where blood glucose levels returned to hyperglycemia. 

Individual device data are presented, ****p < 0.0001. (B3) Histological evaluation and 

immunostaining of insulin (green) and glucagon (red) confirmed islet viability and function 
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from cells in retrieved devices on day 60. Scale bars, 200 μm (left) and 100 μm (right). 

(B4) Intraperitoneal glucose tolerance tests were conducted on day 180 postimplantation, 

and the results showed animals treated with the SONIC device had glycemic profiles similar 

to that of healthy mice, with blood glucose levels returning to normoglycemia within 2 

h. Data are presented as means ± SD, ****p < 0.0001 (diabetic mice versus SONIC device-

treated mice, diabetic mice versus healthy mice, control device-treated mice versus SONIC 

device-treated mice, and control device-treated mice versus healthy mice). (B5) Histology 

confirmed that islets near regions of fibrosis remained healthy and corroborated findings 

from computational simulations of fibrosis where control devices were found to be hypoxic 

with high levels of islet necrosis, whereas SONIC devices were sufficiently oxygenated 

throughout the implant. Scale bars, 200 μm (Wang et al., 2021b). Figures reproduced with 

permission.
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