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Abstract

Retinal diseases are a leading cause of blindness in developed countries, accounting for the largest share of visually impaired children,
working-age adults (inherited retinal disease), and elderly individuals (age-related macular degeneration). These conditions need
specialised clinicians to interpret multimodal retinal imaging, with diagnosis and intervention potentially delayed. With an increas-
ing and ageing population, this is becoming a global health priority. One solution is the development of artificial intelligence (AI)
software to facilitate rapid data processing. Herein, we review research offering decision support for the diagnosis, classification,
monitoring, and treatment of retinal disease using Al. We have prioritised diabetic retinopathy, age-related macular degeneration,
inherited retinal disease, and retinopathy of prematurity. There is cautious optimism that these algorithms will be integrated into
routine clinical practice to facilitate access to vision-saving treatments, improve efficiency of healthcare systems, and assist clini-
cians in processing the ever-increasing volume of multimodal data, thereby also liberating time for doctor-patient interaction and
co-development of personalised management plans.
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Key messages
What is known:

e Artificial intelligence (Al) software is being developed to facilitate diagnosis, classification, monitoring and
treatment of retinal conditions.

® Retinal disease has been at the forefront of Al in ophthalmology, with multiple research groups focusing their
efforts on Al around the world, leveraging imaging and functional modalities.

What is new:

® We provide an overview of current methodologies used in Al system development and validation, focusing on
application in diabetic retinopathy, age-related macular degeneration, inherited retinal disease, and retinopathy of
prematurity.

® Although many challenges still must be overcome by Al in ophthalmology, it represents an important approach to
improve patient care - both at the individual level, as well as population-level large-scale healthcare.
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Introduction

Retinal diseases are a significant cause of visual impairment
and blindness, both in adults (secondary to age-related mac-
ular degeneration (AMD) and diabetic retinopathy (DR))
[1] and in children (due to inherited retinal disorders (IRD)
and retinopathy of prematurity (ROP)) [2]. Diagnosing these
conditions usually involves multimodal testing and multiple
consultations with retina specialists, often not available in
a timely manner, which can result in delays in sight-saving
treatments. For rare diseases, it can take several years for a
final diagnosis (‘diagnostic odyssey’), resulting in uncer-
tainty about the prognosis and delay in appropriate care.

Healthcare data increases by approximately 50% every
year, making it one of the fastest-growing digital areas
[3]. Genomic data alone is as demanding in terms of
data acquisition, storage, distribution, and analysis as
astronomy or social media content [4]. Ophthalmology is
one of the leading data generators, with 30 million opti-
cal coherence tomography (OCT) scans performed yearly
in the USA [5]. This ever-increasing vast amount of data,
alongside the development of cutting-edge digital tech-
nology, has made ophthalmology a pioneer in digital
innovation and healthcare artificial intelligence (Al).

Al has been rapidly developing in multiple areas of
medicine, including, dermatologist-level performance at
detecting skin cancer [6], highly accurate classification of
pulmonary tuberculosis [7], and genetic variant calling and
classification [8]. Al-based ophthalmology telemedicine
has been beneficial during the COVID-19 pandemic [9],
and remote evaluation and analysis of retinal imaging may
be useful in decreasing diagnostic time and facilitating
triaging and classification [10, 11].

Development of highly sensitive and sensible Al-based
tools requires transdisciplinary collaboration between
clinicians and software engineers. Herein, we will pro-
vide an overview of current methodologies used in Al
system development and validation and focus on clinical
application in prioritising retinal diseases.

Fig. 1 Diagram of artificial

Al methodology overview

The most common techniques to develop Al-based health-
care tools will be summarised below and in Figs. 1 and 2:

e Al is a phenomenon in which non-living entities mimic
human intelligence [12]. It is an umbrella term encom-
passing a spectrum of computing programs. ‘Rule-based’,
‘hard-coded’ or ‘symbolic AI’ has existed for many dec-
ades and is the basis of any software system, from a traf-
fic light management system to the autopilot flying every
plane. In healthcare, symbolic Al has multiple applica-
tions, e.g. calculating cardiovascular risk index or eGFR.

e Machine learning (ML) is an Al subfield in which a pro-
gram achieves a task by being exposed to vast volumes of
data and gradually learning to recognise patterns within
the data, allocating data to distinct classes [13]. It involves
‘soft coding’, which means that the model learns from
examples instead of being programmed with rules [12].
ML models can be supervised (based on data labelled by
humans), unsupervised (i.e., grouping features within cate-
gories), or reinforcement learning (the system accumulates
its own feedback to improve through a reward function)
[14]. In medicine, supervision is the most common.

e Nonneural network-supervised ML algorithms are useful
in healthcare for prediction modelling and evaluating
associations and best-fitted lines between two (linear
regression, parametric) or multiple variables (random
forest, non-parametric). The latter combines different
inputs using a network of flowcharts (known as decision
trees); each tree creates an outcome, and a collective one
will be made by combining all the singular outputs [15].
Non-neural networks are often combined with deep neu-
ral network (DNN) architectures and achieve improved
performance (Fig. 1) [16].

e Deep learning (DL) is a subdivision of ML, defined
by the presence of multiple layers of artificial neural
networks (ANN) [17]. An ANN is composed of an
input layer of multiple nodes—‘artificial neurons’—
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Fig.2 A Overview of a convolutional neural network (CNN). The
process starts with an input layer, typically an image or video, that
gets divided into subsamples and/or pixels and is analysed by multi-
ple convolutional layers that filter, mask, or multiply features and feed
the results to a dense neural network of multiple nodes ‘artificial neu-
rons’. Each one represents a characteristic to be analysed (e.g., pix-
els, diagnoses, age, contrast, etc.) and is connected to hidden layers
that sum and analyse all inputs, combining the received stimuli and

that represent characteristics to be analysed, e.g. pixels
on an image, diagnoses (International Classification of
Disease (ICD) coded), age, nucleotide changes, etc.;
connected to one or more hidden layers that sum and
analyse all inputs, and transmit a final value to an out-
put layer (Fig. 2A).

e DNN corresponds to multi-layered DL algorithms (with
often over 100 hidden layers), which are currently the
gold standard for image classification [15]. As more
layers are added, an iterative training phenomenon
starts occurring, by which deep layers combine stimuli
sent from other layers and design new stimuli, improv-
ing the output layer and ultimately leading to better
diagnoses [8].

e Convolutional neural network (CNN) is a type of DNN
particularly useful for image and video analysis [15].
These algorithms divide the files into pixels, convert
them into numbers or symbols, analyse them by multi-
ple convolutional layers that filter, merge, mask, and/
or multiply features, and feed the results to a dense
neural network that will create an output layer [18].
Fully convolutional networks (FCN) feed the output
layers themselves, without the final step of dense layers
(Fig. 2A) [17].

designing a new one, leading to an improved output layer and final
diagnosis. B The process of developing a supervised Al model. First,
a training set needs to be created, and these images are used to train
the model to interpret the different features; after this, a separate,
non-annotated dataset (validation set) is presented to the model to try
it, whilst still fine-tuning its configuration; and lastly, the algorithm is
tested on new data, evaluating its overall performance

Useful concepts to better understand Al
literature

There are different types of models, depending on the out-
come prediction. (i) Classification models apply to cat-
egorical outputs, such as classifying retinal images into
with or without DR; (ii) segmentation models are special-
ised for image processing and analysis, detecting presence
or absence of features (e.g., intraretinal fluid), segmenting
images into known anatomical correlates, or classifying
them into diagnostic categories; (iii) regression models for
when a quantitative output is needed, such as predict central
macular thickness from an OCT file [19, 20].

Different performance metrics are used to present results
of each model type. Dice similarity coefficient (dice score)
and intraclass correlation coefficient (ICC) are metrics of
segmentation accuracy suitable for evaluating performance
of image segmentation DL algorithms, ranging from O to 1
[21]. There are multiple performance metrics for classifica-
tion and regression model algorithms, such as (i) receiver
operating characteristic (ROC) curves, that plot true posi-
tives (sensitivity) against false positives (1 =specificity)
[22]; (ii) the area under the curve (AUC, also known as
AUROC) ranging from O to 1, with 1 indicating a perfect
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algorithm [23]; (iii) precision-recall curves (PRC), which
associate positive predictive value with sensitivity (also
known as recall or true positive rate) [24]; (iv) the accuracy
statistical score; (v) absolute difference; (vi) Pearson’s cor-
relation between said parameters (the latter also goes from
0 and 1) [23].

The process of developing a supervised Al model gener-
ally involves three stages: (1) training, when the network is
provided labelled images; (2) fine-tuning, where the model
starts aiding the manual annotation and human graders to
correct it and improve it; (3) validation or testing, where the
algorithm is tested on a hold-out dataset annotated by human
graders and kept separate from the training dataset (internal
validation). External validation on datasets of completely
independent origin than the training dataset is the gold
standard for validation/performance evaluation, indicating
generalizability (Fig. 2B). [23]

Selected retinal diseases for which Al-based
tools have been developed

Diabetic retinopathy (DR)

Recent studies have shown that Al-based DR screening sys-
tems can achieve adequate levels of safety [25-29]. These
algorithms include classical expert-designed image analy-
sis, mathematical morphology, and transformations [30-33].
One of the approaches tested was to classify colour fundus
images from training datasets into referable DR (moderate
or advanced stage) or non-referable DR (no or mild DR,
Table 1). These studies either built their own CNNs or
used pretrained ones like AlexNet [34], Inception V3 [35],
Inception-Resnet-V2 [36], and Resnet152 [37]. Other studies
tried to detect DR based on fixed features such as red lesions
[3839], microaneurysms [40], exudates, and blood-vessel
segmentation [41, 42]. Lastly, other groups introduced a
method to detect DR and diabetic macular oedema (DMO)
using a CNN model, being able to detect the exact stage of
DR; these studies are summarised in Table 1 [49-60, 95].
Wong et al. [96] developed a model to classify DR stages
based on microaneurysms and haemorrhages, while others
used exudates, blood vessel mapping, and the optic disc.
[97, 98] The sensitivity of automatic DR screening has been
reported as ranging from 75 to 94.7%, with comparable
specificity and accuracy [99]. Several publicly available reti-
nal datasets have been used to train, validate, and test these
Al systems, and also to compare performance against other
systems; namely, DIARETDB1, Kaggle, E-ophtha, DDR,
DRIVE, HRF, Messidor, Messidor-2, STARE, CHASE
DB, Indian Diabetic Retinopathy Image Dataset (IDRiD),
ROC, and DR2 [57, 100-108]. Several studies have used
these datasets to detect red lesions, microaneurysms, DR
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lesions, exudates, individual DR stages, and blood vessel
segmentation [38, 40, 41, 43, 52, 109, 110].

Another area of focus is the detection of DMO, currently
assessed by OCT as the gold standard. Al-based groups
have tried detecting DMO from colour fundus photography
based on exudates and accurate identification of the macula.
Automated detection via OCT imaging is ongoing, focus-
ing on retinal layer segmentation [111, 112] and specific
lesion (e.g. cysts) identification [113-118]. Recently, DL
has also been used to detect macular thickening based on
colour photographs, and it has been found to be comparable
to OCT-measured thickness [119].

Multiple programs have tried to use Al-based methods in
population-based screening for DR. The United States Food
and Drug Administration (US FDA) has recently approved
IDx-DR, a CNN for screening DR stages in adults aged
22 years or older [49, 120]. Initial versions of IDx-DR have
been evaluated as part of the lowa Detection Programme
and have shown good results in White, North African, and
Sub-Saharan populations [25]. Similar software, like the
RetmarkerDR in Portugal and EyeArt in Canada, have been
tested in local screening programs [121, 122]. Multiple
South-Asian eye institutes are also involved in development
and validation of Al-based algorithms in DR [95, 123, 124].
Recently, a Singapore-based DL tool has shown comparable
diagnostic accuracy to manual grading, and a semi-auto-
mated DL model involving a secondary human assessment
may prove to be the most cost-effective model [125, 126].
Their real-world performance remains to be tested [127].

Age-related macular degeneration (AMD)

The use of Al with DL tools has great potential in AMD,
both for diagnostic purposes—while allowing for a more
efficient and accurate approach—to prognostication of
affected individuals and perhaps to directly determine (pre-
dict) efficacy of treatments. The most common imaging
modalities being explored in the field of Al for AMD are
OCT, colour fundus image, and fundus autofluorescence
(FAF). OCT-angiography (OCTA) has also been used in
DL approaches to diagnose and classify AMD, achieving
high accuracy and sensitivity [128, 129]. Due to the huge
number of studies, selected key ones will be discussed, with
a summary of a broad range of studies in Table 1.

One of the first attempts to evaluate ML algorithms in risk
assessment of AMD was a European study by van Grinsven
et al. that aimed to detect and quantify drusen on colour
fundus photographs in eyes without and with early to mod-
erate AMD [61]. This study demonstrated that the proposed
system was in keeping with experienced human observers
in detecting the presence of drusen as well as estimating
the area, with an ICC greater than 0.85. For AMD risk
assessment, it achieved a ROC of 0.948 and 0.954—similar
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performance to human graders. Subsequently, the same
group explored another algorithm for automatic detection
of reticular pseudodrusen (RPD) [62]. This followed a mul-
timodal imaging approach using colour fundus, FAF, and
near-infrared images, with automated quantification having
similar performance to the observers.

In 2018, Schmidt-Erfuth et al. evaluated the predictive
potential of ML in terms of best-corrected visual acuity
(BCVA) by analysing OCT volume scan features—intrareti-
nal fluid (IRF), subretinal fluid (SRF), and pigment epithelial
detachment (PED) [130]. A modest correlation was found
between BCVA and OCT at baseline (R>=0.21), while func-
tional outcome prediction accuracy increased in linear fash-
ion. The same group then explored automated quantification
of fluid volumes using a DL method and a CNN, using OCT
data from the HARBOR study (NCT00891735) for neovas-
cular AMD (nAMD) [131]. Retinal fluid volumes (IRF, SRF,
and PED) were then validated by the authors as important
biomarkers in nAMD [132].

A more recent study attempted to introduce an Al system
that combines 3D OCT images and automatic tissue maps
in individuals with unilateral nAMD to predict progression
in the contralateral eye [70]. It achieved a sensitivity of 80%
at 55% specificity and 34% specificity at 90% sensitivity
while being able to identify high-risk groups and changes
in anatomy before conversion to nAMD, outperforming 5
out of 6 experts. Also, the age-related eye disease studies
(AREDS and AREDS?2) used DL algorithms and survival
analysis to predict risk of late AMD, which achieved high
prognostic accuracy [133].

Several segmentation models have been described in
AMD. In 2018, De Fauw et al. created a landmark OCT
image segmentation model that utilised a DL framework
to perform segmentation and automated diagnosis of reti-
nal diseases [134]. Subsequently, Liefers et al. validated a
DL model for segmentation of retinal features specifically
in individuals with atrophic AMD and nAMD, with results
comparable to independent observers [135]. A further
automated segmentation algorithm with a CNN has been
explored to quantify IRF, SRF, PED, and subretinal hyper-
reflective material (SHRM) in nAMD [136]. There was good
agreement for both the segmentation and detection of lesions
between clinicians and the network (dice scores >0.75 for
all features). Two applications with validated automated DL
segmentation algorithms are currently commercially avail-
able: RetinAl (Medical AG, Switzerland) and RetInSight
(Vienna, Austria) [137].

Dry AMD with geographic atrophy (GA) has also been
actively investigated. Zhang et al. developed a DL model
that segments and classifies GA on OCT images, achieving
similar performance to manual specialist assessment [138].
Another group segmented GA in both OCT and FAF images
and had reasonable agreement, with better performance

@ Springer

(highest dice) in FAF [139]. GA algorithms have also been
used to predict VA, with certain features such as photorecep-
tor degeneration having high predictive significance [140].

Inherited retinal disorders (IRD)

Al algorithms using multimodal imaging techniques have
been developed to facilitate the diagnosis [78], classification
[80], decipher the genetic aetiology [83], and measure the
progression rate of IRD [89, 84].

Chen et al. have developed a CNN that detects if a patient
has retinitis pigmentosa (RP) by analysing colour fundus
images, with an overall accuracy of 96% (versus 81.5% from
four ophthalmology experts) [78]. Another group proposed
an FCN that detects pigment in colour images and diagnoses
RP with an accuracy of 99.5% [79].

To predict aetiologies, Miere et al. have created a CNN
model that can distinguish between FAF images from
patients with Stargardt disease (STGD), RP, and best disease
(BD), with an overall accuracy of 0.95 [80]. Furthermore,
Fujinami-Yokokawa et al. used OCT images to predict caus-
ative genes (ABCA4, RP1LI1, and EYS) through a DL plat-
form [83]. They achieved an accuracy of 100% for ABCA4,
66.7 to 87.5% for RPIL1, 82.4 to 100% for EYS, and 73.7 to
100% for healthy control images. Miere et al. also created a
CNN that is able to outperform specialists in distinguishing
between FAF images of STGD and PRPH?2-related macular
dystrophy (AUROC 0.890 versus experts 0.816) [82]. Shah
et al. also achieved an accuracy of 99.6% with a model dis-
tinguishing between OCT images from patients with STGD
and controls [81]. Crincoli et al. combined image processing
with a CNN to differentiate between BD and adult-onset
vitelliform macular dystrophy using FAF and OCT images,
with an AUROC of 0.880 [23]. Moreover, this endeavour has
been recently markedly upscaled by Pontikos et al. to dif-
ferentiate between 36 gene classes by exploiting multimodal
imaging [141]. However, further development is needed,
given more than 300 genes are known to cause IRD to date.

STGD is the most prevalent inherited macular dystro-
phy, and it can affect both children and adults, with multi-
ple ongoing clinical trials [142]. Charng et al. developed a
CNN algorithm that segments flecks and is able to monitor
their progression over time [84]. They obtained an over-
all agreement between manual and automatic segmenta-
tion of 0.54 +0.14 dice score for diffuse speckled patterns
and 0.71 +£0.08 for discrete flecks. Wang et al. also used
FAF images, detecting and quantifying areas of atrophy in
STGD and AMD [85]. They obtained an accuracy of 0.98
for differentiating normal eyes from those with AMD-related
atrophy and 0.95 for eyes with STGD. Atrophic areas were
also segmented manually and automatically, with an overlap
ratio of 0.89 +0.06 in AMD and 0.78 +0.17 in STGD [85].



Graefe's Archive for Clinical and Experimental Ophthalmology (2023) 261:3283-3297 3291

Miere et al. also assessed atrophy and developed a CNN that
differentiates between FAF images with GA secondary to
AMD and IRD-associated, with an AUROC of 0.981 [86].

Automatic macular OCT segmentation by the device
manufacturers is often inaccurate in IRD, requiring manual
correction in over one-third of scans [143]. OCT images of
STGD were used to create an improved DL-based algorithm
that is able to segment the inner and outer retinal limits,
providing faster and better macular thickness and volume
quantification [87]. Lastly, adaptive optics scanning light
ophthalmoscopy images of STGD have also been used to
develop an FCN that is able to accurately count macular
cones (dice score: 0.9431 +0.0482) [88].

Other tools are being designed to assess disease severity
and potentially have applications in determining eligibility for
interventional trials. A CNN has been developed by Camino
et al. that segments preserved EZ area on OCT images from
patients with RP and choroideremia (CHM) [89]. This tool
reached 0.894 +0.102 similarity between automatic and man-
ual grading for RP and 0.912+0.055 for CHM. Loo et al.
also targeted EZ segmentation and validated their algorithm
for macular telangiectasia in patients with USH2A-related
RP, with excellent applicability (dice score 0.79+0.27) [91].
Similarly, Wang et al. also tested an EZ segmentation CNN in
USH2A-RP and obtained a Dice score of 0.867 +0.105 [92].
CHM EZ segmentation was then attempted by Wang et al.
through a nonneural random forest approach and reached a
Jaccard similarity index between manual and automated seg-
mentation of 0.876 +0.066 [90].

Predicting VA based on OCT and infrared images in RP
has been assessed by Liu et al. They were able to deter-
mine if a patient with RP had VA below or above 20/40,
with an AUC of 0.85 [93]. Sumaroka et al. also developed a
nonneural network to predict foveal sensitivity (Humphrey
visual field testing), VA, and possible outcome of therapy in
patients with blue cone monochromacy based on OCT scans,
with good results [94].

Retinopathy of prematurity (ROP)

ROP is an important cause of preventable childhood blind-
ness worldwide [144]. ROP causes abnormal blood vessel
growth and can be detected by trained ophthalmologists
using indirect ophthalmoscopy, with access to adequate,
timely screening potentially limited due to the requirement
of highly trained personnel and equipment. DL-based detec-
tion and staging of ROP[145] by evaluation of posterior pole
fundus images has been attempted with high sensitivity and
specificity [146]. Authors have developed a ROP vascular
severity score with good correlation with the labels set by
the International Classification of Retinopathy of Prema-
turity committee [147]. The DeepROP score [148] and
i-ROP DL system are DL algorithms developed to evaluate

clinically significant severe ROP at the posterior pole [149].
ROP plus disease, a more aggressive form of ROP, is often
difficult to diagnose given the lack of consensus among
ophthalmologists; several authors have evaluated automated
algorithms that may be able to objectively diagnose plus
disease [150-153].

These study limitations are the review of the literature in
a non-systematic approach, possibly leading to some papers
being omitted or not adequately prioritised; and editorial
restrictions, which prevented us from doing a comprehensive
review of Al applications in all retinal disorders. Substan-
tial research has been undertaken in other fields of medical
retina (e.g., uveitis and oncology), which will be reviewed
in a subsequent project. [154, 155]

Concluding remarks and future directions

Retinal disease has been at the forefront of Al in ophthal-
mology, with the first Al-related publication being on DR.
Since then, research groups focusing their efforts on Al
have multiplied around the world, targeting all aspects of
the patient journey, including diagnosis, triage, and prog-
nostication, by leveraging multiple imaging (and functional)
modalities, as well as a range of Al tools. A shortage of
medical professionals is anticipated in the short term, likely
further increasing healthcare inequalities and challenging
our ability to improve care for preventable diseases [156].
Al represents one important approach to help meet these
challenges and moreover facilitate improvements in patient
care—both at the individual level with more timely, accu-
rate, and bespoke management, as well as population-level,
large-scale healthcare. Ever-improving DNN and CNN algo-
rithms can become a helping hand for healthcare to lean on
towards meeting current capability endpoints.

Despite the huge promise, many challenges remain for
Al in ophthalmology, including, (i) the need for larger, more
diverse, and representative datasets that fully represent real
life, (ii) the closer collaboration by experts (both national
and international) to develop disease-specific consensus
and subsequently provide a comprehensive large volume of
image grading, and (iii) greater synergy between healthcare
professionals, patients, and data scientists, communicating
and improving the software interface as it is being iteratively
created, and ensuring it complements the human interac-
tion that underpins the practice of medicine, rather than
seeking to replace it [157]. Further uses of Al are yet to be
explored, such as multimodal inputs to determine the best
candidates for interventional clinical trials, the selection of
the ideal anti-VEGF and therapeutic scheme in nAMD, and
the estimation of functional impairment based on structural
parameters for IRD, among others.

@ Springer
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The future of healthcare will increasingly incorporate
the advantages that Al can provide to improve the lives of
our patients and no doubt perform assessments quicker and
more accurately than retina specialists can currently sustain-
ably provide, allowing us to spend more time being better
clinicians and scientists. Nevertheless, as always with new
technology, there will be new learnings and surprises along
the way.
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