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Polygenic risk score association with multiple 
sclerosis susceptibility and phenotype  
in Europeans

Hengameh Shams,1,2 Xiaorong Shao,2 Adam Santaniello,1 Gina Kirkish,1 

Adil Harroud,1 Qin Ma,1 Noriko Isobe,3 University of California San Francisco MS-EPIC 
Team, Catherine A. Schaefer,4 Jacob L. McCauley,5,6 Bruce A. C. Cree,1 

Alessandro Didonna,1,7 Sergio E. Baranzini,1 Nikolaos A. Patsopoulos,8,9,10,11 

Stephen L. Hauser,1 Lisa F. Barcellos,2 Roland G. Henry1 and Jorge R. Oksenberg1

Polygenic inheritance plays a pivotal role in driving multiple sclerosis susceptibility, an inflammatory demyelinating 
disease of the CNS. We developed polygenic risk scores (PRS) of multiple sclerosis and assessed associations with 
both disease status and severity in cohorts of European descent.
The largest genome-wide association dataset for multiple sclerosis to date (n = 41 505) was leveraged to generate PRS 
scores, serving as an informative susceptibility marker, tested in two independent datasets, UK Biobank [area under 
the curve (AUC) = 0.73, 95% confidence interval (CI): 0.72–0.74, P = 6.41 × 10−146] and Kaiser Permanente in Northern 
California (KPNC, AUC = 0.8, 95% CI: 0.76–0.82, P = 1.5 × 10−53).
Individuals within the top 10% of PRS were at higher than 5-fold increased risk in UK Biobank (95% CI: 4.7–6, P = 2.8 × 
10−45) and 15-fold higher risk in KPNC (95% CI: 10.4–24, P = 3.7 × 10−11), relative to the median decile. The cumulative 
absolute risk of developing multiple sclerosis from age 20 onwards was significantly higher in genetically predisposed 
individuals according to PRS. Furthermore, inclusion of PRS in clinical risk models increased the risk discrimination 
by 13% to 26% over models based only on conventional risk factors in UK Biobank and KPNC, respectively. Stratifying 
disease risk by gene sets representative of curated cellular signalling cascades, nominated promising genetic candi-
date programmes for functional characterization. These pathways include inflammatory signalling mediation, re-
sponse to viral infection, oxidative damage, RNA polymerase transcription, and epigenetic regulation of gene 
expression to be among significant contributors to multiple sclerosis susceptibility. This study also indicates that 
PRS is a useful measure for estimating susceptibility within related individuals in multicase families. We show a sig-
nificant association of genetic predisposition with thalamic atrophy within 10 years of disease progression in the 
UCSF-EPIC cohort (P < 0.001), consistent with a partial overlap between the genetics of susceptibility and end-organ 
tissue injury. Mendelian randomization analysis suggested an effect of multiple sclerosis susceptibility on thalamic 
volume, which was further indicated to be through horizontal pleiotropy rather than a causal effect.
In summary, this study indicates important, replicable associations of PRS with enhanced risk assessment and radio-
graphic outcomes of tissue injury, potentially informing targeted screening and prevention strategies.
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Introduction
Multiple sclerosis is a chronic disease of the CNS with established 
genetic susceptibility footprints. Leveraging genome-wide geno-
type data from 47 429 multiple sclerosis cases and 68 374 controls, 
the International Multiple Sclerosis Genetics Consortium (IMSGC) 
developed a dataset that yielded statistical evidence for the associ-
ation of 200 autosomal susceptibility variants outside the major 
histocompatibility complex (MHC), 32 within the extended MHC re-
gion, and one in chromosome X.1 These associations together with 
an additional 416 highly suggestive, albeit not genome-wide signifi-
cant variants explain 48% of multiple sclerosis heritability, and col-
lectively highlight gene networks operating in the adaptive and 
innate arms of immune response, as well as enrichment of genes 
expressed in microglia.1

The polygenic mode of multiple sclerosis inheritance provided 
the rationale for developing aggregated genetic burden scores includ-
ing all identified genome-wide significant susceptibility variants, in 
an attempt to better predict the cumulative effects of genetic liabil-
ity.2,3 Polygenic risk scores (PRS) combine all genetic effects into a sin-
gle metric of inherited susceptibility with multiple important 
potential applications: they can be used to assess genetic heritability, 
measure genetic overlap between different traits, improve screening, 
assist in identifying biomarkers of complex diseases, stratify patients 
in clinical trials, and adjust treatment strategies.4–9 However, the 
early application of this tool in multiple sclerosis was compromised 
by gaps in the number of known risk loci and imperfect estimation 
of allelic weights, leading to poor sensitivity.10–12 Methodological 
and analytical advances, and increasing sample sizes in genome- 
wide association studies (GWAS) have facilitated genetic discoveries 
and provided adequate power for detecting variations with small ef-
fects on the target phenotype, thus enabling more compelling studies 
of the risk distribution in a given population. Specifically, the LDPred 
algorithm considerably enhanced the prediction accuracy of the gen-
etic load for autoimmune diseases including type 1 diabetes, Crohn’s 
disease, and rheumatoid arthritis.13 Recent updates of the program 
(LDPred2) provide even higher performance and more accurate effect 

size adjustments compared to both the old version and other com-
petitive methods, particularly for causal variants in complex long- 
range linkage disequilibrium (LD) regions such as the MHC.14

LDPred2 also identifies variants with true zero effect size, significant-
ly reducing the number of variants used in the PRS calculations with-
out affecting its predictive performance. Here, we developed both 
genome-wide and pathway-specific PRS for well-characterized, inde-
pendent multiple sclerosis datasets to assess the aggregated genetic 
burden effects on disease risk and activity.

Materials and methods
Polygenic risk score derivation

The post-quality control (QC) IMSGC Discovery summary statistics 
based on 14 802 multiple sclerosis cases and 26 703 controls includ-
ing 8 589 719 variants was used for PRS derivation to predict mul-
tiple sclerosis risk in people of European ancestry. Please refer to 
IMSGC for details of multisite cohorts, inclusion criteria, demo-
graphics and analytical methods.1 Datasets used in this study are 
summarized in Supplementary Table 1. All duplicate single nucleo-
tide polymorphisms (SNPs), multi-allelic markers, variants with 
low imputation quality (INFO < 0.6), rare variants with minor allele 
frequencies of <1%, variants with genotype missingness >10%, 
and variants deviating from Hardy–Weinberg equilibrium (P < 1 × 
10−6) were excluded. For specific details about each dataset please 
refer to the Supplementary material.

The LDPred2 algorithm was used to obtain posterior mean effect 
sizes by adjusting a prior probability and accounting for LD.14 As re-
commended by recent studies,14,15 only HapMap3 variants that 
passed rigorous QC in our validation and replication datasets, namely 
UK Biobank (UKBB), Kaiser Permanente in Northern California 
(KPNC), and UCSF-EPIC, were included in PRS development 
(n = 800 702). This set contained established disease-associated var-
iants and other loci. The advantage of using HapMap3 variants is 
that they have passed extensive QC and have a good coverage of 
the whole genome.
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The underlying population structure of both UKBB and KPNC da-
tasets is homogeneous and strictly European, while 6.6% of 
UCSF-EPIC subjects were identified as Admixed Americans (AMR), 
which was demonstrated by performing principal component ana-
lysis (PCA) of each dataset with 1000 Genomes Phase 3 populations 
as a reference (Supplementary Fig. 1A–H). The LD reference used 
was based on 362 320 European individuals in UKBB. The tuning hy-
perparameters, sparsity (p) and heritability (h2), were optimized in 
UKBB Phase 1 (UKBB1) (validation set) comprising 601 multiple 
sclerosis cases and 109 990 unaffected subjects. Heritability values 
tested in the model included the one estimated by LD score regres-
sion (h2 = 0.38) as well as that multiplied by 0.7, and 1.4. A total of 17 
P-values between 1 × 10−4 and 1 evenly spaced on a logarithmic 
scale were examined. Discriminative capacity of PRS was assessed 
as the maximum area under the receiver-operating curve (AUC) 
and 95% confidence intervals (CI) obtained from 10 000 non- 
parametric bootstrap replicates. The sparse option was enabled in 
LDPred2 to allow for computing true zero effect sizes. A total of 
455 902 (57% of included variants) had non-zero effect sizes β = 
{β1, β2, …, βn} and PRS of the j-th individual was computed by taking 

the weighted sum of risk alleles, PRSj =
n

i=1 biSNPij. All PRS scores 
are standardized to have zero mean and unit variance. The best 
performing model out of 61 in the validation dataset (P = 0.018, 
h2 = 0.38, AUC = 70%, 95% CI: 68% to 72%) was then tested in UKBB 
Phase 2 (UKBB2), consisting of 1354 multiple sclerosis cases and 
252 065 unaffected subjects after QC. The top model was then tested 
in the KPNC dataset. Scores were adjusted for the first 20 principal 
components of ancestry. The flowchart of PRS development is 
shown in Fig. 1.

Since the UCSF-EPIC cohort was part of the IMSGC meta-analysis, 
two sets of PRS scores were developed for this dataset. In the first set, 
PRS is computed using the same effect sizes as described above, which 
are based on the summary statistics incorporating all IMSGC-GWAS 
datasets. These scores are referred to as MS-PRS for all cohorts used 
in this study. Additionally, a second set of scores for UCSF-EPIC was 
developed for which a summary statistics based on only SNPs contrib-
uted by all the IMSGC sites except UCSF (n = 14) was used (PRSLOO). The 
PRSLOO also included SNPs that passed QC in all datasets, as described 
above. However, before computing the effect sizes in LDPred2, var-
iants with SDss < 0.5.SDval or SDss > 0.1 + SDval or SDss < 0.1 or SDval < 
0.05, in which SDss is the standard deviations from the summary sta-
tistics and SDval is the standard deviations of genotypes of subjects in 
the validation set, are removed as suggested by Privé et al.14 Applying 
this condition using the leave-one-out summary statistics resulted in 
removing 5320 SNPs from PRSLOO.

To develop familial PRS, DNA samples of 135 individuals from 35 
families with an unaffected parent, a co-affected parent-child pair, 
and a discordant sib-pair were genotyped using a custom Illumina 
Chip.16 Due to the limited overlap between variants in the familial da-
taset and the HapMap3 markers (∼18%), the familial PRS was com-
puted based on the common variants present in this dataset, the 
IMSGC summary statistics, and UKBB1, which was used as the valid-
ation set (n = 921 610). Chromosome-specific scores were computed 
by summing over variants within each chromosome multiplied by 
their corresponding effect sizes, which were estimated genome-wide, 
as described above.

Gene set selection and derivation  
of pathway-specific risk scores

Pathway-specific risk scores were developed for the 2852 gene sets 
identified in the Canonical Pathway subset of Molecular Signatures 
Database (MSigDB version 7.2) consisting of curated subsets repre-
senting biological pathways using PRSice2.17 The LD pruning was 
carried out using r2 of 0.1 and a 1 mb window. To generate competi-
tive P-value estimates for each pathway, 10 000 permutations of 
sample labels were implemented. Nagelkerke’s pseudo R2 value 
was adjusted for an estimated prevalence of 0.00127,18 gender, age 
and the first 20 principal components. The gene sets surviving the 
Bonferroni correction for multiple testing (corrected P = 1.75 × 10−5) 
in UKBB1 were further replicated in UKBB2. Cumulative scores of 
132 gene sets were significantly associated with multiple sclerosis 
risk in the UKBB1 (Bonferroni corrected P < 1.75 × 10−5). A total of 
85 associations were replicated in UKBB2 (Supplementary Table 2).

Polygenic risk score association with neuroimaging 
phenotypes

Calibrated volumetric measurements of the total brain (BV), white 
matter (WMV), peripheral grey matter (pGMV), CSF, and three com-
partments of the deep grey matter, namely thalamus, caudate and 
putamen in 467 UCSF-EPIC participants with 10 years of annual 

Figure 1 Flow diagram of the MS-PRS derivation. The post-QC discovery 
IMSGC summary statistics were used to construct a predictive model of 
multiple sclerosis risk. Multiple genetic models comprising significant 
variants and their associated effect sizes were optimized over a range 
of parameters using LDpred2. Performance of genetic models was vali-
dated in the UKBB1 and independently tested in UKBB2 and KPNC 
datasets.
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follow-up were investigated as hallmarks of disease progression.19

First, the association of both PRSLOO and MS-PRS with each metric 
at baseline was examined in a linear model including sex, age 
and disease duration as covariates. To replicate associations in 
UKBB, only cases from both phases with available neuroimaging 
data were included in the analysis (n = 132).20

Longitudinal associations were then examined by computing 
percentage change in neuroimaging phenotypes with respect to 
the baseline at each annual visit within a 10-year follow-up peri-
od. Using linear mixed modelling for repeated measurements 
(MMRM), the associations between polygenic risk scores and lon-
gitudinal per cent change of volumetric measurements of BV, 
WMV, pGMV, thalamus, caudate and putamen were investigated. 
To avoid potential biases imposed by inflated MS-PRS in 
UCSF-EPIC, analyses were only performed with PRSLOO. Years six 
and seven were excluded due to the high proportion of missing 
data. Specifically, fixed effects in the model included PRSLOO, base-
line phenotype values, age at baseline, disease duration at base-
line, sex and visit as nominal variables, interaction terms 
between visit and PRSLOO (visit × PRSLOO), visit and age at baseline 
(visit × age), and visit and sex (visit × sex). PRSLOO was treated as a 
continuous variable. Antedependent covariance structure was 
used in all models.

For details on datasets used in this study, the conventional risk 
factors, coefficient of determination, absolute risk stratification, 
and Mendelian randomization, please refer to the online 
Supplementary material.

Data availability

This study includes no data deposited in external repositories. All 
the data supporting the findings of this study are available through 
application to UK Biobank or request from the corresponding 
author.

Results
Polygenic susceptibility of multiple sclerosis

The MS-PRS performance in UKBB2 evaluated by the AUC (AUC = 
0.73, 95% CI: 0.72–0.74; Supplementary Fig. 2A) was higher than 
that in UKBB1 (AUC = 0.7, 95% CI: 0.68–0.72). Increased MS-PRS of 
multiple sclerosis cases compared to unaffected subjects in 
UKBB2 was confirmed by unpaired two-sample Wilcoxon test 
(P = 1.29 × 10−190) shown in Fig. 2A and Supplementary Fig. 2B. The 
risk of multiple sclerosis across equal strata of increasing MS-PRS 
was estimated by odds ratios relative to the median decile 
(ORMed) shown in Fig. 2B as well as relative to the remainder of 
the population, corrected for the first 20 principal components 
(PCs), age and sex. Both measures indicated that individuals at 
the tail of the MS-PRS distribution were at markedly higher risk of 
developing the disease. Specifically, individuals in the top 5% and 
10% of MS-PRS in UKBB2 were at more than 6- (95% CI: 5.7–6.5, P = 
9.9 × 10−134) and 5-fold (95% CI: 4.8–5.4, P = 6.41 × 10−146) increased 
risk, respectively, compared to the rest of the population 
(Supplementary Fig. 2C). Similarly, individuals at the top MS-PRS 
decile were at greater risk relative to the median decile (ORMed > 
5.3, 95% CI: 4.7–6, P = 2.8 × 10−45), shown in Fig. 2B. Prevalence of 
multiple sclerosis notably increased according to the MS-PRS per-
centile (Fig. 2C). These results confirm that genetic predisposition 
is an important component of multiple sclerosis risk in a 
population-level cohort.

The discriminative power of MS-PRS in the well-curated, case- 
control KPNC cohort was enhanced (Supplementary Fig. 2D; AUC = 
0.8, 95% CI: 0.76–0.82) compared to UKBB2. The scores of KPNC cases 
were greater than controls (P = 1.5 × 10−53), as shown in Fig. 2D. 
Similar to UKBB2, the proportion of KPNC subjects with increased 
MS-PRS had higher OR values relative to the remainder of this data-
set (Supplementary Fig. 2E and F). The top MS-PRS decile relative to 
the median decile indicated a 15-fold higher OR (95% CI: 10.4–24, P = 
3.7 × 10−11), as shown in Fig. 2E. The multiple sclerosis prevalence in 
the KPNC dataset according to MS-PRS percentile linearly increased, 
reflecting the size and higher proportion of multiple sclerosis cases 
in this dataset (Fig. 2F).

Splitting MS-PRS by chromosome demonstrated the higher statis-
tical significance of chromosome 6, containing the extended MHC re-
gion, in predicting the multiple sclerosis disease status in both UKBB2 
and KPNC datasets (Supplementary Fig. 3A and B). The predictive 
power of collective scores based on all autosomes excluding chromo-
some 6, marked by ‘A-6’ in Supplementary Fig. 3A and B, was almost 
equal to that of the scores based on chromosome 6 alone, showing 
that excluding chromosome 6 in both datasets significantly affected 
P-values of cumulative MS-PRS. The MS-PRS distributions in males 
and females were not significantly different in KPNC, while the un-
affected female MS-PRS was slightly higher than that of males (P < 
0.01) in UKBB2 (Supplementary Fig. 3C and D). Such difference was 
driven by the outliers and became insignificant when those were ex-
cluded from the UKBB2 analysis.

To assess the prediction accuracy of MS-PRS, we used R2 on the li-
ability scale (R2

l ), which was suggested to be directly comparable to 
heritability by Lee et al.21 Please refer to the Supplementary material 
for prevalence and derivation details. Assuming that multiple scler-
osis liability has a normal distribution, coefficients of determination 
on the liability scale in the UKBB2 were R2

l,0.00127, 7.7% (95% CI: 6.8– 
8.7%), R2

l,0.0019, 8.3% (95% CI: 7.3–9.2%), and R2
l,0.0069, 10.7% (95% CI: 

9.4–11.8%), while R2 values corrected for the ascertainment bias in 
KPNC were increased to R2

l,0.00127, 12.5% (95% CI: 11.5–13.5%), R2
l,0.0019, 

13.3% (95% CI: 12.3–14.4%), and R2
l,0.0069, 16.9% (95% CI: 15.7–18.2%) 

shown in Table 1. Under the logistic distribution assumption, R2
l in 

UKBB2 and KPNC were 16.23% (95% CI: 16.2–16.3%) and 30% (95% CI: 
28.1–31.9%), respectively. The UKBB is a population-level cohort, 
whereas KPNC is a case-control study in which cases are identified 
and matched to controls arising in the same population. 
Nonetheless, R2

l was comparable between these datasets, particularly 
under the normal distribution assumption, in agreement with Lee 
et al.21 Limiting the analysis to only first, fifth, and 10th MS-PRS 
deciles combined, increased the prediction accuracy by 30% (P = 
6.97 × 10−145) and 60% (P = 1.01 × 10−38) in UKBB2 and KPNC datasets, 
repectively. 

We also computed Nagelkerke’s pseudo-R2 (R2
Nag) on the observed 

scale in order to compare the MS-PRS performance with a previous 
case-control study by IMSGC.2 Genetic burden scores in this study 
showed 3% association with susceptibility estimated by R2

Nag. The 
case-control ratio in this study (∼0.38) was significantly higher than 
that in UKBB2 (∼0.005), but lower than KPNC (∼0.85), while having a 
substantially sparser genotyping density than both UKBB and 
KPNC. The R2

Nag was 8% (P = 7.26 × 10−224) and 33% (P = 9.4 × 10−60) in 
UKBB2 and KPNC, respectively. Although R2

Nag captured the improved 
predictive power of MS-PRS in independent test sets, it is relatively 
sensitive to dataset composition and thus may not serve as an accur-
ate measure for comparing PRS models between population-level 
and case-control cohorts.

The cumulative incidence of multiple sclerosis as a function of 
age was used to assess the ability of PRS to refine risk estimates 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac092#supplementary-data
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in the UK population. Risk stratification was primarily driven by PRS 
as indicated by significantly diverging risk trajectories after age 20 
(Supplementary Fig. 4A). Multiple sclerosis clinical onset age typic-
ally ranges between 20 and 40. The cumulative risk of individuals in 
the UKBB2 within the top 5% of MS-PRS for developing multiple 
sclerosis up to age 40 was more than 8- and 30-fold higher than 
those within the 30–60% of MS-PRS (P < 0.0001; Supplementary 
Table 2) and the bottom 5% of MS-PRS percentile (P < 0.0001), re-
spectively. Coarser MS-PRS strata were used for this analysis in 
the KPNC dataset to account for the smaller sample size. 
Significant divergence of risk trajectories after the age of 20 and 
higher cumulative incidence for KPNC subjects in the top 20% of 
MS-PRS up to age 40 (fold change compared to the lowest 20% 

MS-PRS, 6.5; P < 1 × 10−4) is shown in Supplementary Fig. 4B and 
Supplementary Table 3.

Combining polygenic risk score of multiple sclerosis 
with conventional risk factors

Classification accuracies of basic models, consisting of age, sex, and 
established conventional risk factors (CRF) of multiple sclerosis 
were compared against models in which MS-PRS was also included 
(Supplementary Table 4). An increase in the AUC, net reclassification 
index (NRI), and integrated discrimination index (IDI) are reported as 
measures of risk discrimination improvement for MS-PRS-included 
versus basic models (Table 2). For more details, please refer to the 
Supplementary material.

Inclusion of PRS in all basic models consistently enhanced mod-
el performance in UKBB2 (Table 2). An alternative genetic model 
consisting of only a single SNP tagging HLA-DRB1*15:01, considered 
as the major genetic contributor to multiple sclerosis susceptibil-
ity,22 achieved an AUC of 0.69 (95% CI: 0.68–0.71), lagging the 
PRS-included model by 8% (P < 0.001). The NRI of the PRS-included 
model was 0.73 (95% CI: 0.67–0.79, P < 0.001), higher than that of a 
single SNP model (0.47, 95% CI: 0.41–0.53, P < 0.001). The best-per-
forming model in this dataset included PRS, mono, smoking his-
tory, sex, and age (AUC = 0.78, 95% CI: 0.76–0.79, P < 0.001).

Other established risk factors, such as family history and being 
overweight as a child are available in KPNC, thus additional 

Figure 2 Discriminative power of MS-PRS in the UKBB2 and KPNC datasets. (A) The MS-PRS of subjects affected by multiple sclerosis (mean = 1, IQR = 
1.770, min = −2.575, max = 4.561) is greater than unaffected individuals (mean = −0.005, IQR = 1.484, min = −3.979, max = 5.3) in UKBB2 (***P = 1.29 × 
10−190). (B) The ORMed at higher MS-PRS deciles relative to the median decile is increased more than 5-fold in UKBB2. The y-axis is on a log 
scale. Bars are standard errors. (C) Prevalence of multiple sclerosis in UKBB2 increased according to the MS-PRS percentile. (D) Consistent with 
UKBB2, the MS-PRS of cases (mean = 0.585, IQR = 1.064, min = −1.474, max = 2.945) is higher than controls (mean = −0.579, IQR = 1.076, min = −3.193, 
max = 2.514) in KPNC (***P = 1.5 × 10−53). (E) The ORMed in the top MS-PRS decile of KPNC is higher than 15-fold relative to the median decile. (F) A linear 
increase of the multiple sclerosis prevalence with respect to MS-PRS is observed in the KPNC cohort. IQR = interquartile range; min = minimum; max = 
maximum.

Table 1 Prediction accuracy of MS-PRS in the test datasets

MS prevalence R2
l (95% CI)

UKBB2 KPNC

0.00127 7.7 (6.8–8.7) 12.5 (11.5–13.5)
0.0019 8.3 (7.3–9.2) 13.3 (12.3–14.4)
0.0069 10.6 (9.4–11.8) 16.9 (15.7–18.2)

The regression P-values were 3.13 × 10−170 and 1.56 × 10−57 for UKBB2 and KPNC 

datasets, respectively. R2
l = coefficient of determination on the liability scale 

.
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models are presented for this dataset. Consistent with the UKBB2 
results, the single SNP tagging HLA-DRB1*15:01 achieved an AUC 
of 0.69 (95% CI: 0.65–0.72), while the AUC of PRS-included model 
reached 0.8 (95% CI: 0.77–0.83). Adding PRS to the model including 
mono, smoking history, family history, current body mass index 
(BMI), being overweight as a child, sex, and age increased the 
AUC by 12% to 0.83 (95% CI: 0.80–0.85), with an NRI of 0.818 (95% 
CI: 0.698–0.938, P < 0.001), IDI of 0.207 (95% CI: 0.146–0.268), and 
a false positive rate of <1%. Replacing the current body mass in-
dex (BMI) by BMI at 20s, which was only available in the KPNC da-
taset increased the AUC to 86% (95% CI: 0.80–0.85). Nevertheless, 
due to the high proportion of missing data (Supplementary 
Table 4), this result is likely biased. Altogether, addition of PRS 
to CRF notably improved model performance in both UKBB2 and 
KPNC.

This outcome was further tested in the UCSF-EPIC cohort.23 The 
prediction accuracy of PRSLOO, described in the ‘Materials and 
methods’ section, is negatively impacted by both re-adjusted effect 
sizes and the number of included SNPs. Nevertheless, addition of 
PRSLOO to CRFs significantly enhanced model performance, in-
creasing the AUC of the basic model including mononucleosis in-
fection, smoking, family history, current BMI, being overweight as 
a child, sex, and age by 16% (NRI = 0.792, 95% CI: 0.662–0.922, 
Supplementary Table 5) and decreasing the false positive rate by 
6%. The interaction term between PRS and family history did not af-
fect model performance in either KPNC or EPIC. Repeating this ana-
lysis excluding the AMR subjects from UCSF-EPIC (6.6%) increased 

the AUC by 1% (Supplementary Table 5). Including MS-PRS in EPIC 
overestimated the prediction accuracy of the full model (AUC > 
0.9), as expected.

Pathway-specific polygenic risk scores

To investigate whether PRS can identify genetic circuits underlying 
multiple sclerosis risk, pathway-specific risk scores were 
computed. Out of 85 risk-associated pathway-based scores repli-
cated in UKBB2, several were related to adaptive immune response, 
such as IL-5 (R2 = 1.8%, P = 2.03 × 10−64) and IL-12 signalling (R2 = 
2.1%, P = 7.89 × 10−77), T cell receptor (TCR) signalling (R2 = 2.1%, P = 
5 × 10−86), MHC class II antigen presentation (R2 = 2%, P = 9.7 × 
10−78), interferon gamma signalling (R2 = 2%, P = 2.7 × 10−76), and 
complement cascade (R2 = 1.4%, P = 3 × 10−54). Viral and parasite in-
fection response pathways also emerged as significantly associated 
with multiple sclerosis risk (P < 1 × 10−58). Signature pathways for 
other autoimmune chronic conditions such as lupus (R2 = 2.2%, 
'P = 9.84 × 10−86), Hashimoto’s thyroiditis (R2 = 2%, P = 1.78 × 10−78), 
and diabetes type I (R2 = 2%, P = 3.39 × 10−81) appeared common 
with multiple sclerosis susceptibility pathways. Gene sets involved 
in cell adhesion (R2 = 2%, P = 1.54 × 10−77) and extracellular matrix 
(ECM) organization (R2 = 1.6%, P = 1.16 × 10−56) and protein glycosy-
lation (R2 = 1%, P = 6.95 × 10−38) were also among the top pathway 
scores. Other signalling cascades such as the VEGF (R2 = 2%, P = 
4.83 × 10−75) and several NOTCH pathways (R2 < 1.3%, P < 1 × 
10−36) also contribute to multiple sclerosis susceptibility. The risk 

Table 2 Risk model improvement upon PRS addition in UKBB2 and KPNC datasets

Prediction model AUC (95% CI) NRI (95% CI) IDI (95% CI) Pa

UKBB2
sex + age 0.64 (0.62–0.65) NA NA NA
sex + age + PRS 0.77 (0.75–0.78) 0.729 (0.67–0.788) 0.007 (0.006–0.008) <0.001
sex + age + HLA.DRB1*15:01 (rs3135391) 0.69 (0.68–0.71) 0.47 (0.407–0.533) 0.002 (0.002–0.003) <0.001
sex + age + mono 0.64 (0.63–0.66) NA NA NA
sex + age + mono + PRS 0.77 (0.75–0.78) 0.727 (0.668–0.786) 0.007 (0.006–0.008) <0.001
sex + age + mono + smoking 0.65 (0.64–0.67) NA NA NA
sex + age + mono + smoking + PRS 0.78 (0.76–0.79) 0.726 (0.667–0.785) 0.007 (0.007–0.008) <0.001
sex + age + mono + smoking + BMI 0.66 (0.64–0.67) NA NA NA
sex + age + mono + smoking + BMI + PRS 0.77 (0.76–0.79) 0.719 (0.658–0.781) 0.007 (0.006–0.008) <0.001

KPNC
sex + age 0.62 (0.58–0.65) NA NA NA
sex + age + PRS 0.80 (0.77–0.83) 0.838 (0.718–0.958) 0.238 (0.21–0.266) <0.001
sex + age + HLA.DRB1*15:01 (rs3135391) 0.72 (0.68–0.75) 0.64 (0.517–0.762) 0.104 (0.083–0.124) <0.001
sex + age + mono 0.62 (0.58–0.65) NA NA NA
sex + age + mono + PRS 0.80 (0.77–0.83) 0.859 (0.74–0.978) 0.238 (0.21–0.266) <0.001
sex + age + mono + smoking 0.64 (0.60–0.67) NA NA NA
sex + age + mono + smoking + PRS 0.81 (0.78–0.84) 0.874 (0.756–0.993) 0.234 (0.206–0.262) <0.001
sex + age + mono + smoking + family history 0.67 (0.63–0.70) NA NA NA
sex + age + mono + smoking + family history + PRS 0.82 (0.79–0.85) 0.844 (0.725–0.964) 0.214 (0.187–0.241) <0.001
sex + age + mono + smoking + family history + PRS + PRS*family history 0.82 (0.80–0.85) 0.813 (0.692–0.933) 0.222 (0.195–0.25) 0.001
sex + age + mono + smoking + family history + overweight as a child 0.67 (0.64–0.71) NA NA NA
sex + age + mono + smoking + family history + overweight as a child + PRS 0.82 (0.80–0.85) 0.844 (0.725–0.964) 0.212 (0.185–0.239) <0.001
sex + age + mono + smoking + family history + overweight as a child + BMI 0.71 (0.68–0.75) NA NA NA
sex + age + mono + smoking + family history + overweight as a child + BMI 
+ PRS

0.83 (0.80–0.86) 0.814 (0.687–0.941) 0.184 (0.157–0.211) 0.001

sex + age + mono + smoking + family history + overweight as a child + 
BMI20

0.68 (0.60–0.75) NA NA NA

sex + age + mono + smoking + family history + overweight as a child + 
BMI20 + PRS

0.85 (0.79–0.92) 1.051 (0.805–1.297) 0.202 (0.142–0.262) <0.001

Basic models are shown in bold. NA = not applicable; BMI = body mass index; BMI20 = BMI at 20; mono = mononucleosis infection. 
aSignificance of AUC difference, NRI and IDI.
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of the top 10% relative to the remainder of the population ranged 
between 2 (95% CI: 0.92–1.06) and 3 (95% CI: 2.8–3.2), according to 
the pathway-specific scores.

Multiple sclerosis risk and parental genetic load

The best-performing PRS for the UCSF Multi-case Quartets dataset, 
validated in UKBB1, reached an AUC of 0.66. For details on the dataset 
and PRS derivation, please refer to the Supplementary material. The 
PRS distribution of cases was significantly higher than controls (P = 
0.0004), as shown in Fig. 3A and Supplementary Fig. 5A. The statistical 
significance and the predictive power of the familial PRS compared to 
that of MS-PRS in UKBB2 and KPNC datasets was negatively impacted 
by several factors, including the limited number of subjects, the kin-
ship among individuals, and the limited overlap of variants with 
those included in the HapMap3-based MS-PRS. Consistently, 
the chromosome-based PRS highlighted the importance of chromo-
some 6 in risk discrimination in affected families (Supplementary 
Fig. 5B). Moreover, the PRS distribution of siblings was not impacted 
by sex stratification, as indicated in Supplementary Fig. 5C. 
Families were then classified according to parents’ risk scores, i.e. 
lower or higher than the median PRS (PRSMedian), and lower or higher 
than 25% and 75% quantiles of PRS of all subjects, to further elucidate 
patterns of inheritance. The average PRS of mothers (M), fathers (F), 
affected (AS) and unaffected siblings (US) in each subgroup are shown 
in Fig. 3B. For comparisons across subgroups, we included 12 add-
itional siblings data available for nine families to enhance statistical 
power. The PRS scores of all affected siblings (n = 40) were higher than 
all unaffected siblings (n = 42, P < 0.05), shown in the ‘All’ subgroup of 
Fig. 3B. In only four families, both parents were at higher risk than 
PRSMedian. The most common pattern in the dataset, according to 
the subgroups defined in Fig. 3B, was mothers’ scores higher and 
fathers’ scores lower than PRSMedian (n = 15). Therefore, the affected 
sibling scores in this subgroup compared to all unaffected siblings 
reached the highest statistical significance across all subgroups (P = 
0.001). Although the statistical power was reduced in other subgroups 
due to the small number of families that met the criteria, the mean 
PRS of affected siblings was consistently higher (P < 0.05) than all un-
affected siblings in families of one high and one low parental risk 
(Fig. 3B). The AUC for predicting disease status among siblings was 
0.65 (Fig. 3C), which is comparable to overall AUC in this dataset.

Pairwise correlations of MS-PRS between family members are de-
picted in Fig. 3D. Diagonal panels are PRS distributions of parents and 
siblings. Mothers constituted 65% of affected parents in this dataset, 
and the mother and affected siblings’ distributions were skewed to-
wards higher PRS values, while fathers’ distribution was shifted to-
wards lower scores. The unaffected siblings’ distribution was 
relatively symmetric. The correlation indices shown in the upper-half 
panels were obtained from the data-points in the lower-half of the 
matrix plot. The negative correlation between mothers and fathers re-
flected that only one spouse was affected in each family. The stron-
gest correlation was observed among fathers and affected children 
(0.5, P < 0.005), while PRS of mothers better correlated with unaffected 
children (0.41, P < 0.05), suggesting that genetic predisposition of 
fathers is an important risk factor for children. The correlation among 
siblings was the second highest (0.46, P < 0.005).

Polygenic risk score association with disease 
progression and activity

Changes in CNS volumes represent a quantifiable surrogate of tis-
sue loss and long-term disease progression in multiple 

sclerosis.24–26 Assessing the proportion of phenotypic variations 
at baseline explained by MS-PRS and PRSLOO showed modest 
associations of BV (βLOO = −0.09, R2

LOO = 1.29%; βMS-PRS = −0.11, 
R2

MS-PRS = 1.87%), WMV (βLOO = −0.10, R2
LOO = 1.2%; βMS-PRS = −0.13, 

R2
MS-PRS = 2%), thalamus (βMS-PRS, −0.11, R2

MS-PRS = 1.46%), putamen 
(βLOO = −0.10, R2

LOO = 1.16%; βMS-PRS = −0.11, R2
MS-PRS = 1.38%), and 

CSF (βLOO = 0.12, R2
LOO = 1.77%; βMS-PRS = 0.11, R2

MS-PRS = 1.48%) with 
at least one of the risk scores (Supplementary Table 6). 
Replicating these observations in UKBB showed consistency in 
terms of directionality of associations with EPIC as shown in 
Supplementary Table 6, but only associations with thalamic (β = 
−0.15, R2 = 3.2%) and putamen (β = −0.15, R2 = 3%) volumes remained 
significant in UKBB (P < 0.05). Furthermore, only CSF volume 
association with MS-PRS emerged as nominally significant (β = 0.1, 
R2 = 0.3%) in high-risk unaffected subjects in UKBB (top 5% 
MS-PRS, n = 1495) as shown in Supplementary Table 7.

Next, we investigated the association of PRS with longitudinal 
per cent change of regional brain volumes at each annual visit rela-
tive to the baseline in the UCSF-EPIC dataset over a 10-year follow- 
up period. Association of PRSLOO with peripheral grey (β = −0.26) and 
thalamic atrophy (β = −0.53) remained significant upon Bonferroni 
correction for multiple testing across phenotypes (P < 0.007, 
Supplementary Table 8). Model predictions showed the highest at-
rophy rate in thalamus (Supplementary Table 9). An elevated 
PRSLOO was associated with increased thalamic volume loss at 
each visit (Fig. 4A). Of note, fluctuations in thalamic volume varied 
over time mainly due to the measurement noise, while group 
means decreased monotonically (Supplementary Fig. 6). 
Adjusting for treatment did not affect model predictions since 
most individuals (>55%) were on ‘platform therapy’ or ‘other’, 
grouped as one, in each follow-up year (Supplementary Table 10). 
However, associations may have been partially masked by longer 
periods of treatment and/or increased frequency of high potency 
therapy among patients throughout the 10-year course.

We additionally tested the existence of a putative causal effect 
of liability to multiple sclerosis on the same baseline imaging pheno-
types, except CSF volume, in the ENIGMA-CHARGE cohort (n = 37 741) 
and broad unaffected UKBB population (n = 31 968) within a 
two-sample Mendelian randomization framework.27,28 Summary 
statistics for left and right parts of thalamus, caudate and putamen 
volumes as well as BV and WMV were available in UKBB, while 
only total thalamus, caudate and putamen were available in 
ENIGMA-CHARGE. For these analyses, we only used genome-wide 
significant non-MHC disease-associated SNPs (P < 5 × 10−8) as instru-
mental variables, to reduce the likelihood of weak instrument bias 
and distortion from horizontal pleiotropy.29,30 We found weak evi-
dence of an effect of liability to multiple sclerosis (scaled per doubling 
in odds) and thalamic volume in the main inverse variance weighted 
Mendelian randomization analysis in the ENIGMA-CHARGE cohort 
(β = −0.22, P = 0.02), but not in the UKBB (Fig. 4B and Supplementary 
Tables 11 and 12). Sensitivity analyses revealed that the association 
in ENIGMA-CHARGE was likely driven by horizontal pleiotropy 
(Mendelian randomization-Egger intercept = −0.009, 95% CI: −0.016 
to −0.001, P = 0.04) and the effect did not persist using a 
pleiotropy-robust method (Supplementary Table 11). Results for BV 
and WMV were not significant in UKBB (Supplementary Table 12). 
Despite substantial heterogeneity (Q statistic 144 to 207), sensitivity 
analyses were consistent with a null causal effect.

To further assess the association of polygenic scores with disease 
activity, UCSF-EPIC participants (n = 464) were divided into two groups 
according to whether they had experienced one or more relapses 
within a 5-year interval from the baseline visit, regardless of disease 
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worsening within the same timeframe based on Expanded Disability 
Status Scale (EDSS) scores. Since no phenotypic information was uti-
lized for the risk score calculations, we examined phenotypic associa-
tions with both PRSLOO and MS-PRS. An increase in both risk scores 
was associated with relapse activity, which remained significant after 
correcting for age, sex, and disease duration (βLOO = 0.34, P = 0.002; 
βMS-PRS = 0.26, P = 0.002; Fig. 4C). On the other hand, when EPIC patients 
were stratified according to EDSS worsening regardless of relapse co- 
occurrence (Supplementary Table 13), no significant difference was 

observed between the two groups (Fig. 4C). Multiple sclerosis age of 
onset is negatively associated with PRS in all datasets, but only signifi-
cant in UKBB2 (β = −0.006, P = 0.01).

Discussion
Understanding the genetic architecture of polygenic diseases like 
multiple sclerosis requires accommodating significant variability in 
the number, relative weight, and ontological type of risk variants 

Figure 3 The PRS analysis of families with multiple sclerosis. (A) The PRS distribution of multiple sclerosis cases (mean = 0.265, IQR = 1.364, min = 
−1.990, max = 2.362) in families with co-affected parent-child pairs is higher than that of controls (mean = −0.27, IQR = 1.414, min = −2.180, max = 2.655; 
***P = 0.0004). (B) The discriminative power of PRS among siblings (AUC = 0.65) is equal to the overall AUC of 0.66 in this dataset. (C) Families are stratified 
according to parents’ risk scores and average PRS of affected siblings in each subgroup is compared to that of all unaffected siblings (US in the ‘All’ 
subgroup). The median PRS and the 25% and 75% PRS quantiles are used for grouping families. For families in which one parent is at high and one 
at low risk relative to both median and top and bottom 25% PRS quantiles, affected siblings’ PRS scores in subgroups are consistently higher than 
all unaffected siblings. Subgroups: ‘All’ = all mothers, fathers, affected and unaffected siblings in the dataset; ‘Mother Higher Father Lower (Med)’ = 
mothers and fathers having higher and lower PRS scores relative to the median score, respectively; ‘Father Higher Mather Lower (Med)’ = fathers 
and mothers having higher and lower PRS scores relative to the median score, respectively; ‘Mother Higher Father Lower (Qt)’ = mothers and fathers 
having higher and lower PRS scores relative to the top and bottom 25% PRS quantiles, respectively; ‘Father Higher Mother Lower (Qt)’ = fathers and 
mothers having higher and lower PRS scores relative to the top and bottom 25% PRS quantiles, respectively. (D) Genetic correlations between family 
members depicted in the matrix scatter plot. Density plots across the diagonal are PRS distributions of M, F, US and AS. Linear (green) and loess (purple) 
regressions of pairwise PRS graphs are shown in the lower half of the matrix plot, shadings reflect data spread. The highest positive correlation is be-
tween PRS of fathers and that of AS (P < 0.001) followed by the correlation between US and AS (P < 0.001). AS = affected siblings; Corr = correlation; F = 
fathers; M = mothers; Med = median; Qt = quantile; US = unaffected siblings.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac092#supplementary-data
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each individual carries. Polygenic risk scores developed and tested in 

different cohorts substantially outperformed previous susceptibility 

scores, including conventional genetic burdens based on a subset of 

233 bona fide multiple sclerosis susceptibility variants.12,31,32 The abil-

ity of PRS to serve as a predictive biomarker for high-risk individuals in 

population-based cohorts has been demonstrated for multiple dis-

eases,33–35 and was suggested to facilitate early diagnosis and imple-

mentation of preventive or therapeutic interventions.6,36,37

Interestingly, a recent study showed that polygenic risk profiling 

can assist in prioritizing individuals with low PRS for identification 

of rare pathogenic variant heterozygotes.38

Our results demonstrated that including PRS improves risk 
stratification of basic models including age, sex and established 
conventional multiple sclerosis risk factors, increasing AUC by 
up to 0.25 (Table 2 and Supplementary Table 4). Furthermore, com-
paring similar metrics between population-level UKBB cohort and 
the KPNC case-control study suggested that despite fundamental 
differences in the dataset design and compositions, individuals at 

significantly increased risk could be identified via MS-PRS in both 

cohorts. The MS-PRS scores explained 7–11% and 12–16% of mul-

tiple sclerosis liability, and even higher in extreme PRS deciles, in 

UKBB2 and KPNC, respectively. UKBB is a remarkable resource, 

steadily making progress in linking the diagnostic data with other 

health records in the UK. New disease cases are periodically added 

to this dataset. Nonetheless, lack of hospitalization records for all 

multiple sclerosis subjects and possibility of inaccurate self-reports 

may have resulted in the presence of false negatives in this dataset, 

affecting modestly the overall precision of MS-PRS. On the other 

hand, multiple sclerosis cases in the KPNC case-control study are 

neurologist-diagnosed and the controls are sex, age and locality 

matched, resulting in the absence of false negatives and improved 

performance of MS-PRS. Despite these differences affecting the 

overall AUC of the top MS-PRS, results were consistent between 

these datasets. Thus, although genetic prediction of future disease 

status in the general population is not sensitive enough due to the 

low prior probability to multiple sclerosis, if the target sample is at 

higher risk according to conventional risk factors and/or those ex-

periencing suggestive symptoms, PRS can assist the diagnosis 
and the choice of management strategy. Of note, in the EPIC data-
set, clinically isolated syndrome (CIS) patients’ PRS scores were 
similar to multiple sclerosis patients but significantly different 
from healthy controls (Supplementary Fig. 7).

Figure 4 Genetic risk association with clinical and radiographic phenotypes. (A) Thalamic atrophy at each visit against PRSLOO in the 10-year follow-up 
period. The blue line is a fit through the raw data at each visit and the shading shows the CI. The black line is the MMRM predictions including mea-
surements from all visits. Different shapes for data-points are used to mark treatment. (B) The forest plot shows Mendelian randomization estimates 
(standard deviation change in imaging phenotype per doubling in odds of multiple sclerosis) in ENIGMA-CHARGE and UKBB and 95%CI. Inverse vari-
ance weighted Mendelian randomization analysis shows a weak effect of multiple sclerosis susceptibility on thalamic volume only in the 
ENIGMA-CHARGE cohort (P = 0.02). (C) Association of PRSLOO with disease activity represented by presence of relapses is significant (***P = 0.0002; W 
Relapse, mean = 0.651, IQR = 1.450, min = −1.886, max = 3.442; W/O Relapse, mean = 0.278, IQR = 1.519, min = −2.474, max = 2.978), but not with EDSS 
worsening (EDSS Worsening, mean = 0.429, IQR = 1.360, min = −2.348, max = 3.069; No EDSS Worsening, mean = 0.410, IQR = 1.545, min = −2.474, max 
= 3.442) from baseline to Year 5. EDSS = Expanded Disability Status Scale; IQR = interquartile range; min = minimum; max = maximum; PRESSO = 
Pleiotropy RESidual Sum and Outlier.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac092#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac092#supplementary-data


654 | BRAIN 2023: 146; 645–656                                                                                                                                  H. Shams et al.

Stratifying disease risk by cellular pathways may provide in-
sights into pathological mechanisms and unravel important bio-
logical overlap between different disorders. Pathway-based scores 
related to regulation of immune response showed the most signifi-
cant association with disease status, confirming the central role of 
adaptive immunity in driving multiple sclerosis risk. TCR signalling 
and MHC class II antigen presentation are among the top disease- 
related pathways, highlighting the role of canonical antigen presen-
tation processes in multiple sclerosis pathogenesis.39

Dysregulation in specific interleukin-mediated pathways may also 
contribute to possible imbalance toward pro-inflammatory signals 
in subjects at risk of multiple sclerosis. For example, our analysis 
pinpoints IL-12, a master regulator of Th1 responses, and IL-5, a po-
tent chemoattractant and differentiation factor for eosinophils and 
basophils40,41 as key underlying processes of risk. In this context, 
the importance of cell adhesion and ECM organization for lympho-
cyte extravasation and CNS infiltration is also highlighted.42

Regulatory pathways underlying gene expression such as epigenet-
ic processes are also emerging as essential.43 Our data suggest that 
post-translational regulatory processes, such as defective protein 
glycosylation, might be equally involved in multiple sclerosis 
pathogenesis. Notably, aberrant glycosylation patterns can modu-
late the self/non-self identification of multiple cellular proteins as 
well as switching antibodies from protective to autoreactive.44

The significance of the NOTCH signalling cascade in our analysis 
strengthens the interface between genetic predisposition and 
both neurodegeneration and immune response.45–47 Another sig-
nificant pathway, the VEGF cascade, similarly modulates both 
CNS inflammation and neuronal survival in autoimmune demye-
lination.48 In addition, the association of oxidative stress pathways 
and multiple sclerosis susceptibility may support the role of bio-
logical ageing in multiple sclerosis pathology.49–52 Finally, a robust 
body of data supports an aetiological and pathological contribution 
of viral infection, mainly the Epstein–Barr virus, to multiple scler-
osis,53–55 and the results presented here are consistent with an asso-
ciation of viral infection pathway with multiple sclerosis risk.

A higher aggregation of susceptibility variants in multi-case 
compared to single-case multiple sclerosis families has been previ-
ously reported.10 Yet, these studies showed a limited power in pre-
dicting the case-control status.12 To further our understanding of 
the heritability patterns within families, we studied a multi-case fa-
milial dataset in which one parent and at least one child were diag-
nosed with multiple sclerosis and incorporated all variants 
identified by a custom genotyping array for multiple sclerosis.16

We confirmed that a greater PRS in families of disease-discordant 
parents is associated with an increased risk of multiple sclerosis 
among all subjects (AUC = 66%), as well as just among the siblings 
(AUC = 65%). In this study, the PRS of the affected siblings were sig-
nificantly higher if either or both parents were at high risk com-
pared to the rest of the cohort. Unaffected siblings at high risk 
may especially benefit from this knowledge. These results suggest 
that polygenic profiling provides a compelling opportunity to fore-
cast multiple sclerosis within sibships but needs to be further 
tested in larger familial cohorts.

Associations between MS-PRS and relapses and regional brain 
volumes were modest, yet important. Our results suggest a robust 
association of longitudinal peripheral and deep grey matter atro-
phy with high genetic predisposition, the strongest association 
being with thalamic atrophy. Thalamic atrophy is an important 
marker of multiple sclerosis progression occurring early and de-
clining consistently throughout the course of multiple sclerosis 
and across clinical subtypes.56 Thalamic volume loss in multiple 

sclerosis patients is associated with decreased neuroperformance 
in all scales.57 Evidence on genetic correlation does not necessarily 
imply direct genetic modulation of the CNS tissue. Indeed, ours and 
prior studies in multiple sclerosis described heritability enrichment 
mainly in immune-related tissues.58 The Mendelian randomization 
analysis in ENIGMA-CHARGE replicated an effect of multiple scler-
osis liability on thalamic volume, although the results indicated 
that this was through horizontal pleiotropy rather than a causal ef-
fect. Conversely, in UKBB where there was little evidence of plei-
otropy, no Mendelian randomization association was observed. 
Differences between the two cohorts could be due to averaging 
bilateral structures in ENIMGA-CHARGE, and its inclusion of case- 
control studies with psychiatric diagnoses. Taken together, our 
results indicate that genetic liability to multiple sclerosis is unlikely 
to cause global or regional subcortical volume changes in the gen-
eral adult population; rather, the association between MS-PRS 
and peripheral and deep grey matter atrophy is specific to those 
with multiple sclerosis. Lastly, we observed a negative association 
between MS-PRS and age of onset, consistent with a recent report 
on the genetic underpinning of early disease onset.59

In summary, PRS has the advantage of being accessible at any time 
and incorporating it in the current clinical risk models can be a prom-
ising basis for intensive monitoring, reducing modifiable risk factors 
that may delay the disease onset, and promoting early diagnosis or in-
form treatment options in cohorts at a higher prior probability, e.g. in-
dividuals with suggestive symptoms or those with family history 
asshown for other diseases.60,61 Also, considering that multiple scler-
osis clinical onset typically occurs between 20 and 40 years of age, im-
plementing preventive strategies for those at higher risk in early 
adolescence could be an effective strategy to control the rising global 
incidence of multiple sclerosis and its detrimental consequences. It 
is noteworthy that diverse population-level GWAS screening, for 
example in African Americans and Hispanic Americans, is a pressing 
need in multiple sclerosis genetics and essential for utilizing polygenic 
profiling in non-European populations. Given the increasing incidence 
rate of multiple sclerosis, PRS can play an important role in future pub-
lic health as a part of multifactorial predictive models along with 
modifiable lifestyle factors, family history, and rare variations. 
Therefore, this study is an important step towards translating GWAS 
studies into relevant biology and clinically meaningful outcomes.
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