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Abstract
Exposure–response (E–R) analyses are an integral component in the development of oncology products. Characterizing the

relationship between drug exposure metrics and response allows the sponsor to use modeling and simulation to address

both internal and external drug development questions (e.g., optimal dose, frequency of administration, dose adjustments

for special populations). This white paper is the output of an industry-government collaboration among scientists with

broad experience in E–R modeling as part of regulatory submissions. The goal of this white paper is to provide guidance on

what the preferred methods for E–R analysis in oncology clinical drug development are and what metrics of exposure

should be considered.
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Introduction

Exposure–response (E–R) analyses of oncology drugs are

an integral component in their clinical development [1, 2],

both for internal decision making and externally to support

regulatory approval. Understanding the relationship

between dose, exposure, and response allows the sponsor to

demonstrate that they understand the pharmacokinetic-

pharmacodynamic (PKPD) behavior of their drug. Vari-

ability in pharmacokinetics and pharmacodynamics is well

known and there are certain patient subgroups that may be

at increased risk for adverse events, e.g., patients with

impaired renal and/or hepatic function, or decreased effi-

cacy, e.g., ultrarapid CYP2D6 metabolizers [3]. E–R

analysis allows one to predict and/or confirm response in

these patient subgroups and whether dose modification is

needed in these subgroups.

The term ‘exposure’ is a broad one that tries to capture

how much drug a person is ‘‘exposed’’ to. Exposure may

encompass any or all of the following:

• Some aspect related to dose, such as the daily dose or

total cumulative dose a patient receives;

• Some measure of drug concentration in the body at

some point in time, such as maximal concentration

(Cmax), average concentration (Cavg) or trough concen-

tration at steady-state (Ctrough);

• Time above some threshold, such as time above some

minimum effective concentration, or

• May include integrated measures of concentration, for

instance area under the curve at steady-state (AUCss),

cumulative area under the curve, or dose at the time of

some response.

Indeed, there are many different possible choices for

quantifying exposure over time and space (e.g., systemic or

tumor). Similarly, ‘response’ is also a broad term that may

encompass any or all of the following:

• Assessment of drug efficacy: response rate, time to

progression, progression free survival (PFS) or overall

survival (OS);

• Assessment of drug safety: whether a patient experi-

ences nausea or vomiting, or the severity of a rash a

patient may develop during treatment; or

• Measurement of pharmacodynamic biomarkers: degree

of phosphorylation of some important protein, or level

of receptor occupancy, etc.

Sponsors may submit several E–R analyses in support of

a regulatory submission that encompass different measures

of exposure and different measures of clinical outcomes.

Identifying dose/dosing regimens that provide a favorable

benefit/risk profile is critical in drug development [4–6].

Sponsors may also conduct E–R analyses for internal

decision making for go/no go decisions or to inform dose

selection for Phase 2/3 trials.

In modern oncology, the old paradigm that ‘‘more is

better’’ with the maximum tolerated dose (MTD) being used

as the dose studied in late phase studies is no longer the norm.

The MTD is commonly defined as the highest dose that most

patients can tolerate without unacceptable side effects.

However, the introduction of targeted therapies, biologics in

general, and immuno-oncology is moving drug development

away from the MTD concept in search of the optimal

dose/dosing regimen. Recently, the Food and Drug Admin-

istration has issued a draft guidance that will require to

sponsors to study a range of doses in clinical development

with the goal to use the optimal dose in registration trials [7].

As such, alternative approaches to clinical development will

be required for dose optimization, facilitating the use of E–R

analysis by including safety and efficacy information from

more than one dose level.

One of the earliest, most comprehensive, E–R analyses

was presented by Houk et al. [8] in patients with advanced

solid tumors, including patients with gastrointestinal stro-

mal tumor (GIST) and metastatic renal cell carcinoma

(mRCC) treated with sunitinib. Their analyses used dif-

ferent measures of exposure: dose, drug systemic concen-

tration, AUCss, and cumulative AUC during 1 cycle of

treatment. Using a combination of population PKPD

modeling, repeated-measures logistic regression, and cor-

relation analyses, authors demonstrated that increased

sunitinib exposure was associated with longer time to

progression, longer overall survival, and a greater chance

of clinical response. They also showed that increased

exposure was associated with increased blood pressure,

increased incidence of fatigue, and a greater probability of

neutropenia. These analyses were supportive of the rec-

ommended dosing regimen in GIST and mRCC patients

that was approved at 50 mg once daily for 4 weeks every

6 weeks (4 weeks on/2 weeks off). Recently, a less intense

dose regimen has been proposed for sunitinib: 50 mg for

14 days every 3 weeks (traditional ‘‘2/1 schedule’’). Both

regimens have the same dose intensity (4 weeks on) and

both have a 2-week drug holiday period every 6 weeks.

The model from Houk et al. mathematically explains why

the alternate schedule (2/1) presents less toxicity, and

therefore, it is better tolerated [9].

Typically, due to lack of established standard methods,

there is no one standard approach to conducting an exposure–

response analysis. For example, when performing time-to-

event analysis, Kaplan–Meier (KM) curves are a useful

graphic assessment for the exploration of observed data.

Further analysis such as Cox proportional hazards regression

model, parametric time-to-event models, or an accelerated
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failure time model could also be considered based on the

nature of the data. All of these are equally valid and have

different assumptions with different pros and cons, and dif-

ferent prediction outputs. Furthermore, it is important to

mention that E–R analyses in oncology using survival met-

rics, may be subject to selection bias and immortal time bias

[10]. Landmark analyses and multi-state analyses have been

proposed to correct the inherent selection bias resulting in

part from the fact that responders must live long enough for

response to be observed [11–13]. Therefore, the question

arises as to which method should be used and if there is a

preferred method of choice. In an attempt to address these

concerns, this white paper is the output of an industry-

government collaboration between scientists with broad

experience in E–R modeling in oncology. The goal of this

white paper is to provide guidance on the preferred methods

for E–R analysis commonly used in oncology and the mea-

sures of exposure to consider in different scenarios. To make

things easier for the reader, an executive summary of rec-

ommendations and comments from each of the following

sections is presented in Table 1.

Exposure metrics considerations

When performing E–R analyses, one of the first decision

points in the analysis is the exposure metric of choice. One

needs to consider what type of data are available, the

duration of treatment, and dose compliance. It is not

uncommon in oncology for patients to experience dose

modifications during the course of treatment [14, 15].

Often, these dose adjustments happen because of adverse

events (AEs) that require either a dose holiday or dose

reduction. The result of the dose adjustments could lead to

lower average drug exposure for subjects with long treat-

ment duration. Further, a high percentage of dropouts is

expected due to AEs associated with concurrent exposure.

Thus, under this situation, an E–R analysis for some of the

most common efficacy endpoints (overall survival, OS, or

progression-free survival, PFS) may suggest an inverse

relationship between exposure and efficacy. To eliminate

the bias introduced by the large percentage of dose

reductions, an earlier exposure metric prior to any dose

modification (Cycle 1) could be considered. However, this

early exposure metric will have limited value in estab-

lishing any relationship between exposure and response.

Under scenarios where AEs are leading to significant dose

adjustments, it is important to consider if the right dose has

been identified and whether there is any longitudinal model

for efficacy endpoints or surrogate endpoints of efficacy

that can be evaluated to better understand the E–R rela-

tionship. The oncology dose-finding workshop organized

by FDA and the American Association for Cancer

Research (AACR) in 2016 presented levantinib as an

example of dose adjustment integrated E–R analysis

(DAIER). For levantinib, FDA suggested an E–R analysis

using dose-altering AEs models to evaluate different dos-

ing regimens and efficacy [16].

Typically in E–R analyses, drug exposure is assumed to

be the cause, and response to be the outcome. However, if

disease progression or remission influences pharmacoki-

netic (PK) parameters over time, this interaction between

treatment response and PK parameters could result in

artificial E–R relationships. Anti-programmed death-1

(anti-PD1) immunotherapies nivolumab and pem-

brolizumab exhibited time-dependent pharmacokinetics

and a correlation between drug clearance changes over

time and survival rates [17–19]. In these situations, directly

linking drug exposure at steady state to clinical outcomes

in a single-dose trial may yield an over-steep E–R rela-

tionship, deviating from the true underlying relationship.

Interestingly, the nivolumab baseline clearance had a

strong association with survival, relative to all evaluated

exposure and covariates in a multivariable E–R analysis

[20, 21]. Wang et al. showed that baseline nivolumab

clearance can be predicted by a composite of cytokine

signatures using machine learning approach and the

patients with predicted high nivolumab’s clearance (CL) is

associated with poor survival regardless of treatment

(nivolumab or chemotherapy) in patients with advanced

melanoma and renal cell carcinoma (RCC) [22, 23]. These

results support the hypothesis that nivolumab CL can be

used as a prognostic marker for patient disease status.

Moreover, this highlighted the importance of including

more than one dose level in E–R analysis to reduce the

confounding effect between exposure and CL. It has been

demonstrated by Liu, et al., through simulation, that using

exposure variables observed or derived from the first

treatment cycle for an E–R analysis may minimize this bias

[18]. Furthermore, confounded relationships between

baseline risk factors for survival and drug exposure have

also been reported, complicating the choice of exposure

metric to use in these circumstances and the interpretation

of any observed E–R relationship [20, 24]. An example of

confounded baseline risk factors has been reported for

trastuzumab, which is indicated for the treatment of HER2

overexpressing breast cancer, metastatic gastric, and gas-

troesophageal junction adenocarcinoma [25]. Yan et al.

performed an exploratory analysis with simulated trough

concentration in the first treatment cycle and overall sur-

vival. The Kaplan–Meier curves stratified by different

exposure quartiles suggested a E–R trend based on the

exposure metric. However, the unbalanced distribution of

baseline disease burden across different exposure quartiles

was responsible of the apparent E–R relationship. To

minimize the confounding effect, a propensity matching
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Table 1 Executive summary

Topic Recommendations and comments

Exposure metric considerations • This is a key component of any analysis and may include dose, concentration,

time-averaged concentration, time above a threshold, or area-related metrics

• Be careful of dose adjustments and dropouts, and their effect on exposure

metrics

• In choosing a metric consider whether the relationship may be a direct effect

(like nausea/vomiting) or a time delay effect like tumor growth

Safety and efficacy endpoints: categorical endpoints

• Examples: presence/absence of nausea/vomiting, presence/

absence of grade 3 or higher neutropenia, RECIST

• Primarily logistic modeling (or some modification thereof) is used

• 10 Events/predictive variable is recommended for precise estimation of

regression coefficients

• Consider the confounding effect of drug clearance on the outcome (higher

clearance may lead to poorer treatment outcomes); use clearance as a

covariate in the model

• If time-dependent categorical endpoints are of interest, use Markov models

Safety endpoints

• Time course of myelosuppression • Empirical approaches (e.g., maximum % decrease from baseline vs. AUC)

o Empirical models have limited values extrapolating outside the doses or

dosing regimen tested

o Need to use some integrated measure of exposure like AUC because of time

delay between first dose and peak effect

• Semi-mechanistic models, like a Friberg model, allow assessment of time

course of myelosuppression

• QTc interval prolongation • Recommend following Garnett white paper [63]

• Oncology trials may not be able to study 2x-above therapeutic exposure for

safety reasons

• 20 ms is generally accepted as the upper safety threshold compared to 10 ms

in healthy volunteers

Efficacy endpoints

• Time to event: survival • Can use nonparametric (Kaplan–Meier), semiparametric (Cox proportional

hazard), or parametric (accelerated lifetime) models

• KM curves often assessed by quartile of exposure vs OS or PFS

• CPH models should include other prognostic covariates, like baseline tumor

size and drug clearance, for controlling these confounding effects

• May be subject to inherent selection bias and immortal time effects

• Tumor growth dynamics • Allows for a better understanding of the entirety of a patient’s tumor burden

growth/shrinkage time-course to assess the possible impact of dose or

schedule selection on disease response

• Many different models to choose from

• Secondary parameters may be more intuitively linked with survival outcomes

in time-to-event analyses

• Informative censoring may affect parameter estimates

• Pretreatment tumor growth trajectories may allow better interpretability

• Rely on prespecified target lesions which may not be indicative of overall

disease burden

Hematologic malignancies

• All recommendations in the above sections can be applied to hematologic

malignancies, where total target tumor size is replaced by the appropriate

continuous tumor burden metric for that particular malignancy

• May require bounded endpoint models, e.g., minimal residual disease

Tumor biomarker and disease progression

• Example: PSA kinetics or circulating tumor cells

• May require semi- or mechanistic models to explain
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strategy for adjusting measured confounders, which are

defined by a stepwise Cox regression model, was applied.

After appropriate matching, patients in the first exposure

quartile of trastuzumab show no survival benefit over

control [26].

Although dose could be used as the exposure metric of

choice, systemic exposure (i.e., plasma/serum/blood drug

concentration) often is a more precise metric as it accounts

for nonlinearities and inter-individual variability in the

pharmacokinetics of the drug. Depending on the type of E–

R analyses, metrics of early exposure (and its correlations

with surrogates of efficacy), exposure at steady state, or the

time course of drug concentration (time-varying concen-

tration) could be used.

Another important consideration when choosing the

exposure metric is potential dose regimen comparisons.

Prediction of response in other schedules of administration

based on just one dose schedule often will lead to inac-

curate outcomes. However, when information is available

from more than one dose schedule, evaluating the most

sensitive metric of exposure (e.g., Ctrough, Cmax, Cavg) for

clinical outcomes may help to appropriately account for

differences in dose schedules. In dose-escalating studies,

looking at concentration or dose versus biomarker changes

as surrogates of efficacy or proof of biological response

could help dose selection and establish the maximum tol-

erable dose that will lead to maximum biological response.

Further, it is worth mentioning that in order to collect

sufficient information over an informative range of doses

or exposure, an adaptive/Bayesian design could be a good

choice. However, such study designs may cause logistical

and operational challenges [27].

Therefore, the use of the drug exposure metrics depends

on the study design, the drug mechanism of action, and the

nature of the relationship between exposure and response

(i.e., short versus long-term effects). In oncology when there

is a single read on efficacy (i.e., objective response rate,

ORR), it may be more appropriate to use a simple metric that

represents the drug exposure over the course of the treatment.

In this case, Cavg or Ctrough could be good metrics of choice

since these provide an average measure of exposure; how-

ever for E–R safety analyses with acute AEs, the Cmax prior

to the AE event could be explored. Cumulative AUC is

confounded with time on study and careful consideration

should be given to the use of this metric, as well as the nature

of the endpoint under study. AUC at steady state (AUCss) is a

valid exposure metric often associated with long-term

effects. However, when looking at steady state metrics (ie.,

Ctrough, Cavg, AUCss, Cmax,ss) for a given dose schedule, those

may be correlated and selecting one metric versus another

will often not lead to different conclusions.

Another consideration is the use of model-predicted

drug exposure versus observed concentration values. In the

case of a drug with very high variability in exposure

(i.e.,[ 70% residual error) and sparse PK sampling,

model-predicted exposure profiles may be questionable and

the use of observed Ctrough values over the course of the

treatment could be a more reliable exposure metric.

In summary, a variety of exposure metrics could be

considered when performing E–R analysis; what should

guide the selected drug metrics for E–R is multifactorial

and includes the type of E–R analysis, endpoint under

consideration, understanding of the drug pharmacokinetics

and mechanism of action, the available drug exposure data,

and the nature of safety and efficacy endpoints under

analysis. Table 2 provides a summary of exposure metrics

used for different E–R analyses and clinical response (ef-

ficacy/safety) endpoints.

Table 1 (continued)

Topic Recommendations and comments

Immunogenicity

• May affect both exposure and response (safety/efficacy)

• Need to consider anti-drug antibodies (ADAs) vs neutralizing antibodies

• Covariate analysis may include binary grouping (presence or absence of

ADAs) or titer in models

Cell therapies

• CAR-T cells display strange kinetics compared to traditional small molecules

or biologics

• 4 Phases including distribution, expansion, contraction, and persistence

• Cannot use allometric principles for scaling of doses

Each topic in the table is covered in the text. Bulleted recommendations and comments are excerpts from the text. Read text for further details
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Safety and efficacy endpoints: categorical
scoring systems

Logistic regression

In addition to continuous clinical endpoints, categorical or

ordered categorical (ordinal) endpoints, such as graded

AEs or ORR, are often considered. Depending on the

granularity of data collected and the objective of the

analysis, logistic regressions and Markov chain models can

be used to analyze these endpoints.

Logistic regression modeling is a widely used approach

in E–R analysis that enables characterization of the rela-

tionship between drug exposure and ordered categorical

clinical outcomes [20, 28–31]. In logistic regression anal-

ysis, a linear predictor with a link function is used. The

linear regression yields a nonlinear relationship commonly

through a logit predictor, but other links could be used,

such as probit or complementary log–log models. Logistic

regression models the probability of an outcome (binomial

dependent variable) based on independent variables such as

demographic factors, drug exposure, etc. This type of

analysis informs about the likelihood of an event

happening.

The characterization of relationships between exposure

and clinical outcomes of both efficacy [21] (i.e., objective

response, based on short-term tumor response) and safety

[32] (i.e., AEs of clinical interest) provides a quantitative

assessment of the benefit/risk profile and is often used for

dose selection in late-stage (i.e., Phase 3) oncology drug

development. In some situations, these results can be

utilized for dose recommendation in regulatory submis-

sions (i.e., a rolling submission), if the treatment fits an

unmet medical need and short-term clinical outcome (e.g.,

OR) is promising [33, 34].

The development of a logistic regression model gener-

ally includes 3 steps; (1) development of a base model,

with an evaluation of the appropriate functional form of

exposure metrics that may include interaction terms when

the drug is given in combination with another drug; (2)

development of a full model, including assessment of

covariates of interest; (3) and development of the final

model after considering the contribution of all potential

variables of interest. Even though a final model can be

simplified using backward elimination to achieve parsi-

mony, the presence or absence of parameters of minimal

impact in the probability will not result in model prediction

differences [35].

A minimum of 10 events per predictive variable ana-

lyzed in the logistic regression model is recommended for

accurate and precise estimation of the regression coeffi-

cients. Peduzzi et al. evaluated the effect of the number of

events per estimated parameters in logistic regression.

They concluded that less than 10 events per predictive

variable can lead to major biases, questioning the validity

of the logistic regression analysis if those conditions are

not fulfilled [35, 36]. Likewise, the number of covariates to

be included in the full model should consider the total

events in the analysis dataset to avoid over-parameteriza-

tion. The utilization of the full model provides the benefit

of avoiding biased parameter estimation by accounting for

all measured covariate effects. Moreover, the full model

Table 2 Summary of types of analyses and exposure metrics to consider

Exposure metric Analysis Endpoints

Single exposure metric representing the course of treatment or exposure

to the time of the event:

*Ctrough, *Cavg, *AUCss, *Cmax, Cobs, *time above a treshold

concentration

KM Curves, Cox

proportional hazards

Logistic regression

Empirical myelosuppression

models

PFS, EFS, OS

ORR, CR, MRD, AE grades,

Myelosuppression grades

Longitudinal exposure (time-varying exposure):

*C(t), *Ctrough(t), *Cave(t)

Multi-state models

Parametric time-to-event

Markov models

Tumor growth dynamics

Time-course of

myelosuppression

Disease progression models

SLD-TTE

PFS, EFS, OS,

AE events

SLD

neutropenia, lymphopenia,

anemia, and thrombocytopenia,

Time-course of biomarkers as

surrogates of efficacy

AE adverse event, AUCss area under the curve at steady-state, CR complete response, Cavg average concentration calculated as the ratio of

cumulative AUC over the timeframe for the cumulative exposure, Cmax maximum concentration, Cobs observed concentration, Ctrough con-

centration prior to dose, EFS event free survival, KM Kaplan–Meier, MRD minimal residual disease, ORR objective response rate, OS overall

survival, PFS progression free survival, SLD sum of the longest diameter, TTE time-to-event

*Model predicted/estimated exposure metrics
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avoids confounding among covariates and exposure met-

rics [20, 31]. A recent E–R efficacy analysis of nivolumab

showed how baseline CL was a significant predictor of

efficacy endpoints, OR, and OS. Subjects with higher CL

had poor efficacy outcomes (i.e., higher risk of death and

lower OR). Prior E–R analyses found only apparent E–R

relationships that were misleading by ignoring the incor-

poration of baseline CL. It is important to note that baseline

CL was not included as an exposure parameter but as a

surrogate of disease status and other baseline confounders.

In fact, exposure did not influence the outcome. Subjects

within a given dose level with the lowest CL were more

likely to be responders. No relationship was found com-

paring exposure levels and clinical response across the

range of doses evaluated. The recent approval of flat dosing

of nivolumab (240 mg Q2W, and 480 mg Q4W) away

from originally approved body weight normalized dosing

(3 mg/kg Q2W) was based on a flat E–R relationship that

included both baseline CL and systemic exposure in the

model, and that increasing drug exposure was unlikely to

improve efficacy outcomes (thus, indicative of maximal

response). This example highlights the importance of uti-

lizing a full model approach for trials with limited dose-

finding information to assess covariates’ effect and expo-

sure levels on relevant clinical outcomes [30, 37].

Longitudinal logistic regression models
with markov elements

E–R analysis for categorical endpoints commonly focuses

on correlating the highest AE grades observed during the

course of treatment within a patient’s measure of exposure.

However, this approach ignores the time course of drug

exposure and AE development, and, as such, loses valuable

information. Markov models are useful when the outcomes

are categorical measures that are monitored continuously

over time.

Markov modeling has been widely used in ordered and

non-ordered categorical analyses in many therapeutic areas

of drug development [28, 38–41]. The Markov models

considered in this review are first-order models, Markov

chains of second or higher orders are models in which the

probability of one event changing depends on 2 or more

preceding ones and will not be discussed here. A central

concept in Markov models is the transition probability,

which models the probability of one event changing to

another event (or staying the same). For example, for the

2-event state, like whether a patient develops a rash after

starting treatment with a drug, there are 4 transition prob-

abilities. If ‘0’ is no rash and ‘1’ is rash, then the transition

probabilities are P00, P01, P10, P11 where the subscript

refers to a change from the current state i to the future state

j. Compared to logistic regression models where there are

no transition probabilities and characterization focuses on

the probability of having an event at given drug exposure,

Markov modeling provides a description of longitudinal

clinical data over time and assumes that (i.) the distribution

of future states depends only on the current state and (ii.) is

not a function of the whole history of events (first-order

Markov models). Given this defined Markov property

[42, 43], Markov modeling can capture the onset of events,

their duration, and severity as they change over time; it also

allows the assessment of an exposure effect on the transi-

tion probability from one event state to another state and

the severity of the event.

For E–R analyses using Markov models where longi-

tudinal categorical data are modeled, drug exposure over

time would be a more appropriate exposure metric than a

single exposure measurement, such as Cmax or AUC up to

the event. Time-varying exposure would be more associ-

ated with the onset and duration of AEs when the dose was

modified or discontinued due to adverse events. The effect

of co-medication on transition probabilities can also be

considered if co-medications were applied for the treatment

of specific AEs and with the resolution of AEs. If a delay

between exposure and clinical outcome was observed,

effective concentrations derived from an effect compart-

ment can be evaluated. Prognostic factors (e.g., biomark-

ers) could be included to assess their effects on the severity

of an AE during model development.

Different types of Markov models have been reported

and will be briefly presented here. The discrete-time

Markov model (DTMM) combines proportional odds with

a transition model that allows event changes more than 1

grade higher or lower. In this model, all possible transit

probabilities can be estimated, with the assumption that the

transit probabilities are independent of whatever the time

interval is between the two assessments, making it an ideal

candidate when we have uniform time interval assess-

ments. The continuous-time Markov model (CTMM)

combines proportional odds with a transition model that

prohibits event changes more than 1 grade higher or lower.

For example, a transition directly from State 3 to State 1 is

prohibited, whereas the transition from State 1 to State 2

and then from State 2 to State 3 is allowed, and vice-versa.

With a CTMM, the influence of the previous state on the

probability of the current state changes with time (usually

decreasing over time as the time interval between mea-

surements increases). Thus, this model is preferred when

the observation intervals are non-uniform across patients

either due to study design or missing observations. Lastly,

the minimal CTMM (mCTMM), which is a simplification

of the CTMM, is characterized by independent transition

rates between two consecutive states and governed by a

single parameter, the mean equilibration time (MET). A

schematic of these models is presented in Fig. 1. Schindler
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et al. showed a few examples of model performance

between DTMM and mCTMM suggesting that mCTMM

had the potential in describing the data reasonably well

with a more parsimonious model structure relative to the

CTMM [44]. In addition, the effect of covariates (e.g.,

exposure, biomarker) on the probability of each state can

be described in a single relationship. Lu et al. compared the

model performance between a proportional odds model,

CTMM, and DTMM in which models were developed

using weekly based time-course of muscle spasm AE data.

Model performance showed that the odds model was

influenced by time–frequency, DTMM was unable to

describe unevenly spaced data, and CTMM seemed to

perform well in all evaluated data frequencies (daily,

weekly, and unevenly spaced) [45].

Safety endpoints

Time-course of myelosuppression

Blood cell production in the bone marrow is a highly

prolific process, making it susceptible to the inhibitory

effects of anti-cancer agents with anti-proliferative

activities or with immuno-modulatory agents directly tar-

geting markers expressed on the surface of hematopoietic

stem cell progenitors or mature blood cells. In fact,

myelosuppression manifested as decreases in circulating

red blood cells, white blood cells, or platelets, is among the

most frequent AEs observed for anticancer therapeutics

[46, 47]. Quantitative understanding of the drug effects on

blood cell production is important for the assessment or

prediction of the myelosuppression risk, as well as the

optimization of the dose and regimen, to reduce myelo-

suppression-related AEs.

The dose/E–R relationships for drug-induced myelo-

suppression have often been analyzed by empirical or

mechanism-based modeling approaches [48, 49]. Empirical

models are usually developed by a theoretical under-

standing of drug behaviors with very few assumptions of

the data [50]. Semi-mechanistic disease models use sim-

plified biological systems to describe the available data

falling between empirical models and mechanistic models.

Empirical modeling approaches involve either regression-

based correlation analyses between a descriptor of the

blood cell change (such as maximum % decrease from

baseline, often called the nadir, or incidence of particular

AEs) and the dose or a particular drug exposure parameter

Fig. 1 Schematic representation of different Markov models and

proportional odds model adapted from Schindler et al. [44]. The

preference of selection of one type of Markov model vs. others

depends upon the frequency of data collection (time interval of

events) and a number of categories (states) of the events. DTMM

might be preferred when data were collected with uniform time

intervals, whereas CTMM might be suitable for data collected with

non-uniform time intervals across patients either due to study design

or missing observations. CTMM models, in general, have fewer

parameters relative to DTMM, as CTMM assumes that the transitions

only occur between neighboring states. mCTMM is a simpler version

of the CTMM model, in which mean equilibration time (MET)

between two succeeding states is assumed to be constant across states
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[such as the area under the curve (AUC) and time above a

threshold concentration] or by empirically linking the

dynamic change in blood cell counts to a time-variant drug

exposure parameter through a particular function (e.g.,

Emax models). Semi-mechanistic and mechanism-based

modeling approaches utilize differential equations to

describe the physiological process of hematopoiesis and

the pharmacological perturbation by the inducing agents. In

practice, the choice of a specific modeling approach in

evaluating drug-induced myelosuppression often depends

on the purpose of the analysis and the type of data

available.

Empirical myelosuppression models are often expressed

as the absolute or relative decrease from baseline at nadir, the

maximum percentage of decrease from baseline, the duration

below a threshold cell count, the area between a threshold

line and the observed cell counts vs time curve, or the inci-

dence of a graded hematological adverse event [51]. Typical

exposure parameters such as AUC, time above a threshold

concentration, and Cmax may be explored in the analysis. The

relationship between drug exposure and the myelosuppres-

sive effects is modeled without regard to the time course of

drug concentrations or blood cell counts. This type of cor-

relation analysis may be used to determine the myelosup-

pression response or outcome associated with a certain

dose/exposure level. This analysis is relatively easy to

implement and does not require complete blood cell time

course data obtained from extensive sampling. However, this

type of modeling analysis has no or limited value in pre-

dicting myelosuppression time courses or responses beyond

the tested dose range and regimens.

Empirical longitudinal models may also describe the

time course of blood cell change following drug adminis-

tration [52, 53]. Because there is a typical delay in the

myelosuppressive effect in relation to systemic drug con-

centrations, empirical longitudinal modeling assumes a

direct drug effect from a drug exposure parameter (e.g.,

cumulative AUC or Caverage), with or without adding a lag

time parameter. This empirical modeling allows prediction

of blood cell count time courses under certain conditions;

however, given the often lack of physiological meaning for

the PD parameters in these models, there are also

challenges to extrapolate the models to untested conditions

in many cases, such as cross-species translation or pre-

dicting the effects for similar compounds.

Semi-mechanistic modeling of myelosuppression is

based on an understanding of the hematopoiesis process

and how the drug perturbs the process. Anti-cancer agents

may cause bone marrow suppression through direct cyto-

toxicity on differentiated bone marrow cells, inhibition of

progenitor or precursor cell proliferation, or disruption of

growth factor signaling pathways involved in differentia-

tion [54, 55]. There have been generations of mechanism-

based mathematical models to describe drug-induced

myelosuppression over the last two decades [56, 57]. The

most commonly cited model is the Friberg model, which

has been the basis of similar models with various modifi-

cations [48, 49, 58]. The Friberg model and its related

models share the following key structural components

(Fig. 2): (1) one or more proliferating compartments with a

pool of proliferating cells that can be derived from self-

renewable HSCs in the bone marrow; (2) a series of transit

compartments representing nonproliferating cells at dif-

ferent maturation stages in the bone marrow; (3) a com-

partment representing circulating cells with natural

turnover; (4) a negative feedback loop where circulating

cells regulate the proliferation of bone marrow cells in the

proliferating compartment. These structural features are

represented by ordinary differential equations, with sys-

tem-related parameters inherent to the body system and

drug-specific parameters that vary by the inducing agents.

The drug effects are incorporated into the models in a way

consistent with the myelotoxicity mechanisms.

The Friberg and related models have been utilized to

describe various types of drug-induced myelosuppression

effects including leukopenia, neutropenia, thrombocytope-

nia, and anemia [51, 59–61]. These models have been able

to capture the delay in myelosuppressive effects relative to

systemic drug concentrations, and the recovery, rebound

and return to baseline for circulating blood cells upon

treatment cessation. Despite the complexity of the models,

the total number of parameters remains identifiable.

With the mathematical representation of the physiolog-

ical and pharmacological processes involved in

Fig. 2 Key structural features of Friberg and related models for

myelosuppression. Edrug drug effect, kprol proliferation rate constant,

ktr maturation rate constant, kcirc circulating cells elimination rate

constant, Circ0 circulating blood cells at baseline, Circ amount of

circulating cells, c impact factor on feedback
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myelosuppression, the models allow the estimation of

system-related and drug-specific parameters. The semi-

mechanistic basis enhances the confidence in using these

models to extrapolate beyond tested conditions. These

models have been used to predict the time courses of cir-

culating blood cell profiles from different doses or regi-

mens. Also, the models can be used in the cross-species

translation of myelosuppressive effects [62]. Integration of

these semi-mechanistic models into population PK/PD

modeling can assess the inter-patient variability and influ-

ential covariates of drug-induced myelosuppressive effects.

Since the introduction of this semi-mechanistic model, it

has become the golden standard approach to model the

myelosuppressive effects of chemotherapy. However, due

to the lack of clinical data characterizing the upstream

processes of granulopoiesis, some assumptions must be

made, such as a constant transit time between maturation

compartments. In addition, since the semi-mechanistic

model is largely data-driven, the predictive ability of this

model might be limited compared with the full mechanistic

model [63].

Several researchers have extended the applications of

this model by incorporating more complex mechanisms

and relationships. For example, Quartino et al. integrated

granulocyte colony-stimulating factor (G-CSF)—myelo-

suppression model to describe the dynamics of endogenous

G-CSF and absolute neutrophil count (ANC) following

chemotherapy [64]. The final model captured both the

initial rise in endogenous G-CSF concentrations following

chemotherapy-induced neutropenia and the subsequent

return to baseline for G-CSF and ANC. This semi-mech-

anistic model adequately described the time-course of

ANC where the feedback mechanism of G-CSF regulated

the neutrophil production and maturation in the bone

marrow.

QTc interval prolongation

Since adoption in the ICH E14 guidance in 2015, con-

centration-QTc (C-QTc) analyses have rapidly replaced

Thorough QT (TQT) studies for the assessment of QT

prolongation risk during small molecule oncology devel-

opment [65–68]. However, the complexities of oncology

drug development, including the quick pace of develop-

ment, differences in trial design, co-medications, and risk–

benefit profile in the face of life-threatening disease, pose a

number of unique challenges in applying this methodology

to exclude a risk of QT prolongation or accurately quan-

tifying the effect size when the drug has a known QT lia-

bility. The scope of this section relates primarily to small

molecule development; as specified by ICH E14, large

targeted proteins and monoclonal antibodies have a low

likelihood of direction channel interactions, and a thorough

QT/QTc study (or C-QTc analysis replacing this study) is

generally not necessary unless the potential for proar-

rhythmic risk is suggested by mechanistic considerations or

data from clinical or nonclinical studies [66].

A scientific white paper on concentration-QTc modeling

published in 2018 provides clear guidance and recom-

mendations on standardizing C-QT analyses intended for

assessing QTc prolongation risk under ICH E14 in healthy

volunteers [68]. In addition to guidance on Phase 1 study

design in order to support a C-QTc analysis, a pre-specified

linear mixed-effects (LME) C-QTc model was proposed,

including variations on this model depending on the

available data, and provides guidance on exploratory and

goodness-of-fit plots for model evaluation [68]. Assump-

tions of the pre-specified LME C-QTc model, including

lack of drug effect on heart rate (HR), adequacy of the HR

correction used for the QT interval (i.e., lack of trend on

QTcF vs RR plot), lack of hysteresis between concentration

and QTc effects, and a linear C-QTc relationship (vs non-

linear relationships) should be explored and justified during

model development [68].

Several elements that are important components of a

C-QTc analysis in non-oncology drug development are

typically unavailable for an oncology program—namely

concentration and QTc data at a supratherapeutic exposure,

and inclusion of data from placebo subjects, as is typically

available during single- or multiple-dose escalation cohorts

in many non-oncology programs conducted in healthy

volunteers [68]. The lack of placebo subjects in oncology

trials typically requires that inferences from a C-QTc

analysis are drawn based on baseline-corrected QTc (i.e.,

DQTc), rather than baseline-corrected, placebo-corrected

QTc (DDQTc). In addition, the lack of placebo data

introduces diurnal fluctuation in QTc as a potential con-

founding factor for drug effect on QTc intervals [69]. The

collection of time-matched baseline (i.e., at the same time

points to be collected post-dose) in order to account for

diurnal fluctuation has been successfully implemented for

C-QT analysis of single-arm trials [65, 68, 70]; where only

a pre-dose baseline was available, the inclusion of cate-

gorical time effects in the C-QTc model has recently been

proposed [71]. Where a compound is known to substan-

tially affect HR (i.e., mean change[ 10 bpm), the inclu-

sion of a time-matched baseline can allow a patient-specific

HR correction to be calculated from baseline QT/RR data,

although consensus has not been achieved on the optimal

approach [68, 72].

Due to safety concerns as well as the differences in risk–

benefit profile in oncology, the highest tested dose and
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exposure are frequently also the therapeutic exposure, and

meeting the requirement for a supratherapeutic exposure is

not possible [65, 68]. This may change with recent regu-

latory requests to greater explore the dose–response rela-

tionship in early clinical studies. Currently, however,recent

draft revisions to ICH S7B and E14 may enable a greater

number of oncology small molecule development pro-

grams to meet the supratherapeutic exposure requirement

[73, 74]. When a compound meets the definition of a

‘double negative nonclinical assessment’ for QTc prolon-

gation, a supratherapeutic exposure at the ‘high clinical

exposure’ (increase in exposure under the effect of intrinsic

or extrinsic factors at the maximum therapeutic dose) is

required to exclude a positive control, rather than C

twofold the high clinical exposure as required under the

previous guidance [66, 73, 74]. As discussed in the ICH

E14 Q&A guidance documents, in the absence of a positive

control or supratherapeutic exposure, there is a reluctance

to conclude a lack of effect on QT, however, if the upper

bound of the two-sided 90% confidence interval around the

estimated maximal effect on DQTc is less than 10 ms, the

treatment is unlikely to have an actual mean effect as large

as 20 ms [66, 74].

The sample size is also an important consideration for

C-QTc analysis. While general guidance of 4–8 subjects on

drug and 2–4 subjects on placebo across at least 4 dose cohorts

has been proposed based on low false-negative and false-

positive rates [68], these studies generally included placebo

subjects and/or a supratherapeutic exposure typical of a non-

oncology program [75–77]. A recent review of QT prolonga-

tion risk assessment of small molecule oncology NDAs from

2011 to 2019 found that where a C-QTc analysis was per-

formed, sample size varied greatly, but was generally smaller

when the C-QTc dataset was based on data from early phase

studies (* 20–300 patients), and larger where data from later

phase studies (or pooled early and late phase) was used

(* 100–800 patients) [65]. It was noted that no clear trend was

identified between sample size and the labeling recommen-

dation category to which an NDA was assigned [65].

Other considerations that may be more frequently

encountered in oncology include pooling of data from

patients with different underlying malignancies across

treatment arms or trials in order to increase sample size or

dose range, which may increase the risk of confounders

such as differences in health status and concomitant med-

ications, as well as in study conduct or ECG acquisition or

analysis. When pooling of data is required, between-study

differences and potential bias should be evaluated and

justified; this may include through exploratory plots and

via the inclusion of a study effect variable on key model

parameters [68, 78]. Looking at C-QTc relationships with

parent compound and/or active metabolites might be

required sometimes to characterize QTc effects [79].

Efficacy endpoints

Time to event analysis: survival

In analyzing survival data, two functions that are dependent on

time are of particular interest: the survival and the hazard

function. The survival function S(t) is the probability of sur-

viving at least to time t. The hazard function h(t) is the

instantaneous conditional probability of dying at time t having

survived to that time. Survival curves can be estimated non-

parametrically (i.e., Kaplan–Meier (KM) curves), semi-

parametrically (i.e., Cox proportional hazard model), or

parametrically (i.e., a lifetime model). The KM method esti-

mates survival curves without the assumption of an underlying

probability distribution in the presence of right-tailed cen-

soring. Although easy to compute, it is hard to include

covariate analysis, other than by grouping, in the models.

Statistical significance between two survival curves can be

made using a log-rank test, which tests the null hypothesis that

there is no difference between the population survival curves

(i.e., the probability of an event occurring at any time point is

the same for the populations under comparison) against the

alternative hypothesis that they are not the same.

Cox’s proportional hazards models are semi-parametric

models making fewer assumptions than typical parametric

methods. Cox models quantify how specific factors (co-

variates) influence the rate of a particular event happen-

ing at a given point in time. This rate is commonly referred

to as the hazard rate. The hazard function can be written as

a multiple linear regression of the logarithm of the hazard

with the baseline hazard being the intercept term that varies

with time:

h tð Þ ¼ h0 tð Þ � e b1�x1þb2�x2þ...þbn�xnð Þ

where t represents the survival time, h(t) is the hazard

function determined by a set of covariates where the

coefficients (b1, b2…bn) quantify the effect of covariates on

the hazard, h0 is the baseline hazard. The quantities exp(bi)

are called hazard ratios (HR). An HR[ 1 increases the

hazard indicating a positive effect of the covariate with

event probability and therefore negatively associated with

the length of survival. An HR\ 1 reduces the hazard and

increases the probability of survival. The main assumption

of the Cox model is that the hazard is proportional: if an

individual has a risk of death at some initial point that is

twice as high as that of another individual, then at later

times the risk of death remains twice as high, that is, the

hazard ratio comparing two groups is constant over time.

However, in oncology, the assumption of proportional

hazard implicit into Cox’s models may not represent the

ideal choice where the factor changing the hazard may vary

with time.
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Unlike the Cox regression model which does not specify

the distribution function of the hazard, there are several

parametric models such as Weibull, Gompertz, exponen-

tial, log-normal, and log-logistic models where the hazard

function has to be specified. These parametric models

allow us to estimate the effects of covariates on the hazard

function, including variables that may change over time

like drug concentration/dose, age, tumor growth dynamics,

or time since surgical intervention.

It is important to highlight the inherent selection bias

and immortal time bias in survival metrics in oncology

[10]. The TTE model approach with the estimation of a

single survival function has its limitations. One alternative

approach is the landmark method, which determines each

patient’s response at some fixed time point, with survival

estimates calculated from that time point and associated

statistical tests being conditional on patients’ landmark

responses excluding patients that die before the selected

landmark timepoint [12]. Another approach to address the

challenges of correctly describing the hazard function over

time is the use of multistate models. Beyer et al. developed

a multistate model with transition hazards estimated using

semiparametric models [11]. Krishnan et al. proposed

transition hazards using a parametric approach and mixture

models [13]. Five states were considered according to

Response Evaluation Criteria in Solid Tumors (RECIST)

and using predictions derived from a longitudinal tumor

growth inhibition model. The model did not allow to move

back from one state to another when a response level has

been achieved and maybe changed over time. Transition

rates between states were estimated and defining the dif-

ferent hazard distributions (see Fig. 3).

In oncology, analysis of the association between drug

exposure levels and late-phase clinical outcomes, such as

OS and PFS (or event-free survival EFS) are often limited

in scope for regulatory submissions. In light of the paucity

of data and time constraints, industry practice and regula-

tory expectations to rationalize the dose rely on performing

logistic or Cox proportional hazard regression analysis [20]

of the registration-intent trial efficacy data. Even simpler

exploratory approaches are sometimes considered to sup-

port the dose rationale, such as conducting a KM

exploratory analysis of OS and/or PFS stratified by quar-

tiles or tertiles of exposure levels [80, 81]. The general

strategy is to demonstrate the absence of a relationship

between exposure and the registrable endpoint within the

range of exposure tested and infer from this that the dose is

optimal since no substantial gain in efficacy can be

achieved by increasing exposure levels further. Whether

such analyses can be qualified as best practice is con-

tentious as pragmatism is the main driver to rationalize the

methodological framework used. Typically, the establish-

ment of a recommended phase II dose is endorsed based on

combined analyses of emerging safety signals and surro-

gate efficacy endpoints with proven independent prognostic

value for OS or PFS (e.g., tumor burden [82] or objective

response [37, 83, 84] obtained from earlier trial data).

Confirmatory trials rarely study more than one dose, and

inherently suffer from underpowered statistical considera-

tion for E–R characterization of OS and PFS. Furthermore,

the ever-increasing pace for regulatory filing driven by

commercial incentives and rapid access of novel treatment

to patients in unmet needs further restrains the possibility

to develop a data-driven E–R model of OS or PFS for

regulatory submission given the time-consuming nature of

these analyses. The downside of simple analyses lies in

identifying spurious relationships due to imbalance of

known prognostic factors of OS at baseline in strata of

exposure [85, 86]. For example, ramucirumab E–R showed

a positive association with OS in gastric cancer patients

following a Cox regression [87, 88] with Cmin,ss or Cavg.

However, the E–R model did not evaluate covariates such

as C-reactive protein levels and tumor burden that are

known prognostic factors of OS and could also impact PK

as demonstrated in the case of tremelimumab [80], trastu-

zumab emtansine [81], and to a lesser extent with trastu-

zumab in the same indication [20]. The recommendation in

such a case would be to first interpret with great caution

any apparent trend of E–R emerging from simple analyses

of trials evaluating a single-dose regimen. To explore

further the risk of potential confounding in the event of a

positive E–R finding, more sophisticated methods such as

the parametric hazard model and multistate models should

be attempted to quantify E–R in a multivariate framework.

A full model or a selection of covariates of clinical rele-

vance for the endpoint of interest and for the PK metric

chosen should then be applied to quantify the relative

contribution of covariates on the underlying E–R. As the

last step, exposure should be removed from the model in

case its causative link with OS or PFS assumed by the

model is no longer supported by the data and can be fully

explained by prognostic or predictive covariates remaining

in the model. The best example of this good practice would

be the already mentioned nivolumab E–R analysis in which

baseline CL was included in the model [21].

Technical considerations, such as the choice of the PK

metrics (Cmax, AUC) or when this metric is measured (first

cycle vs steady-state), and data limitations (infrequent PK

sampling, usually one dose tested in confirmatory trial)

further constitutes challenges to a robust evaluation of E–

R. Systemic exposure is consistently used in oncology as

the driver of the E–R of OS and PFS while tumor pene-

tration is often non-uniformed across solid tumors. Fur-

thermore, some drugs, such as antibody–drug conjugates

(ADC) or combination therapies, require understanding on

which exposure level is assumed causally related (e.g.,
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warhead or total antibody exposure) and would require

more complex analyses to disentangle the contribution of

components. Combination therapy is another challenge

from a modeling standpoint since data are generally lim-

ited. Monotherapy arms are seldomly available to fully

characterize each single agent E–R relationship, and

assumptions on the additivity or synergistic nature of the

combinatory agents are left without data to infer their

validity.

From a regulatory standpoint, simpler E–R approaches

are customary to inform label claims justifying the dose as

long as several conditions are fulfilled [86]. First, clinical

data should demonstrate meaningful benefit-risk for

patients for the registrable endpoint and a statistically

compelling primary analysis of trial-level data at the given

dose, with minimal dose reduction, delays, or omission

after treatment initiation. Second, the regulatory strategy

implies pre-specifying the model-based analysis plan to

reinforce its confirmatory nature. If a 2-stage analysis is

selected, individual post-hoc estimates from the popPK

model will be incorporated as part of the analysis dataset

and use to calculate the metrics of exposure used in the

TTE analysis. Alternatively, a simultaneous modeling of

PK and response could be carried out with longer running

times, more intensive computational power requirements,

and in many cases not a clear benefit in final model results

unless the response is affecting the drug disposition and the

proposed model is accounting for it. Ideally, data from

Phase 2 trials with more than one dose level would be ideal

to start model development and be prepared to streamline

the critical path activities for filing regulatory dossiers. The

reality is that due to the life-threating condition of this

therapeutic area and the possibility of expedited pathways

for approval, phase 2 trials or expansions of Phase 1 trials

are often the basis for initial approvals. Therefore, there is

usually no possibility of externally validating these analy-

ses with independent (test) data sets. Thus, the analyst is

generally not expected to perform external model

validation.

Fortunately, more complex models relating OS or PFS

with systemic exposure levels, tumor growth dynamics and

accounting for dropout, and dose reduction/delays or

interruptions are developed once the regulatory submission

timeline pressure unwinds [89]. These multivariate tools

are far more valuable in their demonstrated track records of

impacting the drug development strategy and post-mar-

keting study designs. Leveraging the ability to integrate

data from multiple studies and extrapolation/interpolation

intrinsic properties [90], these models are used to bridge

subcutaneous vs. intravenous dosing, convert flat vs.

weight-based or BSA-based [30, 91], adults vs. pediatrics,

ethnicity considerations, extend the dose interval [92],

redefine therapeutic window for earlier line of therapies,

inform patients treatment strategy [93], integrate historical

data [94] and other advanced analytic framework [95].

Tumor growth dynamics

RECIST is the current standard for determining how well a

patient’s tumor responds to treatment using assessments of

growth/shrinkage captured in on-study X-rays, computer-

ized tomography (CT), or magnetic resonance imaging

(MRI) scans. RECIST is broadly accepted by oncology

practitioners and regulatory bodies, and nearly all clinical

trial treatment assessments for solid malignancies apply

this framework. Still, standard RECIST methodology and

its criteria for declaring treatment ‘response’ versus ‘non-

response’ based on certain % of tumor shrinkage in the

Fig. 3 A diagram illustrating the multistate model describing the

different states and transitions in the patient population studied. kij

represents the transition intensities between states, n for the transi-

tions represents the number of observed transitions, n for the states is

the number of clinical outcomes at the end of the study. dSLD change

in SLD between previous 2 measures, relSLD relative change from

baseline, SLD sum of the largest diameter (tumor data); TTP time to

progression. Adapted from Krishnan et al. [13]
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original reported tumor lesions, is often critiqued as inad-

equately representing overall disease burden [96], e.g. at

times penalizing a deeper response with shorter time to a

progression from nadir [97]. At the center of all RECIST-

based assessments, including newer versions such as

irRECIST [98], is a practice of categorization of data-rich

longitudinal tumor size information into response strata of

Progressive Disease (PD), Stable Disease (SD), Partial

Response (PR), and Complete Response (CR). These cat-

egories are often further dichotomized into binary assign-

ments of responders (PR ? CR) versus non-responders

(SD ? PD) subgroups summarized at the population level

as an ORR %. Hematologic malignancy studies use similar

categorical response criteria to classify continuous assess-

ments of disease burden, such as percent blasts in Acute

Myeloid Leukemia (AML) [99], BCRABL/BCR ratio in

Chronic Myeloid Leukemia (CML) [100], and M-protein in

multiple myeloma (MM) [101]. In all cases, this catego-

rization leads to loss of statistical power and is insensitive

to both time dependencies and depth of response (or non-

response) information captured in underlying time-course

data. Indeed, if, as in MM, a discretized response spectrum

has over six categories including ‘‘Very Good Partial

Response (VGPR),’’ it may be a sign that the limits of

discretization are being over-stretched to describe an

underlying continuum! For this reason, longitudinal tumor

burden modeling has become an increasingly applied tool

for describing efficacy outcomes in clinical trials and

relating tumor dynamics to predictive factors, including

treatment dose/exposure [102].

Longitudinal modeling allows for a better understanding

of the entirety of a patient’s tumor burden growth/shrinkage

time-course to assess the possible impact of dose or schedule

selection on disease response. Such analyses are attractive

also because they permit derivation of simple secondary

parameters to describe features of the profile (e.g. time to re-

growth/nadir, depth of nadir, etc.) through interpolation—

and sometimes extrapolation—of the observable data. Sec-

ondary parameters may be more intuitively linked with

survival outcomes in TTE analyses, and thus play an

important role in communicating modeling results with a

clinical audience. Previously described tumor burden mod-

els have been employed in a wide array of drug development

applications, and a significant number of these models suc-

cessfully applied in late-stage development are simple,

empirical models with a minimal combination of linear or

exponential primary parameters describing growth (e.g., Kg)

or shrinkage (e.g., Kd) of target tumor(s). Details on many of

these kinetic tumor burden models have been previously

published [82, 103–106] including several excellent review

articles [107–109].

Central to the notion of longitudinal tumor burden

modeling is the incorporation of multiple time-point

observations per patient to describe an overall disease

trajectory. The type of data incorporated will inherently

impact model fidelity/interpretability, and hence, the utility

of its application. In oncology, where ethical/logistical

considerations dictate the availability of tumor assessments

before treatment initiation and after discontinuation, the

influence of underlying data structure on tumor model

inferences deserves particularly close attention [110].

Often, when a patient’s disease progresses due to tumor

burden growth, the patient will discontinue study medica-

tion and contribute little or no more data beyond the

treatment discontinuation date. Conversely, patients with

responding disease tend to remain on study longer, thus

contributing more and longer duration of scan data. Those

patients with responsive disease, therefore, tend to receive

more cumulative therapy and are more likely to experience

safety-related dose modifications, which are common in

oncology clinical trials due to the long-term systemic

toxicities of many antineoplastic treatments. All these

factors influence E–R interpretations and require careful

consideration. The emphasis here, and for any astute lon-

gitudinal modeler, should always be on handling selective

missingness of data, or informative censoring. In particular,

this can problematically impact multiple aspects of E–R

tumor burden modeling [110].

Informative censoring often contributes to issues of

tumor model parameter identifiability in cases where very

little on-study data was collected in one or more patient

subgroups. In particular, the time-truncation of data from

patients with rapidly progressing disease may limit the

availability of data to describe accurate rates of tumor (re-

)growth. As such, typical models with simple growth and

decay terms to describe tumor kinetic profiles tend to be

more empirical than mechanistic in nature, and any bio-

logical interpretation of a given parameter with regard to

cancer cell replication, treatment resistance, and cell killing

is often confounded. In non-linear mixed-effects models,

this could manifest as high shrinkage of the estimated

between-subject variability of one or more parameters.

Parameter variability and parameter estimates could very

well be appropriately estimated when the levels of

shrinkage are high. However, graphical exploration of

covariates using empirical Bayes estimates (EBEs) will not

be able to guide covariate search. To mitigate on-study

parameter identifiability issues, ideally, one would 1)

acquire more data throughout the course of the trial,

especially scans following disease progression, or 2)

incorporate measurements of pre-treatment tumor growth

into the tumor burden model [111] (Fig. 4). Such assess-

ments could be an immensely valuable decision tool as

they allow each trial participants’ pre-treatment trajectory

to serve as internal control—assuming care is taken in

assessing the same set of lesions as the ’future’ RECIST
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target lesions. However, incorporating when ‘‘baseline

tumor’’ was collected is relevant information as it is in

general days to weeks before the treatment starts. In indi-

cations where PFS events are more often related to tumor

burden growth (as opposed to survival), this approach then

allows projection of control arm PFS using a single (active)

arm study [112]. However, due to the nature of most

sponsor-initiated studies and focus on the assessment of on-

study treatment effects, obtaining and properly digitizing

pre-study scans requires additional effort/resourcing and

therefore has been rarely implemented.

Another common impact of informative censoring,

particularly relevant to E–R applications of tumor burden

modeling, involves potentially biased estimates of the E–R

relationship when an aggregate exposure summary (i.e.

steady-state or cumulative) is applied. A responding indi-

vidual who remains on the study will necessarily have a

higher aggregate/cumulative exposure even if there is no

‘‘true’’ E–R relationship simply because they have had

more time on-study to accumulate exposure. A simple best

practice in such analyses is to apply an instantaneous, time-

varying, or early milestone/baseline exposure metric as the

longitudinal model input. Careful consideration of data

structure is still required in E–R analyses based on a

steady-state exposure/dose intensity which may also be

confounded as a result of time-varying dosing due to

possible dose reductions and delays. Such analyses could

actually imply an inverse exposure–efficacy relationship

due to the commonly encountered correlation of time on-

study, favorable treatment response, and corresponding

increased likelihood of safety-related dose/exposure

reductions from the longer duration of exposure. Hence, a

general awareness of some of the key aspects of typical

oncology trial conduct and these multiple potential

confounding phenomena is key in both study design and

data analysis to avoid possible misinterpretation of spuri-

ous E–R relationships. Similar considerations of informa-

tive censoring should also factor into the use of on-study

(post-baseline) covariates. Zhen et al. [113] model survival

data and longitudinal changes in target lesions accounting

for correlation between dropout and response. In this trial

with locally advanced or metastatic urothelial carcinoma

(UC) patients treated with durvalumab, at the time of the

data cut, 100 of 186 subjects had dropped out of the study

(67 of them were due to death). As is typical of oncology

trials, the risk of patient dropout was strongly influenced by

treatment response. Patients with rapid tumor progression

dropped out early, whereas those whose disease improved

had longer follow-up times. Similarly, Hansson et al. [28]

and Schindler et al. [114] incorporated a dropout model

enabling prospective simulations of tumor response over

time as dropouts were not considered at random.

Tumor burden model structure selection and verification

for a particular application should be driven by multiple

considerations, including general goodness-of-fit, parsi-

mony considerations, and whether the model is able to

adequately describe the data for pre-stated objectives. Prior

knowledge on the kinetics of disease burden for a given

treatment modality may also factor into model selection.

For example, cytotoxic chemotherapy treatments, which

differ from immunomodulating treatments in their mech-

anisms of action, can be expected to show unique kinetics

of disease response and progression [115–117]. In general,

immunotherapy efficacy has been associated with delayed

but durable responses that contrast with the more rapid but

transient responses seen with cytotoxic agents. Studies

have also shown initial tumor ‘‘pseudoprogression’’ fol-

lowed by delayed response in some patients treated with

Fig. 4 Deeper understanding of treatment effect and exposure–

response patterns through tumor burden dynamics modeling: longi-

tudinal modeling allows for robust, quantitative characterization of

data-rich pre- and on-study tumor size information on the importance

of understanding pre-baseline tumor size trajectory. This hypothetical

example illustrates the concept of variability in the tumor growth

trajectory at study start and consequent possibility to declare RECIST

progressive disease in a patient likely benefiting more from treatment

(e.g. black) than another who would be classified with a more

favorable stable disease designation (e.g. green). More precise

estimates of treatment effect and dose/exposure–response relation-

ships can be brought through a quantitative understanding of a

patient’s entire tumor size trajectory, including available pre-baseline

scans
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immunotherapy [98, 118]. The simpler two or three-pa-

rameter empirical tumor models derived primarily from

clinical experience with chemotherapy agents often will

not adequately capture this type of response pattern. Pre-

vious publications describing mixture models have been

used to account for and categorize patients with hyper

progressive disease as well as those with a delayed, durable

response [119, 120].

When choosing a model, careful evaluation of extrapo-

lation bias is recommended given that many existing tumor

size models include unbounded exponential growth terms

that fail to adequately extrapolate without significant pre-

diction bias [121]. It is therefore critical to examine model

performance in the extrapolation setting and to investigate

the relationship between follow-up duration and extrapo-

lation bias. Simulation bias tests should generally be per-

formed when evaluating base model structures by first

estimating models with time-truncated data, and then

assessing the general ability of the model to generate

unbiased predictions of ‘future’ data. When assessing

model GOF diagnostics, informative censoring and

extrapolation bias may also impact interpretation. Visual

inspection of trends in conditional weighted residuals

versus population predictions, for example, will tend to

obscure model misspecification or biased prediction of

observations from participants with rapidly growing

tumors, which comprise a smaller proportion of the total

data set than data from participants with shrinking tumors.

VPCs may therefore be a valuable tool for model verifi-

cation, but again, may also be impacted by extrapolation

bias since exponential growth in the post-discontinuation

phase can drive anomalous prediction intervals. It is crucial

that VPCs also include censoring rules or a drop-out model

which approximates clinical practice implemented in the

corresponding trial protocols, e.g. truncation of simulated

tumor size profiles after 20% growth from nadir—a typical

rule governing RECIST progression of target lesions in

solid tumor indications.

Advances in radiomics, which applies informatics,

machine learning, and other big-data approaches to imag-

ing data, have led to a growth in the number and types of

features that may be captured for tumor burden modeling

[122]. With appropriate application, this information holds

great potential to enhance the clinical relevance of infer-

ences drawn from tumor burden modeling. In alignment

with the conventions of RECIST, the majority of published

tumor burden modeling studies have been conducted using

the summary metric ‘‘sum of longest diameters’’ (SLD)

from radiologist-selected target lesions. However, several

reports have indicated that volumetric data may be more

informative [103]. Hierarchical modeling of individual

lesion dynamics with between-tumor variability may yield

even deeper insights into disease heterogeneity, as the

homogenizing effect of combining lesion information from

different anatomic sites for SLD inherently reduces the

information available to the modeler.

A key shortcoming of nearly all of the aforementioned

tumor burden models, including individual lesion models,

is that they rely on information from only pre-specified

target lesions—which may or may not be adequately

indicative of an overall disease burden. Per RECIST

guidelines, individual target lesions are chosen as repre-

sentative of a patient’s tumor burden for monitoring a

relative treatment effect, but a more precise understanding

of the tumor size to survival relationships may be estab-

lished by accounting for the entire tumor/metabolic disease

burden [123]. Irrespective of whether unidimensional,

bidimensional, or volumetric radiographic assessments are

employed, the clinical appropriateness of any given tumor

size descriptor should be re-evaluated in different treatment

settings and tumor types. While construction of quantita-

tive models linking longitudinal tumor burden with

instantaneous survival risk is a relatively recent endeavor,

it is already clear that these relationships may vary by

nature of different cancer types, anatomical locations of the

lesions, and potentially by treatment modality. Hence, the

choice of appropriate tumor burden descriptors is likely to

be case-dependent and may involve either one or more

derived primary or secondary tumor parameters.

Special considerations in modeling hematologic
malignancies

With the exception of lesion-level modeling, all recom-

mendations in the above sections can be applied to hema-

tologic malignancies, where total target tumor size is

replaced by the appropriate continuous tumor burden

metric for that particular malignancy: M-protein levels in

secretory multiple myeloma patients, percent blasts in

AML, and BCRABL/ABL ratio in CML. In the latter two,

care must be taken to correctly transform the raw disease

burden to a bounded assessment value based on the nature

of the measurement. For example, in CML, assuming that

mRNA levels are proportional to the number of genes in a

cell, the BCRABL/ABL ratio can be represented as the

ratio of a number of malignant cells to the weighted sum of

normal cells (which have two copies of ABL) and malig-

nant cells (which have one copy of ABL) [124].

Modeling lymphoma data may present additional com-

plexities as response assessments are based on both lesion

size (sum of products of diameters, SPD) and metabolic

activity (FDG-PET avidity) [125]. If raw scans are avail-

able, assessment of metabolic tumor volume (MTV) [126],

which is the total number of FDG-PET avid voxels in the

scanned region of the patient’s body, are preferable to the

dichotomized criteria or sum of products of diameters
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alone, which does not consider whether the nodes in

question are actually metabolically inactive (dead).

An additional feature of many hematologic malignan-

cies is the concept of minimal residual disease (MRD)

[127], which typically refers to technology with higher

sensitivity to low disease burden than the conventional

metrics. For example, 6-color flow cytometry in multiple

myeloma can detect down to 0.01% levels of myeloma-

transformed plasma cells in the bone marrow, as opposed

to M-protein levels in peripheral blood which reach the

lower limit of detection of 0.1 g/dL at underlying disease

burdens ranging from 0.001 to 1%. Six-color MRD, which

in the case of MM has been shown to predict incremental

survival benefit with every tenfold decrease in MRD [128],

are nonetheless dichotomized into MRD positive or nega-

tive categories, despite that these definitions may change

yearly as more sensitive assays are developed [129]. For

this reason and many aforementioned benefits above, we

recommend fitting the tumor burden dynamic model to

both the conventional continuous metric (e.g. M-protein

levels in g/dL) and the continuous MRD metric (e.g.

number of cancer cells per ml of sample) simultaneously,

which provides greater identifiability particularly when

M-protein is below the limit of quantitation (BLQ), which

is often the only time MRD is assessed [127].

Tumor biomarker and disease progression

Disease progression modeling is utilized to describe the

time course of disease status and track disease severity over

time. These models usually incorporate biomarker data and

clinical outcomes to characterize natural disease progres-

sion [130].

In prostate cancer (PCa), prostate-specific antigen (PSA)

has been recognized as a biomarker for diagnosis, prog-

nosis, and monitoring of disease activity [131]. PCa is

usually characterized as either low-risk non-aggressive

(indolent) or high-risk aggressive tumors. While indolent

PCa is benign prostatic hyperplasia (BPH) in general,

aggressive PCa may lead to cancer-specific morbidity

[132]. Identification of the most aggressive PCa cases

among all patients diagnosed with PCa could help in the

selection of the patients who might benefit from radical

therapy. de Charry et al. developed a semi-mechanistic

model of PSA longitudinal growth to help differentiate

aggressive and indolent PCa at diagnosis [133]. The indi-

vidual preoperative PSA data from patients with PCa and

those with benign prostatic hyperplasia were analyzed

using a population kinetic approach and a semi-mecha-

nistic nonlinear mixed-effects model [133]. This analysis

demonstrated a greater PSA increase rate by cancer cells

than by non-cancer cells, while PSA production rate was

greater by benign tissue than by malignant tissue. A sig-

nificant relationship between the PSA production rate by

cancer cells and the probability of D’Amico high-risk

group was also identified with logistic regression. More-

over, multivariate tests demonstrated that the PSA pro-

duction rate by cancer cells, Gleason score, and positive

surgical margin status were all significant independent

predictive factors regarding relapse-free survival (RFS).

This semi-mechanistic model provided a possible means to

determine whether a patient is likely to have aggressive

PCa before surgery.

In addition to PSA, the count of circulating tumor cells

(CTCs) has also emerged as a promising surrogate marker

in patients with metastatic castration-resistant prostate

cancer (mCRPC) [134]. In 2004, the FDA approved the use

of the CellSearch� system for detecting CTCs in cancer

patients. It is to date the only approved laboratory test for

CTCs and is being used to enumerate the number of CTCs

of epithelial origin in a 7.5 mL blood sample [135]. Wil-

baux et al. developed a semi-mechanistic model to quantify

the dynamic relationships between the kinetics of CTC

counts and PSA concentrations during treatment in patients

with mCRPC [136]. Their joint model incorporated drug

effect kinetics for chemotherapy and hormonal therapy

through two different K-PD compartments as no drug

concentrations data were available. The treatment effects

on both PSA and CTCs were assumed to be mediated

through a common latent variable that was interpreted as

tumor burden. PSA kinetics were described by an indirect

response model, while the CTC kinetics in the total body

blood was modeled by a cell lifespan model assuming that

the rate of cell loss was equal to the rate of cell production

delayed by the lifespan. The dynamic change of CTC

counts was considered as a random sampling from a neg-

ative binomial distribution. By simulating the kinetics of

PSA, CTC counts, and the tumor burden, CTC counts

turned out to be more sensitive to the variation of the tumor

burden. This model was the first to quantify the dynamic

links between the kinetics of PSA and CTC counts during

treatment in patients with mCRPC. Although limitations

exist, this model demonstrated the potential of using CTC

counts as a predictor of treatment response or disease

progression in patients with mCRPC.

Characterization of clinical consequences
of product immunogenicity

In recent years, biological products, such as monoclonal

antibodies and other therapeutic proteins, have been widely

used for the treatment of various cancers. Occasionally, the

administered biological product may provoke an immune

response (known as immunogenicity) in some patients
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receiving repeated dosing which may lead to excessive

cytokine release and/or formation of anti-drug antibodies

(ADAs) [137, 138]. Some unwanted adverse events,

including anaphylaxis, cytokine release syndrome, infusion

reaction, and other non-acute reactions, may occur as the

result of the immune response. The cross-reaction between

ADAs and their endogenous counterparts may interfere

with certain physiological processes, causing additional

safety concerns. Furthermore, the immunological reaction

may compromise the drug effect. For example, the pres-

ence of ADAs usually affects the drug clearance and

decreases drug exposure. Additionally, neutralizing ADAs

may interfere with the interaction between the therapeutic

protein and its target. Therefore, using modeling approa-

ches to quantitatively characterize the clinical conse-

quences of product immunogenicity may provide insights

into the risk and benefit profiles in patient subgroups (e.g.,

ADA positive and negative) and guide the optimal use of

the product [139].

Appropriate quantification of the clinical impact of

immunogenicity relies on the accurate acquisition of the

data. ADAs titers in serum/plasma have been considered as

the major biomarker to track patients receiving treatment

with a biological product. Time to the first appearance of

ADA (i.e., onset), sustained duration, and level of ADA

(i.e., duration) may vary among individuals following

chronic treatment. Unfortunately, the ADA level cannot be

monitored on a continuous basis. The sampling schedule,

therefore, becomes a critical component to characterize the

potential ADA changes and to link the ADA changes to

clinical consequences. A sensitive, specific, and selective

bioassay for ADA is another key factor to ensure data

quality. In general, ADA is detected by immunoassay using

an ADA-antibody, which may interfere with the coexisting

therapeutic protein and endogenous substances in biologi-

cal matrices. An assay’s drug tolerance, which measures

the assay sensitivity in the presence of the therapeutic

proteins, as compared to typical concentration levels in

patients is important to understand the reliability of the

detected ADA [140]. The Global Bioanalysis Consortium

(GBC) set up an international team to explore the impact of

immunogenicity on PK assessments. The result of the work

was a white paper where they presented strategies to assess

if changes in drug concentration are due to ADA-mediated

changes in clearance or instead a consequence of ADA

interference with the bioanalytical assay [141]. There is a

multitude of factors that could influence the immuno-

genicity of biologics. These factors could be classified into

disease-, patient-, or product-related factors [142–145].

Immunogenicity as a consequence of a biologic therapeutic

administration may result in multiple polyclonal antibodies

against multiple epitopes circulating in serum. Each ADA

species has its own specificity and binding affinity. As a

result, these different treatment-emergent ADA responses

may have different effects on the PK/PD of the drug

therapeutic: a neutralizing effect on activity by interfering

with the drug’s ability to bind to its pharmacologic target, a

non-neutralizing effect on activity paired with an effect on

the PK, or a non-neutralizing effect on activity with an

enhanced elimination of the drug therapeutic [145].

The findings on clinical consequences of immuno-

genicity for a biological product may be misleading if an

inappropriate modeling approach is used. Randomized,

well-controlled clinical trials are routinely used to char-

acterize the efficacy and safety profiles of a biological

product before it gains marketing authorization. An anal-

ysis, for instance, may be conducted to compare overall

survival in patients with (i.e., ADA positive group) or

without ADA (i.e., ADA negative group) detected anytime

during the treatment. However, this analysis may lead to

misleading outcomes. The time to the first occurrence of

ADA and duration for detectable ADA sustained in plasma

appears to be random among individuals during the treat-

ment phase. It should be noted that some patients in the

ADA-positive group are the patients with the late-occur-

ring ADA formation, who must already survive long

enough with continuous treatment. Thus, the true ADA

effect on overall survival may be attenuated (i.e., biased), if

the overall survival is directly compared between the two

groups. Rather, a landmark analysis comparing patients

with or without early (e.g., within 4 weeks after the treat-

ment is initiated) detectable ADA may provide a relatively

better angle to characterize the potential impact of ADA

formation on drug effect, if adequate data are available.

The analysis performed for atezolizumab provides a good

example. As demonstrated in OAK study in locally

advanced and metastatic non-small cell lung cancer

patients, 21% of patients were tested positive for ADA by

week 4. The analysis suggested that the presence of ADA

early after the treatment initiation (i.e., 4 weeks) may

significantly affect the overall survival in this patient

population [146].

However, careful consideration must be given to any

post-randomization variable, including ADA formation.

Kong et al. studied the potential impact of ADA formation

on long term benefit in a randomized controlled trial with

atezolizumab, in which ADA was not observed in the

control arm [147]. ADA status was only observable in

atezolizumab-treated patients, and variables that are a

consequence of the treatment either preclude observation

or affect the interpretation of the clinical endpoint of

interest. The authors propose a weighted approach for

estimating effects based on Weight Placebo Patients (WPP)

approach [148] where the post-baseline strata are observed

for every subject. The idea behind this is if ADA can be

organized in categories, is the treatment benefit clinically
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meaningful for all categories of ADA? and is the treatment

effect similar between certain or all categories of ADA?.

Atezolizumab treated ADA-positive patients showed worse

OS relative to ADA-negative patients. Furthermore, ADA-

positive patients also showed differences in several prog-

nostic baseline variables compared to ADA-negative

patients. The authors concluded after correcting the data

for the prognostic baseline variables that hazard ratios were

similar for ADA-positive and ADA-negative patient

populations.

Modeling in cell therapies

Cell and Gene Therapy (CGT) have now entered a new

area of treating diseases. Although scientific efforts have

been in progress for over a century, recent advancements in

the last decade have significantly shifted the treatment

paradigm with several regulatory approvals [149]. As of

February 2023, there were 27 CGT products that were

approved by FDA [149, 150]. The proven hypothesis, that

either alteration of certain cells (Cell therapy) or certain

genes into cells (Gene therapy) may lead to treatment, has

made CGT very effective in individualized treatment. CGT

is formulated differently from traditional large batch pro-

duction of a small or large molecule (antibody) drug, and in

many instances, CGT is designed specifically for individual

patients (for example, autologous cell therapy).

Among several CGT modalities, Chimeric Antigen

Receptor (CAR) T cell-based therapy has shown clinical

benefits in different cancer types [151, 152]. In this treat-

ment, a patient’s T-cells are modified in the laboratory and

specific CARs are introduced to the surface of the T-cell in

order to target very specific malignant cancer cells. For the

purpose of this review, we will focus on current

advancements in the clinical pharmacology of autologous

CAR-T therapy only.

The PK of CGT drugs is characterized using quantitative

polymerase chain reaction (qPCR) assay for viral products

and using flow cytometry or qPCR for autologous cell

therapies. A typical small or large molecule drug after IV

administration exhibits maximum drug concentration

(Cmax) at the end of infusion, whereas for CAR-T cells, the

Cmax is generally achieved after a few days of IV admin-

istration due to cellular proliferation and expansion upon

interaction with the target antigens in circulation (or at the

site of action in tumor or bone marrow). The apparent

kinetics of CAR-T may consist of four phases including

distribution, expansion, contraction, and persistence [153],

see Fig. 5A and B.

In humans, the expansion/proliferation of CAR-T cells

is found to be highly variable and primarily driven by an

individual’s immune system activity. Cilta-cel (Carvyk-

tiTM) CAR transgene concentrations showed maximum

peripheral expansion at a median of 12�7 days (range

8�7–54�6) with observed persistence lasting over[ 100

days in peripheral blood [154]. Among patients with

6 months follow-up, most had cilta-cel CAR transgene

concentration below the level of quantification (\ 50 CAR

gene copies per lg DNA) in peripheral blood. Several

factors, such as prior lines of therapy, tumor burden, and

disease status, may impact an individual’s immune system

activity. In addition, CAR-T cell drug product character-

istics, such as CD4:CD8 ratio, %CAR ? T cells, the con-

stitution of effector, and memory cells [155] may also

contribute to cellular expansion/proliferation, resulting in

highly variable exposure parameters such as Cmax and area

under the curve (AUC) with inter-individual variability as

large as 165–190% [156].

Fig. 5 A Kinetic Phases of CAR-T therapies. Adapted from Liu et al. [153]. B CAR-T expansion and persistence in peripheral blood adapted

from Berdeja et al. [154]
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Since expansion and persistence of CAR-T cells are

dependent on the cellular composition of the individual

donor’s original T cells and the individual’s immune sys-

tem, it is difficult to extrapolate or predict the extent of

inter-individual PK exposure (cellular expansion/persis-

tence) in humans. In addition, given the limitation of pre-

clinical models in mimicking the complexity of the human

immune system, allometric-based principles cannot be

applied in translating CAR-T exposure from preclinical

species to humans. There have been recent attempts to

develop translational models [157], but the lack of relevant

preclinical species limits such preclinical to clinical pre-

dictions. Current regulatory guidance [158] on gene and

cell therapy also states that unlike for small and large

molecules, allometric-based scaling cannot be applied to

predict starting dose in humans. Typical CAR-T starting

dose selection has been based on prior knowledge of cell

therapy and target expression.

Since CAR-T exposure exhibits high inter-individual

variability, depending on the range of dose levels studied,

and the number of subjects at each dose level, dose

dependence on PK parameters and impact on response may

be difficult to identify. A population cellular kinetic model

was developed using clinical data of KymriahTM [159]

where the dose range administered ranged from 0.2 to 5.4

Mcells/kg. The authors did not observe any relationship

between dose and exposure. Even though an increase in

Cmax was found to increase the incidence and severity of

key safety outcomes (cytokine release syndrome, CRS),

due to lack of a clear dose–exposure relationship, such

correlations could not be used to identify an optimal dosing

regimen. In another study using Abecma� [155], the

authors proposed a dose-dependent increase in expansion/

persistence based on a prospectively designed Phase 1/2

study where dose escalation was conducted in cohorts at

dose levels of 50, 150, 450, and 800 Mcells. Despite a

dose-dependent increase in exposure, a plateau in exposure

was apparent at 450–800 Mcells. Abecma� transgene

levels were positively associated with objective tumor

response (partial response or better), where responders

achieved * 4.6-fold higher Cmax and * 5.6-fold higher

AUC(0–28 days) in comparison to non-responders [156]. It is

unclear if high inter-individual variability with overlapping

exposures and lack of a clear dose–exposure relationship

influenced the approved dose range of 300–460 Mcells for

Abecma�.

In summary, drug exposure after CAR-T therapy has

shown high inter-individual variability with overlapping

exposures between dose levels. Although higher exposure

may be associated with higher responses, the lack of a clear

dose–exposure relationship limits the determination of

optimal dose levels. For future trials, a dose-escalation

study should be considered in early development with rich

PK collection throughout the study to inform better char-

acterization of the dose/exposure–response relationship.

General considerations

Adequate care needs to be taken in performing E–R anal-

yses using data collected from late-phase oncology clinical

trials. The majority of Phase 2 and 3 oncology clinical

trials are carried out with one dose level, having minimal

E–R information available from the dose-escalation part of

the Phase 1 study, often in refractory patients where at the

most we can get an idea of E–R for safety endpoints, but

we don’t expect any efficacy as the target population is

normally not the intended population for the projected fil-

ing indication. With only a single dose, the range of

exposures is often limited, and may make detection of E–R

relationships difficult. FDA has long been pushing for a

more thoughtful approach to dosing. With the recent

release of a draft guidance requesting sponsors to study a

range of doses in early development, this may make E–R

modeling more sensitive at detecting such relationships.

Performing a comprehensive pharmacometrics analysis

of a drug product at the time of NDA/BLA filing is often

challenging but probably the most cost-efficient approach

when considering subsequent filings in subsequent indica-

tions and special populations. We have seen repeatedly

with many therapies that disease burden as characterized

by multiple risk factors, such as Eastern Cooperative

Oncology Group (ECOG) performance score (PS), per-

centage of prior surgery, and increased number of meta-

static sites, may vary significantly among enrolled patients

at baseline and usually changes in the course of the treat-

ment. In late-stage cancer, patients with a high disease

burden may be associated with increased clearance for

some compounds. Usually, these patients tend to show

more aggressive disease progression and shorter survival

times. Thus, the disease burden becomes a confounder that

affects both drug exposure and survival. All these factors in

combination may distort the underlying causal relationship

associated with the treatment effect. Inappropriate model-

ing approaches are more likely to happen when very little

information has been collected during early-stage devel-

opment or no input has been requested from the pharma-

cometrician, which could lead to an erroneous presentation

of the underlying E–R relationship when the pivotal trial

reads out.

Often pharmacometricians play ‘‘catch-up’’ by having

limited time to perform the retrospective analyses required

to comply with regulatory agencies’ recommendations with

very little influence on requesting adequately powered

dose-finding studies during the drug development program.

Usually, the modeling comes at the end, when perhaps the
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necessary assessments were not collected or incompletely

collected, and the information available is insufficient to

perform an in-depth analysis of the safety and efficacy

endpoints and their correlations with exposure. The phar-

macometrics community has the tools, the knowledge, and

well-described models summarized in this review that can

help characterize E–R in drug development and hence

better understand the drug behavior and therapy manage-

ment. However, tools, knowledge, and models are only half

of the work, well-designed trials, and informative data

collections are the other half and it is very challenging to

do both parts in isolation. A collaborative interaction is

required among clinicians, statisticians, pharmacologists,

pharmacometricians, and decision-makers to succeed in

prospectively defining a clinical development strategy tai-

lored towards the identification of the optimal dose regi-

men and benefit/risk ratio of a given drug product for the

intended-to-treat population of patients.
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et al (2009) Guidelines for the evaluation of immune therapy

activity in solid tumors: immune-related response criteria. Clin

Cancer Res 15:7412–7420

99. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL,
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