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Camouflage has been reported as a defensive strategy in plants, while our
understanding of the evolution of such defensive coloration is still limited.
In the present study, we tested the hypothesis that camouflaged plants
are shorter than non-camouflaged ones in the same habitat. Based on a species
list from the subnival zone from the Hengduan Mountains, SW China
and the herbarium collection, we measured the plant heights of 2915
individuals from 621 species (either camouflaged or not), with elevation infor-
mation as a reference. We show that camouflaged plants were significantly
shorter than non-camouflaged ones, though the effects of phylogeny and
elevation were considered. Interestingly, a negative correlation between
plant height and elevation was found in non-camouflaged plants, but not
in camouflaged ones. These results revealed the correlation between defensive
coloration and plant height. Camouflage may have evolved from shorter
ancestors because they may suffer stronger selection and provide a more
efficient defence.
1. Introduction
Height is a crucial trait that has multiple functions in plant growth and repro-
duction. Taller plants are favoured for many reasons. They may live longer [1],
capture more light, attract more pollinators [2,3] or disperse their seeds farther
[4]. However, being tall may also have drawbacks. The old Chinese saying ‘树大

招风’ (Shù Dà Zh�ao F�eng) describes two facts, a taller tree suffers more in heavy
wind, and the high-profile attracts more attacks. Abiotically, plants in the Arctic
and alpine zones appear shorter [5,6]. Biotically, taller plants may be more
receptive to herbivory by chewing herbivores [7]. Distinct plant individuals sur-
rounded by lower vegetation received more eggs from butterflies [8]. On the
contrary, shorter plants are favoured in such circumstances by decreasing
heat loss in cold environments [5] (but see [9] for higher risk of frost damage
in certain conditions) or lowering conspicuousness to herbivores [7,10].

Defensive strategies often correlate with plant size or age. For example, trees
are more spinescent in their sapling stages [11,12] but become far less spines-
cent when they grow up [13]. For chemical weapons, the plant apparency
hypothesis [10] predicts that the apparent (tall and long-lived woody) plants
produce more general compounds (quantitative defence, e.g. the tannin in
oak trees), whereas the unapparent (small and short-lived herb) use a small
amount of specialized compounds (qualitative defence, e.g. glucosinolates in
Brassicaceae).

Alternatively, the often neglected first line of defence is to avoid being
detected [14]. In the last decades, camouflage was reported in a number of
plants worldwide as a defensive mechanism (reviewed in [15,16]). Cryptic
coloration based on background matching, the most common camouflage strat-
egy, was verified to decrease damage [17,18] and increase reproduction [19]. In
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Figure 1. Examples of camouflaged and non-camouflaged plants in subnival region of Hengduan Mts, SW China. Dwarf camouflaged plant Corydalis hemidicentra
(Papaveraceae) (a) and Fritillaria delavayi (Liliaceae) (b). Non-camouflaged herb Meconopsis speciosa (Papaveraceae) (c). Photo Credits: Yang Niu.
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the Hengduan Mountains., SW China, camouflage was found
in different plant families in the subnival region, an alpine
environment above the tree line but below permanent snow-
pack. The subnival region was characterized by low
atmospheric pressure, strong temperature fluctuations and
highly variable climates [5]. Vegetation in this region is
sparse, and therefore food plants are much easier to be
located by foraging herbivores [17,20,21]. The colour of
camouflaged plants resembles the rock background of
alpine screes, and some of them even show adaptive colour
divergence among populations with different rock substrates
(figure 1) [20]. A similar phenomenon was also found in the
alpine region of New Zealand [22]. These camouflaged plants
were suggested to have evolved under the selection by
visual-searching herbivores, such as insects [17,18] and mam-
mals [19] including humans [23].

Based on field experiences, we realized that there may
be an evolutionary correlation between defensive coloration
and plant size (as suggested in [16]), but this has not been
tested yet. First, camouflage may work more effectively in
small-sized species than in taller ones [22], because they are
easier to blend with the local substrates. Second, plants
with smaller sizes are less likely to survive and reproduce
after being attacked by herbivores, and therefore might
suffer higher selection pressure to evolve camouflage [16].
Given that plant size may include several dimensions such
as length, width, height, area and volume, it is difficult to
estimate it as a general term. Plant height often (if not
always) positively correlates with plant size and is more
often reported in databases. Therefore, we hypothesize that
camouflage plants are shorter than non-camouflage ones in
similar habitats.

An obvious difficulty to test this hypothesis is that plant
height is influenced by several abiotic factors, such as
elevation [6,24,25]. For example, it is well known that plant
size often decreases with increasing elevation [26,27]. Like
other traits, plant height may also be influenced by phylo-
geny [28], which may affect the relationship between plant
height and camouflage. However, these factors can be
accounted for by incorporating elevation and phylogenetic
structure into analyses. To test this prediction, we first com-
piled a list of camouflaged and non-camouflaged plants
based on the flora of the subnival Hengduan Mts and field
observations. We then measured plant height from herbar-
ium specimens and tested whether camouflaged plants
are shorter than non-camouflaged plants accounting for
phylogeny or elevation.
2. Materials and methods
(a) Plant list and herbarium specimens
To decrease the influence of factors other than coloration on plant
height, we excluded plant species from other regions. For this,
the flora Seed Plants of the Alpine Subnival Belt from the Hengduan
Mountains, SW China [29] was used as the raw plant list, which
includes 942 species (168 genera and 48 families). Compared
with alpine flora in other regions, this flora used much stricter
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criteria to define the subnival region, which mainly includes the
alpine screes and two other vegetation ‘types’, the rocky meadow
and the cushion plant vegetation in the same elevation as alpine
screes. We used an even stricter standard to collect data from
herbarium specimens as follows.

Based on this list (excluding synonyms), we searched the
digitalized specimens at the Chinese Virtual Herbarium (www.
cvh.ac.cn/index.php) by setting four filtering keywords, i.e.
locality, elevation, specimen condition and scale bars. To
ensure the specimen was collected from the Hengduan Mts
region, the collection location was set as ‘Yunnan | Sichuan |
Qinghai | Tibet Autonomous Regions, China’. To ensure the
specimen was collected from the subnival region, we set the
lowest elevation as 4200 m.a.s.l., which is the approximate
elevation of the highest tree line in this area. To exclude the influ-
ence of age on plant height, we only included adult specimens
(with flowers) in the study. For height measurements, only speci-
mens with roots and scale bars were used. Our final sampling
included 621 species.

Elevations were averaged for specimens that only recorded
elevation range (e.g. 4550 m for a record of ‘4500–4600 m’). When
possible, we recorded plant height from 10 individuals from differ-
ent specimens for each species (N = 42). For species with limited
specimen numbers, all individuals were recorded (N = 579); 72%
(N= 448) of species were sampled from at least three individuals.
Species were scored as camouflaged/non-camouflaged, according
to the living condition of the plants (instead of the dry specimen).
Specifically, leaf colour that is very similar to the background as
perceived by human eyes is defined as camouflage (figure 1). Ide-
ally, reflectance spectra and animals’ colour vision should be used
to estimate plant colour, but given limited studies on this region,
such data were only available in a few species, such as Corydalis
benecincta [18], C. hemidicentra [20], C. bulbifera, Fritillaria delavayi
[23], Saussurea medusa and Soroseris glomerata. Other camouflaged
species were evaluated by human eyes. Although different from
other animals, human colour vision has been proven to be robust
enough to define camouflaged plants [23]. All published cases of
camouflaged plants that were initially defined based on human
eyes were then verified based on the analyses of reflectance spectra
and animal colour vision (see [16]). Species that have both camou-
flage and non-camouflage morphs, such as Corydalis hemidicentra
and Fritillria delavayi, were defined as camouflage.

(b) Height measurement
We used ImageJ 1.44 [30] to measure plant height in the speci-
men image. Each individual was measured three times before
averaging, accurate to 0.01 cm. Plant height was defined as the
vertical length of the aboveground part, as this trait is the
target of selection by visual-searching animals. It was measured
as the vertical distance from the base of the stem to the top of the
plant, leaving the underground stem or root excluded.

To avoid estimating plant height from incomplete specimens,
we excluded those species where plants were larger than the her-
barium sheet (N = 18). All these cases were non-camouflaged
plants.

(c) Statistical analyses
As the sample sizes vary among species (from one to 10, with a
mean sample size of five), we used the mean plant height for
each species (N = 621) for further analyses. Plant height was
log-transformed to improve normality.

The general pattern of height differences between camou-
flaged and non-camouflaged plants was first compared by
independent samples t-test. To decrease the influence of unequal
sample size (Ncamouflaged = 45; Nnon-camouflaged = 576), 45 samples
were randomly selected from the non-camouflaged group
before comparing with the camouflaged group. This was
repeated 1000 times and yielded 1000 p-values. We then exam-
ined the correlation between plant height and elevation using
the Spearman rho method.

To account for possible effects of elevation and phylogeny, we
used Bayesian phylogenetic mixed models in the MCMCglmm R
packages [31]. Specifically, we ran four models as follows: (i) plant
coloration (camouflage or not) and elevation as fixed variables; (ii)
only plant coloration as the fixed variable; (iii) only elevation as
the fixed variable and (iv) null model (only containing intercept).
The phylogeny was set as a random effect in all models. Models
with lower DIC values perform better. The phylogenetic tree of
the 621 species was constructed based on the V.PhyloMaker [32]
package. For species that do not match in the V.PhyloMaker data-
base, the congenic clade was randomly inserted based on the
genus name. This model was run for 300 000 iterations with
1000 burn-in and a thinning interval of 500. After running those
models, we examined the effective sample size to make sure
that it was above 200. ITOL v.6 [33] was used to visualize the phy-
logenetic tree (electronic supplementary material, figure S1). All
the analyses were performed in R v. 4.1.1 [34].
3. Results
Collectively, we sampled 2915 individuals of 621 species
(Nmean = 5, Nmin = 1, Nmax = 10, from 123 genera and 40
families) that were found in the subnival environment ranges
from 4200 to 6500 m.a.s.l from the Hengduan Mountains.
These include 45 camouflaged plant species and 576 non-
camouflaged ones. Plant height ranges from 1.58 to 45.5 cm,
with a mean value of 11.46 cm.

Camouflaged plants were significantly shorter than non-
camouflaged ones (independent samples t-test, t = 4.739,
d.f. = 619, p < 0.001, figure 2a). This pattern held when equal
sample sizes were used by randomly selecting samples
from the non-camouflage group. For 1000 times, random
sampling followed by t-tests, p < 0.05 occurred 989 times
(98%). In addition, we found a significant negative relation-
ship between plant height and elevation in non-
camouflaged plants (r =−0.2, d.f. = 574, p < 0.001), but not
in camouflaged ones (r =−0.08, d.f. = 43, p = 0.59, figure 2b).

Based on MCMCglmm, plant height was found to be
influenced by coloration (i.e. camouflaged or not, p < 0.002),
elevation ( p < 0.002) and phylogeny (λmean = 0.77), as shown
in table 1. Coloration, with higher marginal R2 value
(table 1), has a stronger effect on plant height than elevation.
4. Discussion
As the results show, plants in the subnival zone of Hengduan
Mts are relatively short (with a mean height of 11.46 cm) and
even shorter than plants in the Arctic tundra (ca 25 cm, see
[6]). In general, this may be an adaptation to the alpine
environment with extreme temperature fluctuations [36],
strong winds [5,37], nutrient-poor soils [38] or low-
temperatures that limit photosynthetic capacity [39]. We
found 45 camouflaged plants (with cryptic coloration) in
this region. As expected, camouflaged plants are indeed
shorter than non-camouflaged plants that live in the same
region. The results of MCMCglmm showed that when phylo-
genetic history was considered, both coloration and elevation
have a significant relationship with plant height. The model
including both factors, coloration and elevation, preforms
better. Interestingly, coloration is an even greater explainer

http://www.cvh.ac.cn/index.php
http://www.cvh.ac.cn/index.php


4

3

2

1 1

2

3

non-camouflage

non-camouflaged
p < 0.001

p < 0.001

p = 0.59

camouflage 4400 4800 5200
mean elevation (m)

camouflaged

lo
g(

he
ig

ht
)

lo
g(

he
ig

ht
)

(a) (b)

Figure 2. The pattern of plant height in non-camouflaged and camouflaged plants (measures from multiple individuals were averaged for each species). (a) Mean
plant height. (b) Correlation between plant height and elevation.

Table 1. The effect of coloration and elevation on plant height based on MCMCglmm including phylogeny as a random factor. Note: β is the regression
coefficient. Marginal R2 describes the proportion of variance explained by the fixed effects only, while the conditional R2 describes variance explained by both
the fixed and random effects. Both were calculated according to Nakagawa & Schielzeth [35]. Values in italics indicate significant differences; characters in bold
indicate variables.

β(95% CI) marginal R2 conditional R2 pMCMC

fixed effects

coloration −0.3622(−0.5224 to −0.2188) 0.016 0.74 <0.002

elevation −0.0005(−0.0007 to −0.0003) 0.014 0.78 <0.002

random effects

phylogeny 0.6092(0.3927 to 0.8488) _
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than elevation. It is well known that plant height decreases
with increasing latitude or elevation because of climate differ-
ences (although exceptions do exist, see [1]). Our results
suggest that herbivory may be a neglected factor that influ-
ences plant height. In open habitats such as alpine screes,
vegetation is sparse and plants do not need to grow taller
to compete for sunlight. Instead, considering the interaction
between plants and animals, such a habitat forms a much
simpler visually searching environment, which may result
in stronger selection pressure from herbivores [21]. Taller
plants may be selected against as they are likely to be more
easily located by herbivores, while being short-statured
may be favoured under such selection.

The shorter camouflaged plant pattern may have two
non-exclusive evolutionary explanations, shorter plants
become camouflaged or camouflaged plants become shorter.
The former process seems more reasonable for at least three
reasons. First, short or small organisms are suggested to be
intrinsically less visually conspicuous and have a lower
detection risk compared to larger ones [40,41]. Second, back-
grounds are often more diverse at smaller size scales,
providing complex visual environments that are known to
facilitate camouflage [42]. Third, plants exhibit modular
organization. When discovered and consumed, larger indi-
viduals possessing more modules may have an increased
chance of surviving or reproducing, whereas smaller individ-
uals are more vulnerable to death. Consequently, smaller
individuals may experience greater selective pressures
during herbivory [16]. On the contrary, camouflage may not
be compatible with a large ancestor status because of ineffi-
cient concealment. Similarly, selection pressure for being
camouflaged could be less intense for larger plants as they
are more tolerant to herbivory [16]. The evolutionary
sequences of plant height and coloration can be inferred
through phylogenetic reconstruction of specific plant
groups. For example, the Corydalis genus consists of approxi-
mately 530 species, a few of which are camouflaged, while
most members have normal green leaves. Based on a recently
reconstructed phylogeny of this genus, camouflaged species
are found scattered among several alpine clades that contain
many non-camouflaged, short-statured relatives [43]. This
observation is consistent with the hypothetic scenario that
the evolution of short stature preceded that of camouflage.

Consistent with the association between plant height and
camouflage, we noticed that camouflage has often been
found in small herbs [17–20], juveniles [22,44,45] and seeds
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[46–48]. For example, Corydalis benecincta and C. hemidicentra,
two camouflaged species involved in the current study, have
similar small trifoliate leaves and very short stature (5.00 and
6.55 cm, respectively). Another camouflaged congener C. bul-
bifera only has a single small leaf. These plants are the host
plant of Parnassius butterflies, the larvae of which often con-
sume the whole plant. As a comparison, a coexisting non-host
Corydalis species, Corydalis conspersa, has many leaves and is
taller (17.02 cm). In addition, before growing above 3 m, the
leaves of Pseudoanax crassifolius from New Zealand have cryp-
tic coloration and spinulous margins [44]. Camouflage is also
reported in seeds of Acmispon wrangelianus (Fabaceae) [48]
and Pinus halepensis (Pinaceae) [47].

The correlation between camouflage and short plant height
parallels many animal systems. For example, smaller caterpil-
lars tend to be concealed more, whereas larger caterpillars
use large eyespots as defence more often [49]. Juvenile crabs
Carcinus maenas have more camouflage variation than adults
[50]. Cryptic morphs of the strawberry poison frog Oophaga
pumilio are smaller than conspicuous ones [51]. In addition,
the ontogenetic colour changes from camouflage to aposema-
tism is common, such as in the larvae of moths and butterflies
[52,53], but the reverse process is rare.

The present study also highlights the value of high-
quality botanical specimens and herbaria in understanding
plant evolution. Naturalists can indeed and should seek
questions and explanations from the field, but herbarium
specimens provide convenient and fast ways to examine
general patterns.
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