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Abstract

Background: The gold standard treatment for locally advanced rectal cancer is total mesorectal excision after preoperative 
chemoradiotherapy. Response to chemoradiotherapy varies, with some patients completely responding to the treatment and some 
failing to respond at all. Identifying biomarkers of response to chemoradiotherapy could allow patients to avoid unnecessary 
treatment-associated morbidity rate. While previous studies have attempted to identify such biomarkers, none have reached 
clinical utility, which may be due to heterogeneity of the cancer. In this study, potential human gene and microbial biomarkers 
were explored in a cohort of rectal cancer patients who underwent chemoradiotherapy.

Methods: RNA sequencing was carried out on matched tumour and adjacent normal rectum biopsies from patients with rectal cancer 
with varying chemoradiotherapy responses treated between 2016 and 2019 at two institutions. Enriched genes and microbes from 
tumours of complete responders were compared with those from tumours of others with lesser response.

Results: In 39 patients analysed, enriched gene sets in complete responders indicate involvement of immune responses, including 
immunoglobulin production, B cell activation and response to bacteria (adjusted P values <0.050). Bacteria such as Ruminococcaceae 
bacterium and Bacteroides thetaiotaomicron were documented to be abundant in tumours of complete responders compared with all 
other patients (adjusted P value <0.100).

Conclusion: These results identify potential genetic and microbial biomarkers of response to chemoradiotherapy in rectal cancer, as 
well as suggesting a potential mechanism of complete response to chemoradiotherapy that may benefit further testing in the 
laboratory.
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Introduction
Locally advanced rectal cancer often requires neoadjuvant 
chemoradiotherapy (nCRT), aiming to downstage tumours and 
reduce rates of local recurrence, improving survival1,2. The 
response to nCRT varies: up to 20 per cent of patients achieve a 
pathological complete response (pCR), up to 60 per cent 
demonstrate partial response, and the remainder display 
resistance to nCRT1,3. These response rates could further be 
increased by total neoadjuvant therapy3.

A pCR is defined as the absence of residual viable tumour cells 
in the resected specimen and the reliance on pathological 
confirmation of a complete response fails to identify patients 
that may benefit from organ preservation. Habr-Gama 
pioneered the adoption of a clinical complete response (cCR) as 
a surrogate for pCR4. Patients who achieve a cCR may 
subsequently be managed using a ‘Watch and Wait’ approach, 
thereby avoiding the morbidity rate associated with major 
resectional surgery. Although up to 25 per cent of these patients 
show tumour regrowth by 2 years, the majority are amenable to 
salvage procedures5.

Even though extensive work has been carried out to identify 
clinical and biological markers of response to radiotherapy in 
rectal cancer1,6–8, no reliable biomarkers have been validated for 
clinical use. A robust biomarker that selects patients likely to 

achieve a pCR to nCRT would allow the accurate identification 
of responders and increase confidence in selecting patients 
amenable to non-operative management. Chemoradiotherapy 
(CRT) is associated with significant localized and systemic side- 
effects and has been demonstrated to negatively impact quality 
of life9. The identification of patients unlikely to benefit from 

conventional CRT would result in a reduction in CRT-associated 
side-effects, and targeting of patients for novel treatment 
strategies.

Due to the largely sporadic nature of colon and rectal cancer, 
environmental factors are likely to play a critical role in the 
development of the disease, and recent international data points 
to the importance of the microbiome in its development and 
progression10–12. Recent reports have also demonstrated that 

systemic effects of the gut microbiome may contribute to 
treatment response in other cancer types13,14 and could be 
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predictors of a favourable response to immunotherapy. In addition, 
gut microbiota have been shown to locally influence the treatment 
efficacy of irinotecan for colorectal cancer (CRC)15. However, 
although some studies on the protective effect of the microbiome 
on radiotherapy-induced toxicity have been carried out16,17, very 
little is known about whether or how the gut microbiome may 
regulate the response of the tumour to radiotherapy.

This research aimed to analyse gene expression data from a 
unique cohort of pre-nCRT rectal cancer tumours and their 
matched normal mucosa samples to identify tumour and 
microbial genes and molecular pathways associated with response.

Methods
Patients
Two prospective, consecutively sampled cohorts of patients with 
rectal cancer treated at Christchurch Hospital, New Zealand 
(study period: 2018), and at the Peter MacCallum Cancer Centre, 
Melbourne, Australia (study period: August 2016 to February 
2019) were analysed. Patients were selected for nCRT at 
multidisciplinary team meetings at their respective institutions. 
Pretreatment biopsies of tumour tissue and adjacent, 
macroscopic normal tissue (>10 cm from tumour) were taken at 
colonoscopy, before nCRT treatment. Patients who had received 
previous chemotherapy or radiation therapy for treatment of 
their rectal tumour were excluded from the study. Patient data, 
including clinical staging, treatment schemes, histology and 
follow-up (recurrence and metastases until March 2022), was 
collected. Response to long-course CRT (LCCRT) was assessed 
histologically from surgical resection specimens, and reported 
using Dworak grading (Christchurch cohort) or the American 
Joint Committee on Cancer (AJCC) grading (Melbourne cohort). 
Response groups were designated as complete responders 
(Dworak 4/AJCC 0), near-complete responders (Dworak 3/AJCC 
1), incomplete responders (Dworak 2/AJCC 2) and 
non-responders (Dworak 1/AJCC 3). In addition, patients who 
developed progressive disease or died of disease, during the 
course of therapy, were also designated non-responders.

The study was undertaken with ethical approval from the 
Health and Disability Ethics Committee of New Zealand (ethics 
approval number: 18/STH/40/AM01) and the Human Research 
Ethics Committees of Australia (ethics approval number: HREC 
14/85). All participants provided written, informed consent 
before enrolment.

Outcomes of interest
The primary outcome of interest was to compare human gene 
expression and microbial taxa abundances in different groups of 
responders. To address this objective, complete responders were 
compared with all other responders grouped together, and 
secondly, non-responders were compared with all other response 
groups. In addition, the correlation between differentially 
expressed genes (DEGs) and differentially abundant bacteria was 
investigated, as well as microbial diversity.

RNA extraction, sequencing and processing
Tumour and normal tissue biopsies were taken at colonoscopy and 
immediately frozen in liquid nitrogen and stored at −80°C. RNA 
extraction was carried out as detailed previously18. Briefly, RNA 
was extracted from <20 mg of tissue using the RNEasy Plus Mini 
Kit (Qiagen, Hilden, Germany), including DNAse treatment, 
following tissue disruption using a Retsch Mixer Mill. Purified 
RNA was quantified using a NanoDrop 2000c spectrophotometer 

(Thermo Scientific, Asheville, NC, USA), and stored at −80°C. RNA 
sequencing was performed using an Illumina NovaSeq 6000 
platform (Illumina, San Diego, CA, USA) to produce 150 bp paired 
end reads, as previously described18. The Ribo-Zero™ Magnetic 
Kit (Human & Bacteria, Epicentre, Madison, WI, US) was used for 
ribosomal RNA depletion, and libraries were prepared using the 
NEBNext® Ultra™ RNA Library Prep Kit (New England BioLabs 
Inc.®, Ipswich, MA, USA). Approximately 50 million reads (15 Gb 
raw data) were produced per sample on an Illumina NovaSeq 
6000 instrument. Raw sequencing reads were deposited at the 
National Center for Biotechnology Information Sequence Read 
Archive (NCBI SRA) under BioProject ID PRJNA815861.

Raw sequencing data was parsed through the Metafunc 
pipeline19, which performs read preprocessing, host gene 
mapping and microbiome species identification. Further details of 
the computational pipeline may be found at https://gitlab.com/ 
schmeierlab/workflows/metafunc, and complete analysis of this 
article is available at https://gitlab.com/alsulit08/uoc_response_ 
rectalca. For the microbiome analysis part of the pipeline, no 
abundance filtering was performed at this stage of the analysis.

Microbiome data preprocessing
For the microbiome data set, raw counts of microbe taxonomies 
were gathered into a Phyloseq object20, with metadata 
information on their response and tumour or normal status. 
Prefiltering of the species was then performed before the 
analysis, only including those within the Bacterial Kingdom, and 
those with at least 10 reads in 20 per cent of the samples (Table S1).

Computational analyses and statistics
Expression levels for each human gene and sample were generated 
by the MetaFunc pipeline19, and differential human gene 
expression analysis (DGEA) using DESeq221 was used to detect 
DEGs. To detect DEGs that were significantly differentially 
expressed in the tumour relative to each participant’s normal 
tissue between groups of responders, the model fitted by DESeq2 
included covariates for response (complete or other), tissue type 
(tumour or normal), response:participant (index) and response: 
tissue. Care was taken to ensure the model matrix was of full 
rank, the model converged and that modelling assumptions were 
met. The genes were considered differentially expressed if their 
adjusted P values were <0.100.

From the results of this DESeq2 comparison, a preranked list of 
all resulting genes based on P values and log2-fold change was 
generated, and these genes were used as input for gene set 
enrichment analysis (GSEA) using clusterProfiler22 with the C5 
Ontology Gene Sets collection (version 7) from the molecular 
signatures database (MSigDB)23,24. Specifically, the genes were 
ranked using the formula:

rank = − log 10(P value) ∗ sign(log2 FoldChange) 

This ranking places the genes with lowest P values and positive 
log2-fold change at the top of the list, and the genes with lowest 
P values and negative log2-fold change at the bottom of the list. 
Genes at the top of the list contribute to gene sets with positive 
enrichment scores and genes at the bottom contribute to 
gene sets with negative enrichment scores. Gene sets were 
significantly enriched in a responder group if their adjusted 
P values were <0.050.

For the differential metatranscriptome analysis of the 
microbiome data set, the same model for group-specific condition 
effects (see DGEA above) to obtain differentially abundant (DA) 
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microbes in tumour samples compared with matched normal 
samples, specific to complete responders compared with other 
responders, was used. Differentially abundant bacteria were 
considered those species with adjusted P values <0.100.

The correlation between DEGs and differentially abundant 
bacteria in rectal cancer was then investigated. Using the rlog 
transformed values for gene expression and microbial 
abundance obtained from DESeq2 of 87 identified DEGs and 10 
DA bacterial species, a Spearman correlation analysis between 
each gene and species was performed, correcting the final 
P values using Benjamini–Hochberg (BH) adjustment. Influential 
points (species rlog > 12) were removed for the Spearman 
correlation calculation and corresponding scatter plots.

The α-diversity (microbial diversity within a sample or 
community) between different groups was compared using 
Observed (richness—number of observed taxa) and Shannon 
(richness and evenness—taking abundance of different taxa into 
consideration) measures. The sample set, as described in the 
microbiome preprocessing section above, was rarefied to 90 per 
cent of the smallest sample size in the data set and analysed in 
Phyloseq20. Observed and Shannon measures were calculated 
through the estimate_richness() function of the Phyloseq20

package, and compared between groups using Wilcoxon tests. 
Non-metric multidimensional scaling (NMDS) plots based on Bray– 
Curtis distances were used to visualize β-diversity between groups.

Analyses for DGEA, GSEA, DA, correlation and diversity were 
completed using R25,26 packages.

Results
Study population
This cohort comprised 40 patients (20 patients from each hospital) 
with diagnosed rectal cancer who were subsequently treated with 
CRT followed by surgical resection (Table 1). One patient was 
subsequently excluded, due to treatment cessation for palliative 
care. The majority (n = 36) were treated with LCCRT, with either 
capecitabine, FOLFIRI or 5FU. Two patients did not complete 
LCCRT due to the development of grade 3 toxicity. One patient 
received short-course radiotherapy, while the remaining two 
patients received sandwich CRT (FOLFOX). There were 12 females 

and 27 males, who ranged in age from 29 to 86 years (mean age: 
62 years). There were five patients with complete response to 
LCCRT, five patients with near-complete response, 18 patients 
with incomplete response and eight patients who did not respond 
to LCCRT. In addition, three patients developed progressive 
disease or died of disease during the course of therapy, and these 
patients were also designated non-responders. Median follow-up 
was 42 months. Six patients died of the disease during a 
minimum follow-up period of 24 months.

Differential gene expression and gene set 
enrichment between response groups
DEGs were analysed between matched pairs of tumour and 
normal tissues, to account for interpersonal variation in gene 
expression, and then these DEGs were compared between 
response groups. Eighty-seven genes were found to be 
differentially expressed between tumour and normal samples 
(adjusted P value <0.100), and only seen in complete responders. 
Interestingly, the majority of these genes are associated with 
immunoglobulin chains, with 75 of 87 genes having prefixes of 
IGH-, IGL- or IGK- (Fig. 1a), for immunoglobulin heavy, light, and 
kappa respectively. Tumour versus normal rlog was plotted as 
transformed counts per sample of representatives from these 
genes and showed that for most of these genes, complete 
responders cluster at high tumour–low normal values (upper 
left quadrant), indicating that in the complete responder group, 
these genes are more highly expressed in tumours compared 
with normal tissues (Fig. 1b and Fig. S1). When DGEA was carried 
out comparing non-responders to all other responders, no DEGs 
were identified between the two groups.

The majority of significant DEGs were upregulated in 
tumours compared with normal tissue. The top 10 DEGs 
(all immunoglobulin related), in addition to 12 non- 
immunoglobulin-related DEGs, could robustly distinguish 
complete responders from all other patients, as illustrated in 
Fig. 1c and Fig. S2.

Subsequently, Gene Set Enrichment Analysis (GSEA), which 
ascribes function to DEGs, was performed using genes ranked 
according to DESeq2 P value and log2-fold change (±). Gene sets 
relating to immune responses constitute the majority of the top 

Table 1 Characteristics of the patients with rectal cancer cohort

All (n = 39) Complete  
response (n = 5)

Near-complete  
response (n = 5)

Incomplete  
response (n = 18)

No response  
(n = 11)

Age (years), mean ± SD 62.0 ± 14.5 66.2 ± 9.3 61.2 ± 4.8 62.4 ± 14.8 69.9 ± 19.3
Sex

Male 26 (66.7) 4 (80.0) 4 (80.0) 13 (72.2) 5 (45.5)
Female 13 (33.3) 1 (20.0) 1 (20.0) 5 (27.8) 6 (54.5)

Clinical stage
1 1 (2.6) 0 (0.0) 1 (20) 0 (0.0) 0 (0.0)
2 4 (10.3) 0 (0.0) 0 (0.0) 2 (11.1) 2 (18.2)
3 25 (64.1) 4 (80.0) 4 (80) 11 (61.1) 6 (54.5)
4 9 (23.1) 1 (20.0) 0 (0.0) 5 (27.8) 3 (27.3)

Death due to disease progression 5 (12.8) 0 (0.0) 0 (0.0) 3 (16.7) 2 (18.2)
Treatment

LCCRT (no other data) 4 (10.3) 0 (0.0) 0 (0.0) 3 (16.7) 1 (9.1)
LCCRT (capecitabine) 26 (66.7) 5 (100.0) 3 (60.0) 9 (50.0) 9 (81.8)
LCCRT (5FU) 3 (7.7) 0 (0.0) 0 (0.0) 3 (16.7) 0 (0.0)
LCCRT (FOLFIRI) 2 (5.1) 0 (0.0) 0 (0.0) 2 (11.1) 0 (0.0)
Sandwich CRT 2 (5.1) 0 (0.0) 2 (40.0) 0 (0.0) 0 (0.0)
SCRT 1 (2.6) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0)
Palliative 1 (2.6) 0 (0.0) 0 (0.0) 0 (0.0) 1 (9.1)

Values are n(%) unless otherwise stated. LCCRT, long-course chemoradiotherapy; FOLFIRI, folinic acid, fluorouracil and irinotecan; SCRT, short-course radiotherapy; 
5FU, fluorouracil.
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47 enriched gene sets in tumours of complete responders (Fig. 1d). 
Among the gene sets with the highest enrichment scores were 
Complement Activation and B Cell Mediated Immunity, 
consistent with the majority of the 87 DEGs in complete 
responders being related to immunoglobulins.

Diversity analysis of the microbiome of rectal 
tumours
No significant differences were found in Observed or Shannon 
measures of α-diversity (Fig. S3A–H). Any distinct group 

clustering by NMDS was not detected, indicating similar 
β-diversity between the response groups (Fig. S3I–L).

Differential abundance analysis of bacterial 
species between radiotherapy response groups
A similar approach to DGEA in the human data set was used to 
identify bacterial taxa that were differentially abundant in 
tumour versus matched normal samples, and specific to 
complete responders. Analysis of differences in the tumour 
microbiome between response groups identified 10 bacterial 
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Fig. 1 Host differential gene expression and gene set enrichment analysis 

a Differentially expressed genes (DEGs) classified into immunoglobulin (Ig)-related genes and other non-Ig genes. p.adj, adjusted P value. b Transformed counts (rlog) 
of Tumour/Normal for complete responders compared with other responders of a representative DEG, IGKC. b1 Tumour versus Normal for each response category 
(FC, log2-fold change; p.adj, adjusted P value). b2 Tumour values and their corresponding normal values per sample by response. c Heatmap of the top 10 (by adjusted P 
values) DEGs, which are all Ig-related genes, and the other 12 non-Ig DEGs clustered by sample and gene. d Top 47 positively enriched gene sets (y axis) in Tumour 
versus Normal of Complete Responders. All have adjusted P values (Benjamini–Hochberg) of 0.00928. Gene ratio is the ratio of core enrichment genes to the gene set 
size. Gene sets coloured yellow are immune-related gene sets. Gene sets coloured red are gene sets that refer to a response to microbial input. All other gene sets are 
coloured black.
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species that were differentially abundant (adjusted P values 
t <0.100) in tumour tissue compared with matched normal 
tissue in complete responders (Fig. 2). Bacterial species identified 
included Ruminococcaceae bacterium, Hungatella hathewayi, 
Bacteroides thetaiotaomicron and Clostridium species27–32. Plotting 
tumour versus normal rlog transformed counts per sample of 
these microbes showed that there is a separation between the 
complete responders compared with other responders, although 
not as pronounced as that seen in human DEGs (Fig. S4).

Correlation between host gene expression and 
microbial abundances
Significant correlations between DEGs and differentially 
abundant bacterial species were identified. Among DEGs that 
positively correlated with the microbial abundances, the BATF2 
gene was notable. Positive correlations (Spearman coefficient: 
0.355–0.549; BH-adjusted P value: 1.661 × 10−4−7.699 × 10−2) of 
this gene with several DA bacterial species, previously linked to 
CRC, including Ruminococacceae bacterium and Bacteroides 
thetaiotaomicron (Fig. 3), were found.

Discussion
The identification of predictive biomarkers of response to CRT will 
result in improved survival, a reduction of morbidities rate related 
to unnecessary treatment, and a more targeted approach to 
treatment for patients with rectal cancer. Previous studies have 
attempted to identify markers of complete response to CRT, and 
while clinicopathological and radiological features have been 
identified, they are limited in sensitivity and specificity1. 
Intratumoural heterogeneity contributes to a lack of 
reproducibility between molecular biomarker studies, and as a 
result, no biomarker is currently in clinical use1,8. In order to 
identify a predictive biomarker of response for rectal tumours, a 
mechanistic link to the underlying tumour biology is also 
warranted. This study identifies potential biomarkers of 
complete response to CRT in patients with rectal cancer, in 
addition to uncovering novel links between the tumour 
microbiome and immune response in the rectal tumour 
microenvironment. Tumour tissues were firstly compared with 
their corresponding matched normal tissues, to mitigate 
interpersonal differences that are not due to tumour 
characteristics.

Rather than a continuum of gene expression changes from 
complete responders to non-responders, a tight clustering of 
complete responders based on gene expression of mainly 
immune-related genes, compared with all other patients, was 
observed. This suggests the presence of a distinct tumour 
microenvironment in a group of patients that predisposes them 
to a complete response to radiotherapy. In these cohorts, the 
patients showed significantly higher expression of genes 
responsible for complement activation and B cell-related 
functions in their tumour tissue compared with adjacent 
normal tissue, supporting previously published reports that 
immunoglobulins may recognize radiotherapy-induced 
neoantigens resulting in complement activation and CD8+ T cell 
responses33.

Enriched gene sets related to antigen presentation in the cohort 
of complete responders were also observed. Ionizing radiation can 
cause DNA mutations, which, when translated into peptides, are 
presented on MHC-1 molecules, eliciting a cytotoxic immune 
response. This has been observed in studies of other cancer 
types, where radiation has been shown to recruit neutrophils 
and monocytes, as well as promote maturation of antigen 
presenting cells34. Radiotherapy also results in mimicry of viral 
infections, where cytosolic DNA induces the release of type 1 
interferons that recruit dendritic cells specialized in antigen 
presentation to CD8+ T cells35. Our findings indicate that 
enhanced antigen presentation in pretreatment tumours 
predisposes them to a successful response to CRT.

A significant enrichment of the BATF2 gene was found in 
patients who went on to have a complete response to CRT, 
which is consistent with findings that BATF2 depletion in 
tumour compared with normal tissue is correlated with poor 
prognosis in CRC36. BATF2 is thought to be induced by type 1 
interferons and play a role in viral infections37 and may, as a 
result, contribute to radiotherapy-induced responses that mimic 
viral infection. Type-1 interferons are important players in 
antiviral immune responses, recruiting dendritic cells 
specialized in antigen presentation to CD8+ T cells35. This is 
again consistent with viral infection and antigen 
presentation-enriched gene sets identified in complete 
responders in this cohort. Furthermore, BATF2 may also induce 
antitumour effects through the induction of CD8+ T cells38.

The enrichment of immune response-related genes and gene 
sets in tumours of complete responders to CRT in our cohort is 

Campylobacter ureolyticus

Clostridium sp. CAG:138

Hungatella hathewayi

Ruminococcaceae bacterium

Clostridia bacterium

Uncultured Clostridium sp.

Bacteroides thetaiotaomicron

Bacteroides finegoldii

Burkholderiales bacterium

Streptomyces rimosus

p.adj

0.080

0.060

0.040

0 2

log 2FC

4

Fig. 2 Differentially abundant bacteria in tumour samples compared with matched normal tissue, specific to complete responders 

Plot of the 10 differentially abundant bacteria showing their log2-fold changes (x axis) and adjusted P (p.adj) values by colour.

http://academic.oup.com/bjsopen/article-lookup/doi/10.1093/bjsopen/zrad035#supplementary-data


6 | BJS Open, 2023, Vol. 7, No. 3

a

b

Streptomyces rimosus
1

0.78

0.56

0.33

0.11

–0.11

–0.33

–0.56–0.56

–0.78

–1

A
C

09
28

28
.1

IG
H

V
1-

2

IG
H

V
3-

72

IG
H

V
4-

61

IG
K

V
6-

21

IG
H

V
3-

11

IG
LV

2-
14

IG
H

V
3-

53

IG
K

V
1D

-1
2

B
A

T
F

2

M
M

P
7

LA
M

T
O

R
1

T
S

K
U

A
C

23
37

55
.1

Burkholderiales bacterium

Ruminococcaceae bacterium

Uncultured Clostridium sp.

Clostridia bacterium

Clostridium sp. CAG:138

Campylobacter ureolyticus

Bacteroides thetaiotaomicron

Hungatella hathewayi

10.0

R = 0.549, P = 3.14e-07 R = 0.441, P = 6.41e-05

7.5

5.0

2.5

0.0

7.0 7.5 8.0 8.5 9.0

BATF2 versus Ruminococcaceae bacterium BATF2 versus uncultured Clostridium sp. BATF2 versus Clostridia bacterium

10.0

7.5

5.0

2.5

0.0

7.0 7.5 8.0

S
pe

ci
es

 r
lo

g

8.5 9.0

10.0

7.5

5.0

2.5

0.0

7.0 7.5 8.0 8.5 9.0

R = 0.471, P = 1.73e-05

BATF2 versus Clostridium sp. CAG:138

R = 0.33, P = 0.00372

8

4

0

7.0 7.5 8.0 8.5 9.0

Gene rlog

R = 0.371, P = 0.000903

BATF2 versus Bacteroides thetaiotaomicron

7.5

5.0

2.5

0

7.0 7.5 8.0 8.5 9.0

BATF2 versus Hungatella hathewayi

12

8

4

0

7.0 7.5 8.0 8.5 9.0

R = 0.392, P = 0.000429

Fig. 3 Correlations between differentially expressed genes and differentially abundant microbes 

a Correlation plot showing bacteria–gene correlations with at least one significant correlation (adjusted P value <0.100). Spearman correlation coefficients (ρ) are 
represented by the colour bar; blank spaces represent correlations that are not significant. b BATF2 and its positive correlations with differentially abundant 
bacteria. R, Spearman coefficient; e, base number x10power.



Sulit et al. | 7

consistent with the findings of a previous study39. In that study, 
they identified antigen presentation, interferon (IFN) activity 
and B cell activity to be enriched in good responders to 
preoperative CRT in locally advanced rectal cancer (LARC) 
patients, and that these factors may relate to good responses to 
the treatment via activation of an antiviral-like response and 
CD8+ T cell recruitment. While their study largely used 
microarray gene expression and targeted sequencing of CRC 
genes, this study mainly used whole RNA sequencing, which 
also allowed investigation of possible contributions of the 
microbiome.

A key finding of this study is the enrichment of gene sets 
relating to response to bacteria in complete responders. The role 
of the microbiome in therapy response has recently become a 
focal point for studies of different types of treatments in a 
variety of cancer types. Early studies of the microbiome in CRC 
had suggested a decrease in microbial diversity associated with 
tumours compared with healthy controls10,11,40. However, more 
recent studies refute this finding, where CRC samples have 
increased richness41 or are no different27 compared with 
controls. Consistent with these more recent studies42, here, no 
difference was found in microbiome diversity metrics between 
the response groups. However, a number of bacterial species 
that were differentially abundant in tumours of complete 
responders were identified, several of which had previously been 
implicated in CRC carcinogenesis and prognosis. Hungatella 
hathewayi has been reported to be differentially abundant in 
CRC27, and has been reported to drive methylation of tumour 
suppressor genes28 and was also found to be significantly more 
abundant in complete responders in the present study. 
Ruminococcaceae, a putative commensal genus, has been linked 
to the expression of T cell recruiting chemokines31, indicating a 
role in tumour-killing immune activation, and a low abundance 
has been associated with CRC29,30. High levels of this genus may 
indicate a beneficial role in driving response to CRT in the 
tumours of complete responders through enhanced T cell 
activation. Similarly, Clostridium species have been associated 
with a protective effect against CRC, due to their ability to 
synthesize short-chain fatty acids, notably butyrate, which can 
promote CRC cell apoptosis and inhibit carcinogenesis32.

The importance of the gut microbiome in response to 
immunotherapy has garnered much attention in recent years, 
where species of microbes have been associated with good 
response to immunotherapy treatments13,14. Given the 
similarities with the known immune mechanisms at play in 
radiotherapy response, for example CD8+ T cell activation, an 
overlap between the established systemic effect of the 
microbiome on immunotherapy efficacy and that of radiotherapy 
is likely. Ruminococcaceae and Bacteroides thetaiotaomicron, both 
enriched in complete responders in our cohort, have been 
reported to enhance immunotherapy effects13,43, and this 
mechanism may also contribute to radiotherapy-induced 
immune clearance of cancer cells. Indeed, a previous study13

showed that there is a correlation between CD8+ T cells and 
abundance of the Ruminococcaceae family, and that there are 
statistically more CD8+ T cells in responders versus 
non-responders to immunotherapy in melanoma patients. Taken 
together with the associations between differentially abundant 
bacteria and BATF2 expression, and the increased abundance of 
commensal bacteria, such as Clostridium spp., the activation of 
immune pathways in the tumour microenvironment indicates a 
potential role of the tumour microbiota in the radiotherapy 
response in rectal cancer. These findings also suggest that there 

may be value in changing the gut microenvironment (for example 
through faecal microbiota transplants) as a means of improving 
the efficacy of CRT, in a similar manner to that reported for 
immunotherapy. Nevertheless, future studies to assess the 
clinical utility of incorporating immune and bacterial gene 
markers to stratify patients for targeted therapy are necessary in 
larger prospective cohorts.

This study has some limitations: one is the possible selection 
bias this study has in collecting from two different centres 
(Christchurch Hospital in New Zealand and the Peter 
MacCallum Cancer Centre in Melbourne), although a mixture of 
responses come from both study groups. In addition, this study 
is computational and further laboratory testing of identified 
genes, microbes and mechanisms in experimental procedures is 
highly advocated.

Finally, the results reported here suggest that an increase in the 
expression of genes contributing to immune activation in 
tumours compared with normal samples contributes to 
radiosensitivity. The main hypothesis was that this primes a 
microenvironment that activates antitumour responses during 
radiotherapy. Furthermore, bacteria enriched in the tumours of 
complete responders in this study have previously been 
associated with CRC and improved efficacy of immunotherapy, 
and could possibly contribute to the immune activation taking 
place in complete response to radiotherapy. These data provide 
future targets for biomarker validation and provide direction to 
investigate the mechanisms of radiotherapy response in rectal 
cancer.
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