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Background: The specific functions of PPP1R81 has been elucidated in multiple cancers;
however, its role in lower-grade glioma (LGG) remains unknown. In this research, we in-
spected the specific role of PPP1R81 in LGG.
Methods: We totally evaluated the expression pattern and prognostic role of PPP1R81 in
multitudinous tumors. Subsequently, we systematically examined the connection between
PPP1R81 expression and prognosis, clinical characteristics, biological functions, genetic
variations, and immunological characteristics in LGG according to the Cancer Genome Atlas
(TCGA) and Chinese Glioma Genome Altas (CGGA) databases. In vitro experiments were
executed to inspect the expression level and specific roles of PPP1R81 in LGG.
Results: PPP1R81 was elevated in multiple tumors and was tightly linked to a poor progno-
sis. LGG with higher expression of PPP1R81 showed poorer prognosis compared with lower
expression of PPP1R81. The results of univariate and multivariate Cox regression analyses
confirmed that the expression of PPP1R81 was an independent prognostic biomarker of
LGG. Immune cell infiltration, immune checkpoint genes (ICPGs), copy number alterations
(CNA), and tumor mutation burden (TMB) were also closely associated with PPP1R81 ex-
pression in LGG. In vitro experiments demonstrated that PPP1R81 was up-regulated and
closely interrelated with cell proliferation and cell cycle in LGG.
Conclusion: PPP1R81 was an independent prognostic signature and underlying therapeutic
target for patients with LGG.

Introduction
Gliomas, the most common brain tumor, are grouped into grade I to IV by the World Health Organization
(WHO) in the light of the corresponding standard clinical features [1]. Currently, WHO grade II and III
gliomas, termed LGGs and WHO grade IV gliomas (glioblastoma, GBM) remain resistant to traditional
treatments [2,3]. Although LGG achieve a better survival rate than GBM, some patients tend to progress to
GBM within months. Survival time in patients with LGG is strongly associated with therapeutic sensitivity
[4]. Thence, it is critical to explore a novel prognostic biomarker to develop targeted LGG therapy.

PPP1R81 is also known as the cell division cycle associated protein 2. PPP1R81 can bind protein phos-
phatase 1 γ (PP1γ) and then regulate H3 phosphorylation [5]. A plenty of research has verified that
PPP1R81 plays a significant part in cell cycle [6,7]. Numerous studies have also observed that PPP1R81
is elevated and closely associated with a worse prognosis in various cancers, including prostate [8], col-
orectal [9], breast [10], and liver [11] cancers. However, the association between PPP1R81 expression,
prognosis, and immunological characteristics of LGG is still unknown. Thus, we conducted this study to
detect whether PPP1R81 was associated with the survival and immunological characteristics of LGG.
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First, we implemented a pan-cancer analysis of PPP1R81 in 33 tumors and found that the expression of PPP1R81
was significantly elevated in LGG. Afterwards, we inspected the prognostic role of PPP1R81 in LGG by bioinformatics
analysis in an independent cohort of TCGA (n=477) and CGGA (n=419). According to the median expression
of PPP1R81, it is grouped into high-PPP1R81 and low-PPP1R81 subtypes. The high-PPP1R81 subgroup exhibited
worse prognosis than the low-PPP1R81 subgroup in both TCGA and CGGA cohorts. We implemented univariate
and multivariate Cox regression analyses and detected that PPP1R81 was an independent prognostic biomarker of
LGG. The nomogram model we created was able to accurately speculate the overall survival (OS) of LGG patients. On
the grounds of the differentially expressed genes (DEGs), functional enrichment analyzes were performed to inspect
the functional mechanism of PPP1R81 in LGG. Subsequently, Gene set variation analysis (GSVA) was also employed
to examine the potential molecular pathways regulated by PPP1R81 in LGG. Additionally, the single sample GSEA
algorithm (ssGSEA) was employed to inspect the connection between PPP1R81 expression and the enrichment of
the 13 immune-related signatures. The relationship between immunological characteristics, including immune and
stromal scores, immune infiltrating cells, and ICPGs expression, CNA burden, TMB, and PPP1R81 expression was
also examined. The results illustrated that PPP1R81 expression was tightly interrelated with the immune infiltration
in LGG. Eventually, we verified that PPP1R81 was elevated and vital for cell proliferation and cell cycle in LGG by
performing in vitro experiments. In summary, combined with the above comprehensive analysis, we hypothesized
that PPP1R81 was an independent prognostic biomarker and was expected to be an underlying therapeutic target of
patients with LGG.

Methods
The detailed flow chart of this research process is exhibited in Figure 1.

Data gathering and processing
Gene expression, clinical information, and TMB data applied to pan-cancer analysis were attained from TCGA
database. Furthermore, PPP1R81 expression data in normal tissue were acquired from Genotype-Tissue Expression
(GTEx) datasets. Differential expression of PPP1R81 between TCGA and GTEx datasets was examined using Sanger-
box website tools (http://sangerbox.com/).

In the present study, two independent LGG datasets were explored, including TCGA and CGGA datasets
(CGGA 693). The gene expression and relevant clinical data of the LGG samples were acquired from TCGA and
CGGA websites, respectively. The downloaded gene expression data were in Fragments Per Kilobase of transcript
per Million (FPKM) format. It was not easy to compare because of the inconsistency of FPKM values. Therefore, we
transformed the FPKM values of the two LGG datasets to Transcripts Per Kilobase Million (TPM) values by adopting
the same algorithm utilized in previous studies [12,13]. Then, we transformed the TPM values by log2 to ensure easier
comparison. The genomic mutation data in LGG were obtained from TCGA database.

Patient’s inclusion criteria
LGG patients in the two independent cohorts were included in the present study according to the following criteria:
(1) patients with grade WHO II or III classification, (2) LGG patients with OS time >1 month, and (3) LGG patients
with mRNA expression data. Based on these inclusion criteria, 477 LGG patients (Supplementary Table S1) and 419
LGG patients (Supplementary Table S2) were included in TCGA and CGGA datasets. However, to ensure consistency
among 33 cancers, LGG patients with OS time <1 month were also adopted in the PPP1R81 pan-cancer analysis.

Prognostic role of PPP1R81
LGG patients were grouped into low-PPP1R81 and high-PPP1R81 subgroups in line with the median expression of
PPP1R81 in both TCGA and CGGA cohorts. To detect the predictive prognostic effect of PPP1R81 expression in
the two datasets, we established receiver operating characteristic (ROC) curves and measured the area under the
curve (AUC) values. The independent prognostic value of PPP1R81 expression was investigated by performing Cox
regression analyses.

Creation and verification of the nomogram model
A nomogram model was created by exploiting the R package ‘rms’ [14], in the light of common independent prog-
nostic signatures (PPP1R81 expression, isocitrate dehydrogenase (IDH) mutation status, 1p/19q deletion, and WHO
Grade) using TCGA and CGGA cohorts to forecast the OS of LGG patients. Calibration curves were implemented to
examine the precision of four independent prognostic factors in forecasting the prognosis of LGG patients.
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Figure 1. Flowchart showing the processes used in this study

Functional annotations and gene set variation analysis
We identified DEGs between low-PPP1R81 and high-PPP1R81 subtypes by conducting limma package [15] in both
TCGA and CGGA cohorts (|log2 [fold change]>0.5 and the false discovery rate (FDR) < 0.05). In total, 1680 and
12,346 DEGs were selected in TCGA (Supplementary Table S3) and CGGA (Supplementary Table S4) cohorts, re-
spectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were executed by
adopting the clusterProfiler package [16] in line with DEGs and the results were displayed using ImageGP website
tools (http://www.ehbio.com/ImageGP/).
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Additionally, we exploited GSVA to investigate the most enriched molecular pathways of the low-PPP1R81 and
high-PPP1R81 subtypes by exploiting the limma package (|log2 [fold change]>0.5 and FDR< 0.05).

Cell culture and lentiviruses transfection
We acquired three LGG cell lines, including SW1783, and BT142, and SW1088, from the American Type Culture
Collection (ATCC). The normal human astrocyte (NHA) cell line was collected from Culture Collection of the Chi-
nese Academy of Sciences (Shanghai, China). We cultured SW-1088 and SW-1783 cell lines with Leibovitz’s L-15
medium and 10% fetal bovine serum (Gibco). Additionally, BT142 and NHA cell lines were cultured with Dul-
becco’s modified Eagle’s medium/F12 medium. The incubated conditions of these cell lines were 37◦C and 5% CO2.
We purchased lentiviruses expressing shRNA for PPP1R81 from Obio Technology (Shanghai, China). The target
sequence of PPP1R81 shRNA was 5′-TGGGACTCATCCGAGCTTAAT-3′. We transfected the SW1088 cell lines
with shRNA-PPP1R81 and negative control (NC) lentiviral vectors according to the protocol. The shRNA-PPP1R81
lentiviral vector generated the siRNA-PPP1R81 after entering the SW1088 cells. Then the siRNA-PPP1R81 partici-
pated in RNA interference and exerted the PPP1R81 gene silencing effect. The multiplicities of infection (MOIs) were
10 in SW1088 cells. Polybrene was utilized to promote transfection efficiency and puromycin was employed to screen
out positive cells.

Quantitative Real-Time PCR (qRT-PCR)
We dissociated total RNA from cells using the Simply P Total RNA Extraction Kit (Bioflux China),
and then reverse transcribed to cDNA with HiScript III-RT SuperMix (Vazyme, China). Afterwards,
qRT-PCR analysis was conducted by utilizing ChamQ Universal SYBR qPCR Master Mix (Vazyme, China).
The results were processed by exploiting the 2−��CT method. The genes primer sequences were as fol-
lows: forward PPP1R81 primer, 5′-TGATGTCAGGTCACCAGCTACTC-3′; reverse PPP1R81 primer,
5′-GACACATCTTAACAGAGGGTTTCTT-3′; forward GAPDH primer, 5′-AACGGATTTGGTCGTATTGGG-3′,
and reverse GAPDH primer, 5′-GGCAACAATATCCACTTTACCAGA-3′.

CCK-8 assay
The transfected SW1088 cells were plated in 96-well plates at 2 × 103/well and incubated. Next, we inspected the
cell proliferation by Cell Counting Kit 8 assay (Glpbio, U.S.A., GK10001) in 0, 24, 48, 72, and 96 h. OD value was
measured at 450 nm by enzyme labeling instrument.

Colony formation assay
We seeded the transfected SW1088 cells in six-well plates at 2 × 103/well and incubated for 14 days. Next, we stained
the cells using 0.1% Crystal Violet stain solution and counted the number of colonies by ImageJ.

EdU assay
The transfected SW1088 cells (2 × 104) were plated in 24-well plates and cultured for 72 h. Afterwards, the cells
were incubated with EdU reagent (BryoClick™ Edu-555, C0075S) for 2 h. The 4% paraformaldehyde and 0.3% Triton
X-100 were utilized to fix the cells at room temperature for 15 min. Eventually, we stained cells using click reaction
solution and the Hoechst 33342 staining at room temperature and away from light for 15 min. We quantified the EdU
incorporation rate by ImageJ.

Cell cycle analysis
We fixed transfected SW1088 cells in 70% ethanol and preserved at 4◦C overnight. Afterwards, the cells were pro-
cessed with RNase A containing propidium iodide (Suzhou, China) at room temperature for 30 min. We examined
the cell cycle distribution by operating flow cytometry.

CNA and somatic mutation analysis
The CNA and TMB data from LGG patients were acquired from the TCGA database. All deletions/amplifications
in the entire genome were screened by GISTIC 2.0 [17]. Circos plots were used to display chromosome loss/gain
alterations using the RCircos package [18]. The frequencies and types of gene mutations were investigated using the
maftools package [19].
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Immunological characteristics of LGG
The ESTIMATE algorithm was implemented to assess the abundance of stromal cells (StromalScore), immune cells
(ImmueScore), non-tumor compounds (ESTIMATEScore), and tumor purity [20]. CIBERSORT, a deconvolution
algorithm, was executed to measure the composition of 22 types of tumor infiltrating immune cells (TIICs) in line
with the median expression of PPP1R81 in LGG [21]. Furthermore, we adopted the ssGSEA algorithm to measure the
abundance of 13 immune-related factors, obtained from former studies [22,23], between the two subgroups in both
TCGA and CGGA cohorts. Additionally, we selected 25 ICPGs associated with potential treatment from previous
studies [23,24] and identified their correlation with the expression of PPP1R81 in both TCGA and CGGA datasets.

Statistics
The two-sided log-rank test and the Kaplan–Meier method were utilized to identify distinct prognosis between
high-PPP1R81 and low-PPP1R81 expression subtypes. The ability of PPP1R81 expression to predict prognosis was
further evaluated using ROC curves and AUC values. The independent prognostic role of the expression of PPP1R81
was examined by Cox regression analyses. Additionally, we executed the Student’s t-test to distinguish between dis-
tinct levels of immune-associated factors, including stromal score, immune score, tumor purity, CNA burden, TMB,
13 immune-associated signatures, and 25 ICPGs, between the high-PPP1R81 and low-PPP1R81 subtypes. We imple-
mented Spearman’s or Pearson’s correlation test to examine the connection between distributed variables. We con-
ducted all statistical analyses in the R language v4.1.0, and GraphPad Prism 8 (GraphPad Software, Inc.).

Results
Pan-Cancer analysis of PPP1R81
By estimating the results of pan-cancer analysis obtained from TCGA and GETx databases, we determined that
PPP1R81 was abnormally expressed in multiple tumors. The comparison showed that PPP1R81 was significantly
elevated in 24 cancers, including ACC, BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC,
KIRP, LGG, LIHC, LUAD, OV, PAAD, PRAD, SKCM, STAD, TGCT, THCA, UCEC, and UCS, and slightly elevated
in READ. However, the expression of PPP1R81 was depressed in LAML (Figure 2A).

We implemented a univariate Cox regression analysis to inspect the prognostic value of PPP1R81 expression across
the 33 cancers. Interestingly, PPP1R81 expression was tightly interrelated with the prognosis of ACC, COAD, KICH,
KIRP, LGG, LIHC, LUAD, MESO, PAAD, PCPG, SARC, and THYM (Figure 2B). Furthermore, a higher expression
of PPP1R81 indicated a poorer prognosis in LGG (Figure 2C).

To evaluate genetic variation in the 33 cancer types, the connection between PPP1R81 expression and TMB was ex-
amined. The results confirmed that PPP1R81 expression was strongly linked to TMB in ACC, BLCA, BRCA, COAD,
HNSC, KICH, KIRC, LGG, LUAD, LUSC, MESO, PAAD, PRAD, READ, SARC, SKCM, STAD, THYM, and UCEC
(Figure 2D). Subsequently, we examined the co-expression of 25 ICPGs and PPP1R81 in the 33 cancer types and
observed marked differences in expression in BLCA, BRCA, CESC, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD,
LUSC, PAAD, PRAD, STAD, TGCT, THCA, THYM, and UCEC (Figure 2E).

Based on the above results, we investigated the clinicopathological features, prognosis, biological process, genetic
variation, and immunological characteristics of PPP1R81 in LGG.

Correlation between PPP1R81 and clinicopathological characteristics in
LGG
The relationship between clinicopathological characteristics, including age, sex, WHO grade, IDH status, 1p/19q
status and O6-methylguanine DNA methyltransferase (MGMT) methylation status, and differences in expression of
PPP1R81 in LGG was explored. As shown in the heatmap (Figure 3A) and violin plots (Figure 3B), higher PPP1R81
expression was associated with older age, higher WHO grade level, IDH wildtype status, 1p/19q non-codel status, and
MGMT promotor unmethylated status in TCGA dataset. Similarly, these results were also detected in CGGA dataset
(Supplementary Figure S1).
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Figure 2. Pan-cancer analysis of PPP1R81 in 33 cancers

(A) Distinct expression of PPP1R81 in various tumor tissues and relevant normal tissues. (B) Univariate Cox regression analysis

of PPP1R81 expression in multiple tumors. (C) Kaplan–Meier analysis of PPP1R81 in pan-LGG. (D) Differential TMB in different

cancers. (E) Co-expression of ICPGs in different cancers (*P<0.05, **P<0.01, ***P<0.001).
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Figure 3. Clinical relevance of PPP1R81 in LGG patients

(A) Connection between PPP1R81 expression and LGG clinical traits in TCGA cohort. (B) Analysis of the variance in PPP1R81

expression and clinical traits in TCGA dataset. Prognostic analysis of high-PPP1R81 and low-PPP1R81 subtypes in TCGA (C) and

CGGA (D) cohorts. Distribution of the risk score, OS, and OS status of the high-PPP1R81 and low-PPP1R81 subtypes in TCGA

(E) and CGGA (F) datasets. ROC curves reflecting the predictive capacity of the risk score in TCGA (G) and CGGA (H) cohorts

(*P<0.05, **P<0.01, ***P<0.001).
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Higher expression of PPP1R81 predicted a poorer prognosis for LGG
patients
We evaluated the OS between the low-PPP1R81 and high-PPP1R81 subtypes and determined that high-PPP1R81
subtype owned lower OS than in low-PPP1R81 subtype in TCGA (Figure 3C) and CGGA (Figure 3D) datasets. Sub-
sequently, we investigated the distinct OS between the two subgroups, including WHO grade, IDH, and 1p/19q sta-
tus in both TCGA and CGGA datasets. The results attested that OS was higher in low-PPP1R81 subtype than in
high-PPP1R81 subtype, except for the WHO II grade cohort in TCGA dataset (Supplementary Figure S2A). Further-
more, we also examined the conjunction between PPP1R81 expression, OS status, and risk score in LGG. Up-regulated
PPP1R81 correlated with a poorer OS status and higher risk score in TCGA (Figure 3E) and CGGA (Figure 3F)
datasets. The ROC curves also confirmed the precision of PPP1R81 in predicting the prognosis of LGG patients. Fur-
thermore, the AUC were 0.789/0.788/0.719, and 0.635/0.686/0.707 at 1/3/5 years in TCGA (Figure 3G) and CGGA
(Figure 3H) datasets, respectively.

Cox regression analysis and nomogram model
We implemented a univariate and multivariate Cox analysis to inspect the prognostic value of PPP1R81 expression in
LGG. The results revealed that PPP1R81 expression, age, WHO grade, IDH, and 1p/19q were independent prognostic
signatures for TCGA cohort (Figure 4A). Similarly, the results were also detected in the CGGA cohort (Figure 4B).

To further assess the ability of PPP1R81 in forecasting the prognosis of LGG patients, a nomogram model was
conducted in line with WHO grade, PPP1R81 expression, IDH mutation, and 1p/19q codel, which were common
independent prognostic factors in the two cohorts. WHO grade, PPP1R81 expression, IDH mutation, and 1p/19q
codel were scored accordingly, and the total score was applied to forecast the OS of LGG patients (Figure 4C). Fur-
thermore, calibration curves were used to affirm the precision of this model in forecasting the OS of LGG patients
(Figure 4D,E). These results confirmed that the nomogram model could be exploited to accurately forecast the OS of
LGG patients.

Biological functions of PPP1R81 in LGG
To define the biological functions of PPP1R81 in LGG, we first identified DEGs by performing a differential ex-
pression analysis between the high-PPP1R81 and low-PPP1R81 subtypes. A total of 1680 and 12,346 DEGs were
acquired and subjected to GO and KEGG analysis in TCGA and CGGA cohorts, respectively. The results affirmed
that PPP1R81 was apparently correlated with biological processes (BP), including DNA replication, cell growth, and
T-cell activation; cellular components (CCs), including nuclear replication fork, nuclear chromosome, and cell divi-
sion; molecular functions (MF), including ATPase activity, protein kinase regulator activity, and growth factor bind-
ing; KEGG pathways, including the PI3K-Akt signaling pathway, cell cycle, and p53 signaling pathways in both TCGA
(Figure 5A) and CGGA (Supplementary Figure S3A) datasets.

To further investigate the potential mechanisms associated with PPP1R81 overexpression in LGG, we employed
GSVA analysis in TCGA and CGGA datasets. The results denominated that high PPP1R81 expression was tightly in-
terrelated with hyperactivated pathways, including DNA replication, cell cycle activation, and p53 signaling pathways
in both TCGA (Figure 5B) and CGGA (Supplementary Figure S3B) datasets.

PPP1R81 correlated with genetic variations
Former research has explored the underlying role of genetic variations in regulating tumor immunity [25–27]. There-
fore, we explored different genetic variations by performing CNA and somatic mutations analysis in the two sub-
groups. The copy number burden, gene amplifications, and deletions in high-PPP1R81 subgroup were distinctly
higher than in low-PPP1R81 subgroup (Figure 6A). The somatic mutation analysis demonstrated that the genes TP53,
ATRX and NOTCH1 in the high-PPP1R81 subgroup had mutations of higher frequency than in the low-PPP1R81
subgroup, while the mutations IDH1, CIC, and FUBP1 mutations in low-PPP1R81 subgroup were more frequent
than in the high-PPP1R81 subgroup (Figure 6B,C). Besides, we ascertained that PPP1R81 expression was positively
interrelated with the TMB level (Figure 6D,E).

Correlation between PPP1R81 and immunological characteristics in LGG
The results of the GO analysis revealed an underlying association between PPP1R81, T-cell activation, and
macrophage activation, which further prompted us to evaluate the association between PPP1R81 and immunological
characteristics in LGG. First, we exploited the ESTIMATE algorithm tool to inspect the composition of the tumor
microenvironment (TME) of the low-PPP1R81 and high-PPP1R81 subtypes. The results illustrated that PPP1R81

8 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Cox regression analysis and nomogram model for LGG patients

Univariate and multivariate Cox regression analysis of clinical traits and expression of PPP1R81 in TCGA (A) and CGGA (B) cohorts.

Nomogram model created with WHO grade, IDH mutation, 1p/19q codel, and PPP1R81 expression in TCGA cohort (C). Calibration

curves: confirming the accuracy of predicting 1/3/5-year OS in TCGA (D) and CGGA (E) datasets.
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Figure 5. Biological functions of PPP1R81 in LGG in TCGA database

(A) Functional enrichment analyses for PPP1R81 expression in patients with LGG. (B) GSVA for PPP1R81 in LGG patients.

expression was positively connected with the ESTIMATE, immune, and stromal scores, but was inversely interrelated
with tumor purity in TCGA cohort (Figure 7A). Similarly, the results were also found in CGGA dataset (Supplemen-
tary Figure S4A). Thereafter, we utilized CIBERSORT to measure the infiltration abundances of TIICs in LGG. In
TCGA dataset, resting memory CD4 T cells, resting dendritic cells, M1 macrophages, and neutrophils were more
enrich in high-PPP1R81 subgroup (Figure 7B). Similarly, the results were also detected in CGGA dataset (Supple-
mentary Figure S4B).

To examine the conjunction between PPP1R81 expression and immune infiltration, we implemented the ssGSEA
algorithm to measure the abundances of 13 immune-related factors. We detected that the abundances of most

10 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. Comparisons of somatic variations between low-PPP1R81 and high-PPP1R81 expression subtypes in TCGA

(A) Circos plots of the low-PPP1R81 and high-PPP1R81 subtypes revealed chromosome amplifications and deletions and boxplots

exhibited greater burdens of copy number amplifications and deletions in the high-PPP1R81 expression subtype. The waterfall plots

showing the mutated genes in the low-PPP1R81 subtype (B) and the high-PPP1R81 subtype (C). (D,E) TMB levels were positively

linked to the expression of PPP1R81 (*P<0.05, **P<0.01, ***P<0.001).

immune-associated signatures, such as CCR, ICPGs, and inflammation-promoting signatures, in high-PPP1R81 sub-
type were conspicuously higher than in low-PPP1R81 subtype in TCGA (Figure 7C) and CGGA (Supplementary
Figure S4C) datasets. Furthermore, we inspected the differential expression of ICPGs in the two subtypes in TCGA
(Figure 7D) and CGGA (Supplementary Figure S4D) cohorts. The results indicated that most ICPGs, including CD80,
CD86, CD276, PDCD1 (PD-1), CD274 (PDL-1), and CTLA4, were positively linked to the expression of PPP1R81
(Figure 7E and Supplementary Figure S4E).

In vitro validation of PPP1R81 expression in LGG samples
We inspected the mRNA expression of PPP1R81 in NHA and three LGG cell lines. The results confirmed that
PPP1R81 expression was higher in LGG cell lines than in NHA cell line (Figure 8A).

Next, we conducted functional experiments to inspect the conjunction between PPP1R81 expression and cell pro-
liferation in LGG. CCK-8 assays indicated that the viability of SW1088 reduced obviously after down-regulating
PPP1R81 (Figure 8B). Colony formation assays suggested that PPP1R81 knockdown markedly decreased cell colonies
when compared with NC (Figure 8C,D). Moreover, EdU assays indicated that down-regulation of PPP1R81 expres-
sion notably inhibited SW1088 cells proliferation (Figure 8E,F). After silencing PPP1R81 in SW1088 cells, we found
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Figure 7. Different TIME and immunological patterns of the low-PPP1R81 and high-PPP1R81 expression subtypes in TCGA

(A) Comparisons of the ESTIMATE, stromal, immune scores, and tumor purity between the two subtypes. (B) Distribution and

abundance of 22 immune cells between the two subtypes. (C) Distinct immune-associated functions between the two subtypes. (D)

Differential analysis of 25 ICPG expression levels between the two subtypes. (E) Correlation analysis between PPP1R81 expression

and six common ICPGs expression (*P<0.05, **P<0.01, ***P<0.001).

that the number of cells in the G0/1 phase was elevated. However, the number of cells in S and G2/M phase was
decreased (Figure 8G,H). These results indicate that PPP1R81 is crucial for cell proliferation in LGG.
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Figure 8. In vitro experiments of PPP1R81 in LGG

(A) qRT-PCR analysis of PPP1R81 expression in LGG and NHA cell lines. (B) The cell viability of si-PPP1R81-transfected and

si-NC-transfected SW1088 cells by CCK-8 assays. (C,D) Effect of down-regulation of PPP1R81 on colony formation in SW1088

cells was assessed. (E,F) EdU assays were executed to evaluate the cell proliferation after PPP1R81 knockdown in SW1088 cells.

(G,H) Cell cycle assays were conducted to ascertain the cell distribution of the SW1088 cell lines after knockdown PPP1R81

(*P<0.05, **P<0.01, ***P<0.001).

Discussion
Traditional glioma therapies, such as surgery, chemotherapy, and radiotherapy, are still not very effective [28]. Where-
fore, we should ascertain novel biomarkers of LGG in order to develop new targeted drugs to improve the therapeutic
effect of glioma patients. PPP1R81, a cell cycle-associated protein, is closely linked to the malignant progression of
various cancers [29–31]. However, the function of PPP1R81 in LGG remains unknown. First, we implemented a
pan-cancer analysis of PPP1R81 in 33 cancers and found that PPP1R81 expression was positively related to poor
prognosis, TMB burden, and ICPG expression in pan-LGG. Subsequently, we further comprehensively explored the
connection between PPP1R81 expression, prognosis, clinical traits, genetic variations, and immunological character-
istics in TCGA and CGGA LGG cohorts.

We employed KM analysis and found that higher PPP1R81 expression owned inferior prognosis in TCGA and
CGGA cohorts. The Cox regression analyzes confirmed that PPP1R81 expression was an independent prognostic
biomarker of LGG. Additionally, we developed a nomogram model to project the OS of LGG patients and the precision
of the model was verified by calibration curves. Therefore, PPP1R81 may be a forceful prognostic biomarker of LGG.

To explore functional annotations and molecular pathways LGG associated with high-PPP1R81 and low-PPP1R81
expression subtypes, we implemented GO analysis, KEGG analysis, and GSVA in TCGA and CGGA databases. The
results attested that PPP1R81 was closely related to these biological activities, such as T-cell activation, macrophage

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

13



Bioscience Reports (2023) 43 BSR20230028
https://doi.org/10.1042/BSR20230028

cell activation, the cell cycle, and the PI3K-Akt signaling pathway. Therefore, PPP1R81 could play a crucial part in
regulation of immunity and tumor malignant progression. Due to the underlying effects of genomic mutations on
the regulation of tumor immune infiltration, we performed a somatic mutation analysis and a CNA analysis. The
results illustrated that the high PPP1R81 subgroup tended to have a higher TBM burden and CNA burden than the
low PPP1R81 subgroup.

The TME is defined by the presence of stromal cells, infiltrating immune cells, and cancer cells [32]. Accumulating
research has clarified that TME could affect the efficacy of tumor immunotherapy and chemotherapy [33–36]. Thus,
we implemented CIBERSORT and ESTIMATE algorithms to identify the TIICs and the composition of TME of
low-PPP1R81 and high-PPP1R81 expression subtypes. The results confirmed that the expression level of PPP1R81
was positively interrelated with the immune score, stromal score, and ESTIMATE score and inversely correlated with
the tumor purity. In contrast with low-PPP1R81 expression subtype, the resting memory CD4 T cells, resting dendritic
cells, M1 macrophages, and neutrophils were more enrich in high-PPP1R81 expression subtype. Additionally, we also
applied the ssGSEA algorithm to examine immune functions between the two subtypes. The results illustrated that
PPP1R81 was strongly interrelated with immune infiltration in TCGA and CGGA datasets. Increasing evidence has
shown that immune checkpoint inhibitors have a marked therapeutic efficacy in the treatment of cancers [37,38].
Therefore, we carefully inspected the conjunction between PPP1R81 expression and ICPGs and determined that
PPP1R81 expression was positively interrelated with the expression of ICPGs.

Additionally, in vitro experiments confirmed that PPP1R81 was elevated and essential for the cell proliferation and
cell cycle in LGG. We detected that PPP1R81 was remarkably elevated in LGG cell lines when compared with NHA
cell line. Additionally, we detected that the knockdown of PPP1R81 significantly impaired the proliferation abilities
of LGG cells and induced cell cycle arrest. However, there are certain limitations to our research. The molecular
mechanisms of PPP1R81 in LGG should be examined by conducting in vivo and in vitro experiments in the future.
Future research should inspect whether PPP1R81 is a significant therapeutic target for LGG.

Conclusion
In summary, the present study demonstrated that PPP1R81 was a robust prognostic biomarker and closely interrelated
with the cell proliferation and cell cycle of LGG. PPP1R81 may represent a novel therapeutic target for LGG patients
in the future.
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