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A bird’s wings are articulated to its body via highly mobile
shoulder joints. The joints confer an impressive range of
motion, enabling the wings to make broad, sweeping
movements that can modulate quite dramatically the
production of aerodynamic load. This is enormously useful
in challenging flight environments, especially the gusty,
turbulent layers of the lower atmosphere. In this study, we
develop a dynamics model to examine how a bird-scale
gliding aircraft can use wing-root hinges (analogous to avian
shoulder joints) to reject the initial impact of a strong
upward gust. The idea requires that the spanwise centre of
pressure and the centre of percussion of the hinged wing
start, and stay, in good initial alignment (the centre of
percussion here is related to the idea of a ‘sweet spot’ on a
bat, as in cricket or baseball). We propose a method for
achieving this rejection passively, for which the essential
ingredients are (i) appropriate lift and mass distributions;
(ii) hinges under constant initial torque; and (iii) a wing
whose sections stall softly. When configured correctly, the
gusted wings will first pivot on their hinges without
disturbing the fuselage of the aircraft, affording time for
other corrective actions to engage. We expect this system to
enhance the control of aircraft that fly in gusty conditions.
1. Introduction
Flight in the low atmosphere (below 1000 m) is challenging and
often dangerous. Flyers must not only steer clear of obstacles,
terrain and other airborne objects, but also contend with strong
winds and gusty flows [1,2]. Birds are light and fly relatively
slowly; they become increasingly vulnerable as the windspeed
rises [3]. Nevertheless, many of them manage to fly with
remarkable agility and control in this realm of the atmosphere,
with their wings and tails constantly tilting and flexing (e.g. [4])
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in response to the unsteady wind. Designers are now seeking to harness the mechanical principles of

avian wings to enhance the control of novel aircraft [5,6].
In this study, we focus on a specific idea: the utility of wing-root hinges for gust rejection on aircraft,

particularly small unmanned aerial vehicles. The work was motivated by a laboratory experiment in
which a gliding barn owl responded to strong upward gusts (with a magnitude of 40–70% of the
flight speed and a width greater than the wingspan) by immediate rotation of its wings around
the shoulder joints [7]. The motion of the wing masses effectively absorbed the sudden impulse from
the extra aerodynamic load, allowing the torso and head, together equivalent to a fuselage, to
maintain a smooth flight trajectory. Cheney et al. [7] named this effect ‘inertial rejection’; it relies
purely on the displacement of wing inertia and does not require active control.

Inertial rejection can be enhanced by exploiting an intrinsic property of hinged wings and, for that
matter, all rigid (or near-rigid) pivoting masses: the centre of percussion. It is that point on the mass at
which a sudden transverse load does not transmit any immediate reaction force through the pivot. In
other words, the pivot will not ‘feel’ anything in the transverse direction. Players of bat-and-ball
sports, particularly cricket and baseball, will have practical familiarity with the centre of percussion,
as it is closely related to the so-called sweet spot—that special zone on a bat where a ball can be struck
without causing unpleasant jarring of the hands [8,9]. In general, the centre of percussion P of a
hinged object, of mass m, is located at a distance (electronic supplementary material part 1, §6)

P ¼ I
md

, ð1:1Þ

from the pivot point. Distance d is that from the hinge to the centre of mass (CoM) of the object, and I is
the corresponding mass moment of inertia about the hinge.

As such, hinged wings can perform a similar role to suspension systems on terrestrial vehicles. Sabins
[10] patented an early imagining of a suspension system for light aircraft, in which each (rigid) wing was
hinged to the fuselage on a root pin joint and supported on a shock-absorbing strut. The wings were to
deflect up or down in response to changing air loads in flight, and to shocks during landing, with the aim
of reducing structural stresses and enhancing passenger comfort. More recently, studies have suggested
that wing-root hinges can improve the gust response of small-scale aircraft [11,12] and may even provide
opportunities for tuning flight stability and performance [13,14]. To our knowledge, though, gust-
rejecting hinged wings have not yet seen mainstream application on commercial aircraft at any scale,
nor has the centre of percussion been used to enhance any of the designs that do exist.

In this study, we develop a dynamics model to examine how the action of a wing-root hinge can
mitigate the initial impact of an upward gust (hereafter upgust) on the fuselage of a small gliding
aircraft. The gust is wider than the wingspan of the flyer, as in the owl experiment of Cheney et al.
[7]. Having explored the nature of the centre of percussion and its basic role in the transmission of
load from the hinged wings to the fuselage, we propose a method to exploit the mechanics for
immediate passive gust rejection. We call this the percussion effect. Altogether, the results inform the
design of novel wing suspension systems for aircraft that require smoother flight, e.g. those carrying
fragile payloads, cameras or sensors in difficult conditions.
2. Methods
The modelled system is a mechanical analogue for a bird, consisting of a central fuselage (torso) mass and
two rigid wing beams (figure 1). Each wing root is hinged to the fuselage on a pin joint. The fuselage is
free to translate along a vertical line, while the wings can rotate on their hinges in symmetry, i.e. the
wings are identical and their motion is mirrored about the vertical centreline (this representation is
based on the initial kinematic response of the owl to an upgust, in which the wings rotated
symmetrically about the shoulders without significant bending or twist). As such, the system has two
degrees of freedom; we choose fuselage height z and wing angle θ (from the horizontal) as the most
convenient generalized coordinates.

At first, the system travels in level equilibrium flight (lift equals system weight, an approximation for
the glide condition) with constant forward flight speed U. The initial relative wind is therefore horizontal,
also with magnitude U. The system then encounters a strong upgust (whose width far exceeds the
wingspan). This produces extra lift on the wings and impels them upwards, eventually causing the
fuselage to translate vertically as it receives load via the hinges. We seek to understand these vertical
motions, particularly at the level of the fuselage.
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Figure 1. The modelled system. The depicted motion is illustrative; the arrow lengths are only intended to give a qualitative sense
of the relative magnitude of the loads. (a) Free-body diagrams for the fuselage (left) and wing (right) masses, horizontal forces
omitted (they do not affect the vertical dynamics). The fuselage can translate vertically, while each wing can hinge about its root
end on a pin joint (open circle). The fuselage is regarded as dimensionless, and the aerodynamic force upon it is neglected. (b)
Motion occurs when extra vertical force on the wings pushes the system away from equilibrium. The CoM of the overall system (filled
orange circle) lies, by definition, between those of the wings and that of the fuselage (filled black circles).

Table 1. Properties and inputs of the modelled system.

symbol description value unit

g magnitude of gravitational acceleration 9.81 m s−2

mf mass of fuselage 0.25 kg

mw mass of single wing 0.025 kg

M mass of overall system (= mf + 2mw) 0.3 kg

μf mass fraction of the fuselage (= mf/M ) 0.8 —

μw mass fraction of the wings (= 2mw/M ) 0.2a —

c chord length of wing section 0.15 m

l spanwise length of wing 0.4 m

lm CoM of wing from hinge 0.133 m

Ih mass moment of inertia of wing about hinge 6.67×10-4 kg m2

P centre of percussion of wing from hinge 0.2 M

kt torsional hinge stiffness 0a N m rad−1

ρ air density 1.2 kg m−3

U forward flight speed (= relative wind) 8.0 m s−1

aThese are varied later.
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In this reduced-order model, we neglect both pitch and drag. The system does not possess a degree of
freedom in pitch; we assume that any motion about the lateral axis is controlled separately. Nevertheless,
note that: (i) at low angles of attack, at least, the system pitching moment should not change significantly,
provided the hinge is located near the chordwise aerodynamic centre of the wing, and (ii) the system has
no tail, so there is no other source of pitching moments. Further, for the changes in angles of attack we
consider, the upward component of wing drag is small enough not to affect the motion of the system.

Figure 1 shows free-body diagrams for the fuselage and a single wing, all horizontal forces omitted.
The relevant equations of motion for this system are (see electronic supplementary material part 1, §1)

M €zþ 2mwlm(€u cos u� _u
2
sin u)þMg ¼ 2F cos u, ð2:1Þ

which derives from the balance of forces on the overall CoM, and

Ih€uþmwlm€z cos uþ Th þmwglm cos u ¼ FlF, ð2:2Þ
which is the sum of moments on each wing about its hinge. Table 1 shows the nomenclature of system
parameters. Note that CoM distance lm and mass moment of inertia Ih are dictated by the wing mass
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distribution, as discussed shortly. On the right-hand side of the equations, F is the component of wing lift

in the plane of motion and acts at distance lF from the hinge.
We model the ‘total’ torque Th at each hinge as the sum of static (Th0) and dynamic parts (ΔTh) (we

give all static quantities a subscript 0, and dynamic quantities a leading Δ). Thus, Th = Th0 + ΔTh. The static
torque is simply the amount required to keep each wing in its horizontal equilibrium position for
ordinary level flight. It is found by combining equations (2.1) and (2.2) at equilibrium:

Th0 ¼ Mg
2

lF0 �mwglm: ð2:3Þ

In this model, it is restorative in sense, i.e. acting to pull each wing downward (note that lm < lF0 and
mw≪M, cf. Table 1). This is also true for birds [15]. Static torque is necessarily present in all of our
modelled cases, and the hinge is presumed to be able to supply the precise amount. The dynamic
torque ΔTh is the change about the static value. It arises when the wing deviates from a horizontal
position. In §3.5, we consider the effect of a hinge whose dynamic torque has the behaviour of a
linear torsional spring (ΔTh = ktθ, where kt is the stiffness). As such, our modelling of the hinge is
abstract; we leave the detailed mechanical design to another study.

In addition to its own weight, the fuselage experiences a vertical reaction force from the wing at each
hinge. We denote this reaction as R (figure 1). Its force complement acts on the wing, with equal
magnitude but opposite sense. The equation of motion for the fuselage is therefore

R ¼ mfgþmf€z
2

: ð2:4Þ

Note that R has both static (R0 =mfg/2) and dynamic (DR ¼ mf€z=2) parts. The dynamic part
determines the response of the fuselage to the gust.

Frequent comparison is made in later sections to a system with ‘fixed’ wings, i.e. a rigid-wing aircraft
without hinges. Its equation of motion is

M€zþMg ¼ 2F: ð2:5Þ

In this case, the wings and fuselage move in tandem. The point of application of force F therefore does
not matter.
2.1. Linearization
The equations of motion for the hinged system are nonlinear, second-order and coupled by the
generalized coordinates. We now linearize them about θ = 0 to simplify the problem for clearer insight
on the basic mechanics. This does limit the results to juj&20 degrees (when the small-angle
approximation cosθ≃ 1 passes 5% error), but the percussion effect is expected to be most applicable at
low angles anyway.

Using the small-angle approximation (cosθ≃ 1) and the fact that the initial angular wing velocity is
small, especially when squared ( _u

2 ≃ 0), we find the linearized equations of motion

M€zþ 2mwlm€uþMg ¼ 2F ð2:6Þ
and

Ih€uþmwlm€zþ Th þmwglm ¼ FlF: ð2:7Þ

One further simplification—that the total load be regarded as the sum of static and dynamic parts—
allows equilibrium loads to be subtracted from these equations. Therefore (see electronic supplementary
material part 1, §2),

M€zþ 2mwlm€u ¼ 2DF ð2:8Þ
and

Ih€uþmwlm€zþ DTh ¼ DFlDF: ð2:9Þ

Force F (hence ΔF ) now effectively points upwards at all times.
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2.2. System parameters

The size and overall mass of the system are based on the owl in Cheney et al. [7]. Some parameters have
been rounded for convenience (table 1). As such, we are strongly inspired by the dynamics of the owl, but
do not intend to mimic all its aeromechanical complexities.

For the spanwise wing mass distribution, we choose a linear function. This is simply an
approximation for the wings of birds (see van den Berg & Rayner [16], for example) and aircraft alike.
For a wing of length l, it has the form (see electronic supplementary material part 1, §3)

m0
w ¼ � 2mw

l
y
l
� 1

� �
, ð2:10Þ

where y is the spanwise coordinate, running from root to tip. The centre of percussion P of this mass
distribution lies at l/2, which, as discussed shortly, aligns perfectly with the centre of pressure of our
chosen equilibrium lift distribution. This case of perfect alignment interests us here because it may
provide the largest potential gust rejection benefit (for an interesting comparison, note that Cheney
et al. [7] found that equilibrium alignment is almost true for the barn owl—within just 0.067l, where l
is the wing length, as defined here). Of course, alignment can be achieved with other lift-mass
combinations; rectangular lift and linear mass are just useful conveniences, with the latter also
furnishing exact solutions for the CoM and radius of gyration (see electronic supplementary material
part 1, §3 for more information on the spanwise location of these points relative to P), as well as the
mass moment of inertia.
1607
2.3. Aerodynamics formulation
As mentioned, F is the aerodynamic force on each wing in the (vertical) plane of motion. We implement a
quasi-steady, blade-element formulation for F, the essential results of which are presented here. This
formulation should be regarded as an adjunct to the main model just described—one possible
prescription for the forcing terms on the right-hand side of the equations. Indeed, the percussion
effect is purely mechanical and works properly whether the perturbing force is aerodynamic or not.
In §3.1, we actually demonstrate the effect using point force alone.

Our aerodynamics formulation includes several assumptions:

(i) The wing planform is rectangular and untwisted. (That it has a linear mass distribution is
explained by a hypothetical variation in material density.)

(ii) The flow is two dimensional. (Note that the effect of spanwise flow lessens with decreasing θ.)
(iii) All wing sections are symmetrical about the chord line and have identical aerodynamic

properties.
(iv) Aeroelastic wing flexure is absent.
(v) The effect of apparent air mass is negligible.
(vi) Aerodynamic force acts in a quasi-steady manner.

With respect to point (vi), we recognize that aerodynamic force technically takes time to ‘build up’ in
response to gusts and other wing motions [17,18]. As such, the force depends on the time-history of
the flow. We checked this effect using classical unsteady theory, viz. Küssner and Wagner lift
functions, before proceeding (see electronic supplementary material part 1, §5) and found that: (i) the
unsteady system response is similar in shape and character to the quasi-steady result; and (ii) ‘build-
up’ introduces a time delay. We therefore decided, for simplicity and directness in the modelling, to
use the quasi-steady approach throughout, acknowledging that comparisons between our cases would
be more important than the absolute timings of any single one. This quasi-steady assumption is also
quite common in the analysis of flapping wings (e.g. [19]), whose dynamics are reminiscent of the
present model. The formulation now follows (see electronic supplementary material part 1, §4 for
details).

The upward projection of F (i.e. Fcosθ) determines the vertical motion of the system, and, in our
linearization of θ, is approximately equivalent to F itself. All subsequent references to F therefore refer
to this vertical projection. Of course, F is actually the integral resultant of the spanwise lift
distribution, which is given by (when linearized)

F0(y) ¼ qccL(a0 þ Da), ð2:11Þ



Table 2. Properties of the vertical gust, also based on Cheney et al. [7].

symbol description value unit

vgA peak gust velocity 2.4 m s−1

Lg gust length along flight direction 1.4 m
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where q = ρU2/2 is the dynamic pressure and c is the (constant) chord length of the wing. Recall that all
wing sections are identical and have the same lift curve. The lift coefficient distribution cL therefore
depends only upon: (i) the static angle of attack (AoA) α0, necessary for weight support at
equilibrium, and (ii) the dynamic AoA increment Δα(y), which embodies any changes brought about
by the gust and/or motion of the system. The tested gust is in fact moderate enough to permit
linearization of Δα; we therefore find that (see electronic supplementary material part 1, §4)

Da(y) ≃ vg � _z� y _u
U

, ð2:12Þ

where vg is the gust velocity, introduced shortly. The total force on each wing is then

F ¼ qc
ðl
0
cL(a0 þ Da) dy, ð2:13Þ

with a corresponding moment about the hinge axis given by

MF ¼ qc
ðl
0
ycL(a0 þ Da) dy: ð2:14Þ

In our calculations, we use discretized forms of these integrals with 50 spanwise points along each wing.
Quotient MF/F = lF defines the spanwise point of action or centre of pressure of the force F. At

equilibrium, of course, there is no gust or wing motion and Δα = 0 everywhere; the force distribution
F

0
is rectangular, and its centre of pressure (resultant) F0 lies halfway along the span of the wing (l/2).

This puts it into equilibrium alignment with the centre of percussion. We return to this point again in
§3.2.

Velocity vg is the upgust intensity along the direction of flight. We use the standard ‘1 – cosine’ profile
from the FAA airworthiness regulations [20],

vg(t) ¼
vgA
2

1� cos 2p
Ut
Lg

� �
, ð2:15Þ

where vgA is the peak intensity, and Lg the physical length, of the gust (table 2). The gust is homogeneous
in the spanwise direction; it can be imagined as an unlimited spanwise extrusion of this cosine profile. In
this study, we test a nominal peak gust velocity of 30% forward speed, or 0.3U (by nominal, we mean that
the Küssner function has not been applied). Such a gust would seriously challenge the flight of most
animals and small aircraft, but is still moderate enough not to undermine the assumption of linearity
during the initial response of the wing.

Temporal solution of the equations of motion was carried out in MATLAB® (MathWorks,
Massachusetts) using the ODE45 Runge–Kutta solver. At each time point, the aerodynamic loads were
computed from the current state variables before being passed to the equations for solution of the
next iteration. The algorithm automatically adjusted the size of the time step according to local
gradients in the solution. Still, for robustness, we specified a maximum time step of one-sixth of the
gust duration (Lg/6U or approx. 30 ms). This prevented the adaptive solver from taking an overly
large step, ensuring, at the very least, three solution points per side of the gust (we did test, for the
simulation conditions in figure 3, whether the solution result was sensitive to this maximum time
step, particularly when made shorter, but it was not). Once finished, ODE45 returned a solution
sampled at the requested time points—in this case, every 5 ms.
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3. Results

First, we develop the basic mechanics of the centre of percussion for general point force (§3.1). We then
extend the analysis to distributed aerodynamic loading, considering two lift curves: one with constant
slope (§3.2) and another with ‘soft-stall’ behaviour (§3.3). We also explore the effect of relatively heavy
wings (§3.4). Finally, we introduce dynamic hinge torque (§3.5) via linear torsional stiffness.
lishing.org/journal/rsos
R.Soc.Open
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3.1. Basic mechanics
Hinges allow the wings to rotate in response to external impulses, including gusts. Consider first a system
with hinges that each produce a constant torque, equal only to the static value (Th = Th0, ΔTh = 0). The
system therefore supports level flight exactly. If either wing experiences a transverse perturbing force
ΔF, an associated reaction increment ΔR may develop, or be transmitted, to the fuselage via the
corresponding hinge (we omit ‘increment’ hereon). The underlying mechanics are embodied by the
equations of motion; from their linearized forms, we can derive a concise expression that links ΔF to
ΔR (see electronic supplementary material part 1, §6), given by

DR ¼ DF
(P� lDF)

C
, ð3:1Þ

where lΔF is the distance from the hinge to the force ΔF, P is the position of the centre of percussion on the
wing, and C = P− (μw/μf )(lm − P) is a positive constant. The formula works best at moderate wing angles
(juj&20 degrees, at which the approximation cosθ≃ 1 crosses 5% error) and therefore applies during the
crucial early moments of the response.

According to this expression, it is the position and magnitude of force ΔF that govern the initial
transmission of reaction ΔR to the fuselage; static loads do not matter. Assuming, for now, that the acting
point force is constant, there are three possible scenarios: (i) inboard or ‘armpit’ loading, in which ΔF acts
inside P (immediate upward reaction develops on the fuselage, with a magnitude that depends on the
degree of misalignment with P); (ii) outboard loading, in which ΔF acts outside P (reaction now develops
in the downward direction, with a magnitude that again depends on the misalignment); or (iii) aligned
loading, in which ΔF acts at P. The bracketed term in equation (3.1) vanishes so no immediate reaction
develops. This percussion effect works regardless of the magnitude of ΔF. Note also that if the reaction is
nullified, so too is the rolling moment it would otherwise apply to the fuselage (particularly important
when the wings are loaded asymmetrically and these moments do not balance out).

For the case of fixed wings, ΔR = μfΔF (see electronic supplementary material part 1, §6). Analytical
comparison between the fixed and hinged cases (see electronic supplementary material part 1, §7)
reveals that the fuselage experiences less absolute reaction in the latter, provided ΔF acts within a
specific interval on the wing: P ± (P− μwlm). This interval is symmetrical about P and its width
depends on the wing mass distribution. For the linear distribution, it is quite wide, covering the
central approximately 89% of the wing length. The simple process of hinging therefore modulates the
transmission of reaction to the fuselage for a wide range of loading points, while optimal tuning (ΔF
at P) eliminates it altogether. Figure 2 provides a complete summary.

Note that force ΔF (2ΔFwith two wings) also applies an upward impulse to the system as a whole, and
unless this is somehow countered by opposing action, the system will drift away from equilibrium
indefinitely. Fortunately, aerodynamic damping prevents this in practice, but alone this is a relatively
slow process. Proper control authority demands something much faster. This is an important point,
which is revisited later when we discuss aerodynamic rejection.
3.2. Upgust response
In real gusts, the perturbing force ΔF is the integral resultant of the extra, distributed aerodynamic load
that develops across each wing. To realize the percussion effect, then, we must aim to put the centre of
pressure of this force at P. One possibility is that we align the centres of pressure and percussion at
equilibrium (as we have) and then strive to keep them together as the wing rotates under the action of
the gust. We consider one possible method shortly; first, we develop some analytical prerequisites.
Hinge torque will remain constant at the static value (Th = Th0, ΔTh = 0) until specified otherwise.

At equilibrium, the force distribution across each wing is rectangular and constant. All wing sections
operate at the same point on the lift curve. Consider first that each wing section has the same,
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symmetrical linear lift curve (LLC), or

cL ¼ dcL
da

a, ð3:2Þ

where dcL/dα is the (constant) slope. As such, lift varies in proportion to the AoA, and there is no stall in
either direction. This is the usual choice when modelling minor gusts [18] and for the description of the
extended linear region in dynamic stall [21]. When first encountered by the aircraft, the upgust begins to
incline the relative wind vector from its equilibrium orientation, pushing the AoA of all wing sections up
the lift curve. This occurs uniformly across the wing at first, scaling the equilibrium lift distribution such
that its centroid, or centre of pressure, is momentarily preserved. As the gust force builds up, the wing is
duly impelled to rotate upwards. This, in turn, induces a distribution of relative downward flow vy
(hereafter relative down-flow) across the wing, most strongly at the tip (where linear wing speed is
highest). The relative down-flow opposes the gust velocity vg and acts to temper the rising AoA Δα.
At any spanwise station y, this may be expressed with equation (2.12) as

Da ≃ vg � ( _zþ y _u)
U

¼ vg � vy
U

, ð3:3Þ

where vy is the local relative down-flow at distance y from the hinge, equal and opposite to the absolute
vertical speed of the wing section at that location (≃ _zþ y _u). The presence of this relative down-flow
gradient means that the spanwise force distribution along each wing becomes skewed. The centre of
pressure lF therefore drifts inboard from its equilibrium position, away from the centre of percussion.
The perturbing force drifts, too, and equation (3.1) promises that reaction on the fuselage will develop.

Figure 3 shows the impact of the tested gust (table 2) on three systems: (i) entirely immobile, in which
the wings and fuselage are both clamped in their equilibrium positions throughout; (ii) fixed wing; and
(iii) hinged wing. Comparison between (i) and (ii) reveals the tempering effect of relative down-flow on
the applied force (figure 3a). The hinged wing experiences this to an even larger extent, being lightweight
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and better able to retreat from the gust than the fixed system (whose full inertia must be overcome for
wing motion to begin).

The transmission of reaction force is successfully delayed in the hinged case. As the centre of pressure
drifts inboard under the action of the relative down-flow gradient (figure 3b), though, alignment with the
centre of percussion is progressively lost and fuselage reaction soon develops. The fixed wing, by
contrast, transmits load instantly because its fuselage reaction simply scales directly with the external
force (ΔR = μfΔF applies).

Cheney et al. [7] coined the term ‘inertial rejection’ for the idea that moving wing mass acts to stabilize
the fuselage. It offers a complimentary perspective for occasions when forces are unknown or
immeasurable—in a kinematics experiment like theirs, for example. Formally, they defined inertial
rejection as the vertical velocity difference between the system CoM and the fuselage, i.e. as the
degree of relative fuselage motion or ‘activity’ produced by the hinged wings (see electronic
supplementary material part 2, §8). Inertial rejection functions best when the fuselage is made to shift
by just the amount necessary to offset the perturbed system CoM, and this only happens when the
gust force acts squarely through the centre of percussion. As such, ‘perfect’ inertial rejection is the
percussion effect. Cheney et al. [7] also introduced the term ‘aerodynamic rejection’ for the difference
between the external force upon (or motion of) the hinged and fixed wing systems. In other words, it
is a comparison of the aerodynamic control between the two (note that Cheney et al. [7] used vertical
velocity from their kinematics data, equivalent to impulse). Altogether, the idea is that inertial
rejection lessens the internal reaction on the fuselage, while aerodynamic rejection modulates the
external force on the whole system (via wing morphing or other mechanisms, including relative down-
flow). The overall motion is thereby controlled. Indeed, without a reduction in the external force to
complement and/or follow inertial rejection, the system would need to rely solely on natural damping
from relative down-flow to arrest the acquired motion.
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Figure 3c shows how the wings accelerate upwards to absorb the initial brunt of the gust. Inertial

rejection is positive but by no means optimal (figure 3d ). Aerodynamic rejection is comparable in
magnitude at first, only increasing once the effect of relative down-flow on the hinged wing exceeds
that on the fixed, as described. This does not match qualitatively the owl data in Cheney et al. [7], for
which inertial rejection is dominant initially.

3.3. Rejection by soft stall
Broadly speaking, low-speed aerofoils stall in one of three ways [22]; two of these precipitate from the
leading edge, and the other from the trailing edge. The latter, trailing-edge type is often associated
with thicker aerofoils and tends to produce a lift curve whose linear region ends without a sudden
drop in lift—so-called ‘soft’ stall [23,24]. This contrasts with ‘hard’ stall, in which lift falls off abruptly,
and often unfavourably, after the linear region. Some soft-stall aerofoils are designed to produce lift
curves that reach a maximum and stay there [25]. Their curves plateau, or move onto a region of
shallow decline, where lift is largely insensitive to the AoA. It transpires that soft-stall lift curves
could enhance the percussion effect by passive means.

We devised a simple approximation for such a curve (figure 4a), called here the nonlinear lift curve
(NLC), which has a totally flat stall plateau of cL = 1 from degrees upwards (these
values derive from the low-speed sections in Selig et al. [26] at bird-scale Reynolds numbers). We then
tested the response of the system with this NLC to the same 30% gust (figure 4).

The gust begins to increase the AoA everywhere, as before (figure 4b), pushing the lift coefficient
towards the stall plateau. This happens first at the root, where the linear upward wing speed is low,
and then spreads towards the retreating tip. The inboard force distribution begins to saturate
(figure 4c). Not only does this limit the resultant force on each wing, but also it keeps the centre of
pressure near the centre of percussion for longer, thereby reducing the transmission of reaction to the
fuselage (figure 4d–f ). The saturation effect gradually diminishes as relative down-flow takes over,
causing the centre of pressure to drift inboard once more (this is just visible at the wingtip in the later
AoA distributions). We also plot the LLC and fixed-wing NLC cases for comparison.

Inertial rejection now precedes the aerodynamic (figure 4f ). Both curves bear a compelling
resemblance to corresponding data in Cheney et al. [7] for the owl, whose CFD-derived lift curve (for
the whole bird) also exhibits soft-stall behaviour. In fact, many birds’ wings stall this way at typical
flight Reynolds numbers [27,28] without an abrupt loss of lift. Whether the resemblance between our
data and those in Cheney et al. [7] is explained entirely by the lift curve is not yet certain, but soft
stall definitely enhances the percussion effect in this model and even provides an explanation for the
delayed aerodynamic rejection (that the stalled lift on hinged and fixed wings is similar at first). In
any case, the lift curve is undoubtedly important to the dynamics of hinged wings.

3.4. Increasing the wing mass fraction
Each hinged wing has thus far made up 10% of the total system mass (table 1). By increasing the wing
mass fraction μw, we can prolong and enhance the rejection benefit from soft stall. Figure 5 shows the
system dynamics for μw = 0.35 and μw = 0.5, alongside the existing case (μw = 0.2). As the relatively
heavy wings present greater resistance to motion, less relative down-flow develops across them when
they are gusted. Soft stall therefore happens more readily, and the centre of pressure is stabilized
accordingly (figure 5a). Indeed, for the wing of highest mass, the lift distribution reaches total
saturation; its resultant effectively behaves as unmoving point force, capped in magnitude and fixed
at the halfway mark (l/2). The fuselage velocity does not change once this begins (figure 5b).

Initial aerodynamic rejection falls with increasing μw because the fixed and hinged wings each stall
quickly with similar total force (figure 5c), i.e. their CoM velocities are comparable. Inertial rejection,
on the other hand, increases with μw and becomes the dominant component.

3.5. Hinge torque
Hinge torque determines how well inertial rejection works. Unless the hinge torque is well tuned, the
wing will not move as required, no matter where the centre of percussion lies.

Thus far, the hinge torque has been constant and equal to the static value (Th = Th0). This is
the minimum amount necessary to balance the other static moments on the wing and to support
flight—i.e. without it, the wings would simply fold up. In the linear model, wings under constant
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torque respond ‘freely’ to perturbations, experiencing no resistance or assistance to motion during their
rotation. The percussion effect can therefore function at its purest, and equation (3.1) applies. However,
an aircraft with hinged wings cannot fly under constant torque at all times. The torque must be
modulated, probably asymmetrically, to the varied demands of flight, including basic gust recovery
(the restoration of the wings to a neutral position) and manoeuvre control.

In this model, hinge torque can be modulated using the dynamic torque parameter ΔTh, which adds
or subtracts from the static value Th0. If retained during the derivation of the original reaction formula,
equation (3.1), the dynamic torque gives rise to its own term (see electronic supplementary material part
1, §6), or

DR ¼ DF
(P� lDF)

C
þ DTh

C
: ð3:4Þ

The net effect on fuselage reaction is complicated because the summed terms in this expression
interact with one another; dynamic torque affects wing motion (hence aerodynamic load ΔF ) and vice
versa. It is therefore instructive to combine the right-hand side as

DR ¼ DF
(P̂� lDF)

C
, ð3:5Þ

where P̂ is now the ‘dynamic’ centre of percussion,

P̂ ¼ Pþ DTh

DF
: ð3:6Þ

Equation (3.5) has the same form as equation (3.1), with P̂ in place of P. For zero reaction to be
maintained as the dynamic torque engages, force ΔF would have to track the moving point P̂ (which
begins at P at equilibrium).

Consider now the introduction of dynamic torque that mimics the behaviour of a linear torsional
spring, or ΔTh = ktθ. This simple case will illustrate well the sensitivity of inertial rejection to the
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mechanical properties of the hinge. Figure 6 shows the effect of various stiffness constants (kt = 0.1, 1,
10 N m rad−1) on the dynamics of the gusted NLC system, alongside the original case (equivalent to
kt = 0 N m rad−1), this time for μw = 0.5. As the wing enters the gust front and the hinge engages under
extra positive (upward) aerodynamic force, the quotient ΔTh/ΔF increases and P̂ begins to travel
outboard from its starting position at P. Zero reaction demands that the centre of pressure of this force
follows P̂; relative down-flow tends to prevent this, however, and so reaction develops as the two points
diverge. The fuselage is thereby pushed upwards (figure 6a). Indeed, the higher the stiffness, the
quicker this happens, until in the limit of infinite kt the system responds just as it would with fixed
wings. Overall, hinge stiffness therefore impedes wing motion, and with it the capacity for inertial
rejection. The same is true for other mechanical elements that develop resistive torque, including dampers.
4. Discussion
We show how hinged wings can absorb the initial impact of wing perturbations via the basic mechanics
of inertial rejection and the percussion effect. We then propose a method to reject upgusts, which
requires: (i) preliminary alignment of the centres of pressure and percussion at equilibrium, i.e.
appropriate lift and mass distributions; (ii) hinges that produce constant initial torque; and (iii) wings
whose sections stall readily, but softly, onto a lift plateau. Relatively heavy wings are also preferable.
Finally, we find that spring-type stiffness at the hinge restricts the motion of the gusted wing, and
with it the rejection benefit. Systems with ever stiffer hinges eventually behave as though they had
fixed wings (see also [11,29]).
4.1. Mechanics of the hinged wing
Successful gust rejection necessitates a hinge mechanism that can supply the necessary static and dynamic
torques. The specific requirements are: (i) support of the static flight loads; (ii) acceptance of the initial
motion of the gusted wing with correctly tuned torque, such that the fuselage is isolated from the
disturbance; (iii) gradual arrest of the wing while the gust load is modulated via aerodynamic
rejection; and (iv) prompt restoration of the neutral wing configuration without jolting the fuselage.
We leave the detailed mechanical implementation of such a hinge for future work, but acknowledge
here that the problem is broadly analogous to the design of a suspension system for a terrestrial
vehicle. The wings are equivalent to the wheels (the unsprung masses) and the fuselage to the cabin
(the sprung mass).

An ideal suspension system provides both ride quality and holding ability. Ride quality results from
isolation of the sprung mass (fuselage or cabin) from the disturbance and requires appreciable
deflection of the unsprung masses (wings or wheels). Holding ability concerns handling and stability,
and functions better when deflection of the unsprung masses is limited. As such, these are conflicting
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criteria [30]. Basic passive spring-damper suspension systems cannot resolve this conflict and must

usually compromise on both counts (this may exclude them from consideration in the proposed
rejection method, for which the hinge must work ‘freely’ at first, then in decisive nonlinear fashion).
An adaptive active-passive hybrid or fully active suspension system, on the other hand, could provide
a better overall solution. These have been commonplace in automotive applications for decades [31].
Consider, for example, a wing hinge with an active mode that can modify its torque to the
instantaneous demands of inertial gust rejection. The hinge would behave passively at first, buying
time for the active mode, or, in a fully active set-up, be driven by a particularly powerful actuator that
could mimic the necessary ‘passive’ dynamics. Other measures, such as control-surface deflection,
might then provide follow-up aerodynamic rejection. Active methods also permit real-time tuning of
the hinge for other flight objectives [5], including atmospheric energy harvesting, and even allow for
adjustments to the dihedral angle(s) for adaptive lateral stability. Ultimately, the designer must decide
whether the versatility of hybrid/fully active systems justifies the inevitable mechatronic complexity,
extra weight and power demand.

For the system with constant-torque hinges, rejection begins with alignment of the centres of pressure
and percussion. This requires suitable distributions of wing lift and mass at equilibrium. On most
conventional finite wings, however, the spanwise centre of pressure will naturally lie somewhere near
or inside the halfway mark—elliptical loading gives 0.42l, for example—and may be difficult to
modify without radical alterations to the basic planform or twist geometry. Designers should expect
to tune the mass distribution of the wing instead, weighting it towards the hinge for a favourable
centre of percussion. The linear mass distribution is a good starting point; it is realistic, given the
usual requirement for structural thickness near the wing root, and might even be achieved by clever
placement of electronics, fuel, batteries or other onboard items.
4.2. Stall aerodynamics
Stall is governed by the evolution of the boundary layer with AoA, which itself depends chiefly on the
Reynolds number and the shape of the section(s) that make up the wing [22]. Soft stall, in particular, can
be achieved by sculpting a wing section to have a surface pressure distribution that slows down the
movement of the boundary-layer transition region with incidence [23,25] for favourable separation
behaviour. Many extant wing sections stall softly; Selig et al. [26] provide several conventional designs
that do so at bird-scale Reynolds numbers (less than 105), while data from Schmitz [32] even show
similar behaviour for the simple flat plate. However, the extent to which any of these maintains its
soft-stall behaviour during the gust will depend on the timing of the event (the reduced frequency) and
the associated boundary-layer dynamics. Fast, extreme changes in the flow, including steep gusts, may
cause a dynamic stall that pushes boundary-layer separation to an AoA some way beyond the usual
value, thereby extending the linear region of the lift curve [21]. The curve will then resemble the LLC
of §3.2. This is an important, open question that motivates further research on low-speed wing
sections for optimal stall, including the potential role of boundary-layer control, e.g. suction, blowing
or surface-mounted devices [33].

Wings of relatively high mass (§3.4) have greater rotary inertia and pivot less easily when gusted. The
relative down-flow from acquired motion, which acts to oppose the effect of the upgust, is therefore
weaker, and soft stall has a better opportunity to develop. If this happens everywhere across the
wing, soft stall stabilizes the position of the lift vector and extends the percussion effect, buying even
more time for other corrective actions to initialize. The benefit is appreciable; near-zero fuselage
reaction lasts for approximately 100 ms in the case of the heaviest wing, which is long enough for a
control system to sense and react to the disturbance. Of course, operating at a high equilibrium AoA
α0 (6 degrees here) also facilitates stall.
4.3. Avian gust rejection
Birds’ wings, despite their diversity in planform [34,35] and structural complexity, have spanwise mass
distributions that are broadly linear, becoming higher nearer the shoulder, with local peaks at the elbow
and wrist [16,36,37]. As such, the anatomy naturally bears a mass distribution that puts the centre of
percussion near the halfway mark. Now, assuming the lift distribution on these wings is broadly
elliptical (exact elliptical lift puts the centre of pressure at 0.42l ), then close equilibrium alignment
between the centres of pressure and percussion may be quite widespread among species—particularly
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the gliding birds who stand to benefit most from inertial rejection. Of course, the shoulder must be

sufficiently compliant, whatever the mass distribution, otherwise the mechanics cannot work at all.
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5. Conclusion
We present an aeromechanics model of the response of a bird-scale gliding aircraft to a strong, wide
upgust. Unlike conventional aircraft, this one has wings that are fully hinged to the fuselage on pin
joints that enable rotation in the vertical plane. The hinged design was inspired by the response of
birds to upgusts, as measured in a laboratory experiment.

Hinging allows the perturbed wings to absorb and reject the brunt of the gust. The rejection can be
optimized by having two key spanwise points on the wing, the centres of pressure and the percussion, start
and stay in good alignment during the early moments of the gust. The initial transmission of load to the
fuselage is thereby delayed and/or reduced (which would buy time for other flight control processes to
initialize). We call this the ‘percussion effect’. Having presented the basic mechanics, we propose a
passive method for achieving the effect in upgusts. The essential ingredients are: (i) appropriate lift
and mass distributions for equilibrium alignment of the two key points; (ii) hinges under constant
initial torque (enough for aircraft weight support but no more or less); and (iii) a wing whose sections
stall softly, such that the centre of pressure is stabilized during gusted rotation.

We ultimately envision the mechanics of the percussion effect as part of a complete hinged-wing
suspension system, primarily for small aircraft operating in the gusty conditions of the low atmosphere.
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