
Buccardi et al. Respiratory Research          (2023) 24:126  
https://doi.org/10.1186/s12931-023-02432-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Respiratory Research

A fully automated micro‑CT deep learning 
approach for precision preclinical investigation 
of lung fibrosis progression and response 
to therapy
Martina Buccardi1,7†, Erica Ferrini2†, Francesca Pennati3, Elena Vincenzi4,5, Roberta Eufrasia Ledda6, 
Andrea Grandi7, Davide Buseghin6, Gino Villetti7, Nicola Sverzellati6, Andrea Aliverti3 and 
Franco Fabio Stellari7*    

Abstract 

Micro-computed tomography (µCT)-based imaging plays a key role in monitoring disease progression and response 
to candidate drugs in various animal models of human disease, but manual image processing is still highly time-
consuming and prone to operator bias. Focusing on an established mouse model of bleomycin (BLM)-induced lung 
fibrosis we document, here, the ability of a fully automated deep-learning (DL)-based model to improve and speed-
up lung segmentation and the precise measurement of morphological and functional biomarkers in both the whole 
lung and in individual lobes. µCT-DL whose results were overall highly consistent with those of more conventional, 
especially histological, analyses, allowed to cut down by approximately 45-fold the time required to analyze the entire 
dataset and to longitudinally follow fibrosis evolution and response to the human-use-approved drug Nintedanib, 
using both inspiratory and expiratory μCT. Particularly significant advantages of this µCT-DL approach, are: (i) its 
reduced experimental variability, due to the fact that each animal acts as its own control and the measured, operator 
bias-free biomarkers can be quantitatively compared across experiments; (ii) its ability to monitor longitudinally the 
spatial distribution of fibrotic lesions, thus eliminating potential confounding effects associated with the more severe 
fibrosis observed in the apical region of the left lung and the compensatory effects taking place in the right lung; (iii) 
the animal sparing afforded by its non-invasive nature and high reliability; and (iv) the fact that it can be integrated 
into different drug discovery pipelines with a substantial increase in both the speed and robustness of the evaluation 
of new candidate drugs. The µCT-DL approach thus lends itself as a powerful new tool for the precision preclinical 
monitoring of BLM-induced lung fibrosis and other disease models as well. Its ease of operation and use of standard 
imaging instrumentation make it easily transferable to other laboratories and to other experimental settings, includ-
ing clinical diagnostic applications.
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Introduction
Computed tomography (CT) is currently the imaging 
gold standard for the clinical evaluation of several lung 
disorders [1–4]. Its miniaturized version, i.e. micro-com-
puted tomography (μCT), represents an invaluable non-
invasive tool for investigating the development of lung 
pathology but also for monitoring the efficacy of new 
candidate drugs in small-animal models of pulmonary 
diseases [5, 6].

In all CT applications, including μCT-based preclini-
cal studies, lung segmentation represents the first critical 
step that precedes the extraction of quantitative CT data 
such as lung volume, mean lung attenuation (MLA), and 
related functional parameters [7, 8].

In particular, dynamic lung function biomarkers can 
only be derived from the segmentation of two recon-
structed separate datasets, corresponding to the end-
inspiration (P01) and end-expiration (P02) phases [7]. In 
the absence of such information, only a static view of the 
intrapulmonary state can be acquired.

Commercially available software allows for semi-auto-
matic lung segmentation. However, in the murine model 
of pulmonary fibrosis, this software does not correctly 
delineate severely fibrotic regions, which due to massive 
collagen deposition and decreased air content, appear 
as dense as the surrounding tissue. In this situation, 
manual segmentation is required to correctly segment 
lung tissue and accurately quantify lung volume as well 
as MLA. Manual intervention is also necessary to per-
form additional operations, such as the separation of the 
whole lung into its left and right portions, which could be 
important for evaluating disease progression in the two 
districts, especially in unbalanced/patchy pulmonary dis-
eases that may lead to a different distribution of lesions 
across the two lobes [9].

Manual segmentation, however, has two main draw-
backs that severely hinder its application to large data-
sets: it prolongs post-processing time by up to 40  min 
per scan and it is prone to operator-dependent bias [10, 
11]. These shortcomings have recently been addressed 
through the development of artificial intelligence (AI)- 
and deep learning (DL)-based algorithms for automated 
lung segmentation in murine models of lung cancer 
[12] and parenchymal pulmonary diseases [13]. Par-
ticularly encouraging results have been reported for DL 
approaches based on convolutional neural networks 
(CNN) applied to the segmentations of various organs 
[14, 15], including lungs [9, 16]. However, to date, none 
of these tools has been integrated into any drug discovery 
pipeline.

In the present study, we validated a DL-based approach, 
previously developed for the automated segmentation 
of fibrotic lungs [9], in the context of a pharmacological 

experiment performed in a murine model of pulmonary 
fibrosis by automatically deriving longitudinal biomark-
ers from μCT scans. The DL-based model was initially 
retrained through the incorporation into the original 
training dataset of additional μCT scans retrieved from 
a bleomycin (BLM)-induced lung fibrosis model in male 
mice. This was followed by an evaluation of the extent of 
fibrosis and its effect on CT parameters both in the whole 
lung and in separate, left and right, lungs.

A Spearman correlation analysis was then conducted 
to compare µCT biomarkers and histomorphological 
endpoints. Also taking advantage of lung lobe-specific 
inspiratory and expiratory μCT data, this work provides 
quantitative and more comprehensive information on 
the responsiveness to Nintedanib (NINT), a human use-
approved drug for the treatment of progressive fibros-
ing interstitial lung diseases [17], of BLM-induced lung 
fibrotic lesions with different severity.

Methods
Ethics statement
The experiment described herein was approved by the 
intramural animal-welfare committee for animal experi-
mentation of Chiesi Farmaceutici and authorized by the 
Italian Ministry of Health (protocol number: 809/2020-
PR). All procedures were conducted in an AAALAC 
(Association for Assessment and Accreditation for Lab-
oratory Animal Care) certified facility in compliance 
with the European Directive 2010/63 UE, Italian D.Lgs 
26/2014, the revised “Guide for the Care and Use of 
Laboratory Animals” [18] and with the Animal Research: 
Reporting of In  Vivo Experiments (ARRIVE) guidelines 
[19].

Animals
At first, 23 C57bl/6 male mice, 8 to 10-week-old, pro-
vided by Envigo (San Pietro al Natisone, Udine, Italy), 
were acclimatized to the local vivarium conditions (room 
temperature: 20–24  °C; relative humidity: 40–70%; 12-h 
light–dark cycle) for at least 5 days, having free access to 
standard rodent chow and softened tap water. Nineteen 
mice were then lightly anesthetized with 2.0% isoflu-
rane delivered in a box and administered with bleomycin 
(Baxter Oncology GmbH) 10  µg/mouse in 50  μl saline 
(0.9%), while four mice received only 50 μl saline (here-
after designated as “SAL mice”) via oropharyngeal aspira-
tion (OA) using a micropipette [20]. This procedure was 
performed on days 0 and 4, as reported in the scheme 
in Additional file  1: Fig. S1A. The BLM dose utilized in 
this experiment has been selected to perform routine in-
vivo drug screening experiments [20]. On day 7, twelve 
BLM-treated mice were randomly selected to receive 
Nintedanib (hereafter called “BLM + NINT mice”) as the 
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reference tool compound since it has been approved for 
human IPF treatment [21]. All mice (N = 4 SAL, N = 7 
BLM, and N = 12 BLM + NINT) were daily treated orally 
for 2 weeks (from day 7 to day 21), either with the vehicle 
(1% Tween80 in milliQ water) or Nintedanib (60 mg/kg/
day, dissolved in 1% Tween80 in milliQ water) [8, 22]. The 
Nintedanib dose used in this study was selected based on 
its established efficacy and previous use in similar experi-
mental models [8, 21, 23]. All appropriate measures were 
taken to minimize the animals’ pain or discomfort. The 
pain was evaluated daily through a Visual Analogue Scale 
(VAS) ranging from 0 (no pain) to 10 (intense pain) by 
a designated veterinarian or trained technician. Signs of 
dyspnea, body weight loss ≥ 20, and VAS ≥ 6 were con-
sidered as human endpoints (HEP). Animals were also 
monitored daily and weighed every 2–3 days throughout 
the experimental procedure (Additional file 1: Fig. S1B). 
Throughout the experiment reported in the present man-
uscript, none of the animals reached HEP and no mortal-
ity was observed.

Micro‑CT acquisition protocol
Following anesthesia induction and maintenance with 
2% isoflurane, mice thoraxes were scanned with a Quan-
tum GX Micro-CT (PerkinElmer, Inc. Waltham, MA) at 
7, 14, and 21 days. Images were acquired in free breath-
ing mice with the following parameters: X-ray tube cur-
rent 88 μA, X-ray tube voltage 90 kV, over a total angle 
of 360° for a total scan time of 4  min. Each animal was 
placed in a supine position on the bed of the scanner, and 
the chest was adjusted to fit within the field of view. A 
region of interest was positioned over the diaphragm for 
respiratory gating. The retrospectively gated acquisition 
protocol was in ‘high speed’ mode, with projections col-
lected in list-mode over a single continuous gantry rota-
tion  (each  projection  is acquired over 16.6 ms). At the 
end of each acquisition, a window displayed the breathing 

pattern and the position of the projections that would be 
used for the reconstruction. During the 4 min of acquisi-
tion, about 900 projections (both P01 and P02) are auto-
matically sorted and used for the reconstruction of the 
two datasets, with the possibility to modify the thresholds 
to select the more appropriate projections. However, this 
intervention was not required since our anesthesia proto-
col [7] was strictly controlled and led to stable breathing 
rates (100–120 brpm) and uniform time windows for the 
breathing cycle (500–600  ms)  with an average duration 
of the end-inspiratory/expiratory phases of (32 ± 16) ms 
and (224 ± 32) ms, respectively. For each acquisition, two 
stacks of 512 cross-sectional images were automatically 
reconstructed using a filtered back-projection algorithm 
with a Ram-Lak filter into two 3D datasets, correspond-
ing to the inspiratory and expiratory breathing phases 
(i.e. end-inspiration, P01, and end-expiration, P02), with 
50 μm isotropic reconstructed voxel size. The CT scanner 
is calibrated monthly with standard phantoms for noise, 
uniformity, low contrast, and resolution [24].

µCT post‑processing
The reconstructed datasets were processed by an updated 
version of the DL-based segmentation model proposed 
by Vincenzi et al. [9]. An early version of the DL-model, 
which was trained only on female mice, has been initially 
retrained using µCT scans from BLM-treated male mice 
to increase the overall capability of the algorithm to cor-
rectly segment female and male lung scans. Details about 
the model’s training and validation are available in the 
Supplementary Methods in the Additional file 2. In par-
ticular, the current model allows the segmentation of the 
whole lung and of the left and right lobes separately, both 
in the end-inspiration and end-expiration phases.

From the masks of the whole, left and right lungs 
(Additional file  2: Supplementary Methods), the algo-
rithm automatically extracted the parameters of interest 

Table 1  µCT automatically extracted parameters

µCT readouts

Name Description Unit Formula

From P01 NP01 Number of voxels at the end of inspiration phase (P01) – Counting of lung voxels in P01

VP01 Total lung volume at the end of inspiration phase (P01) mm3
NP01 · voxelsize  

MLAP01 Mean lung attenuation at the end of inspiration phase (P01) HU NP01
i=1

(HU)i/NP01

Air Volume of air at the end of inspiration phase (P01) mm3 VP01·MLAP01
−1000(HU)

  

From P02 NP02 Number of voxels at the end of expiration phase (P02) – Counting of lung voxels in P02

VP02 Total lung volume at the end of expiration phase (P02) mm3
NP02 · voxelsize  

MLAP02 Mean lung attenuation at the end of expiration phase (P02) HU ∑NP02
i=1

(HU)i/NP02

FRC Functional residual capacity: Volume of air at the end of inspiration 
phase (P02)

mm3 VP02·MLAP02
−1000(HU)
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which are resumed in Table  1. Then, it computed the 
functional and morphological biomarkers described in 
Table  2. The aeration compartments were calculated by 
applying ‘HU preclinical ranges’ [11].

Each CT-derived parameter and biomarker was calcu-
lated for the whole lung and for separate left and right 
lungs.

Assessment of lung fibrosis by histological analysis
Mice were sacrificed on day 21 by anesthetic overdose 
followed by abdominal aortic bleeding. For histologi-
cal analysis, the lungs were removed and inflated with a 
cannula through the trachea by gentle infusion of 0.6 ml 
of 10% neutral-buffered formalin and fixed for 24 h. Sec-
tions of 5 μm were cut with a rotary microtome (Slee Cut 
6062; Slee Medical, Mainz, Germany) in dorsal plane 
and stained with Masson’s trichrome. The whole-slide 
images were acquired by the NanoZoomer S-60 Digi-
tal slide scanner (Hamamatsu). Fibrotic modifications 
were assessed by the Ashcroft score (AS) scale, by three 
trained histopathologists in blind [25, 26]. For each sam-
ple, several 10X fields were analyzed and morphologi-
cal changes were graded semi-quantitatively into three 
classes with different degrees of fibrosis severity: no/mild 
(from 0 to 3), moderate (equal to 4), and severe (≥ 5) [27]. 
The average score was calculated, as well as the Ashcroft 
frequency distribution expressed as percentage of each 
fibrosis severity class.

Statistical analysis
A Two-way ANOVA followed by Dunnett’s and Šidák 
post-hoc test was performed to detect differences 
between SAL or BLM + NINT mice compared to the 
BLM group and to evaluate intra-group longitudi-
nal changes in lung CT parameters (day 21 vs. day 7), 

respectively. The percentage of inhibition (or recov-
ery, according to the parameter) has been calculated for 
parameters displaying a significant reduction (or aug-
ment) in the BLM + NINT group compared to BLM 
mice at 21  days. For all CT parameters, the paired Stu-
dent’s t-test was performed to highlight significant dif-
ferences between the left and right lungs for BLM and 
BLM + NINT groups at all time-points, and to investigate 
if Nintedanib treatment displays different anti-fibrotic 
effects between the two lung lobes. In cases in which 
normality test failed, non-parametric Wilcoxon test 
was applied. Two-way ANOVA followed by Dunnett’s 
t post-hoc test was performed to compare histologi-
cal outcomes, i.e. average Ashcroft score and Ashcroft 
frequency distribution, between groups. The paired 
Student’s t-test was employed to compare the average 
Ashcroft score and Ashcroft frequency distribution of 
the right and left lungs. In cases in which normality test 
failed, non-parametric Wilcoxon test was applied. Finally, 
the correlation between µCT readouts and the Ashcroft 
score was assessed by calculating Spearman correlation 
coefficients. All statistical analyses were performed using 
Prism 8 software (GraphPad Software Inc., San Diego, 
California, United States); p < 0.05 was considered statis-
tically significant.

Results
DL‑based lung segmentation
The semi-automatic segmentation approach (light green 
edges) failed to include the severely fibrotic areas, and 
less aerated portions of the lung, resulting in an incom-
plete lung volume segmentation (light-green area) and 
an incorrect MLA estimation (Fig.  1A). In contrast, the 
retrained automated DL-based model succeeded in rec-
ognizing the whole lung, detecting even those portions of 

Table 2  µCT automatically computed biomarkers

µCT biomarkers of interest

Name Description Unit Formula

Morphological biomarkers %Normo Percentage of parenchyma which is normo-aerated. It 
reflects the number of no/mild lesions

% Percent voxels in range [− 860, − 435]*

%Hypo Percentage of parenchyma which is hypo-aerated. It 
reflects the number of moderate lesions

% Percent voxels in range (− 435, − 121)*

%Non Percentage of parenchyma which is non-aerated. It 
reflects the number of severe lesions

% Percent voxels in range [− 121, 121]*

Tissue Lung volume without gas mm3
VP02 − FRC

Functional biomarkers %GasP01 Percentage of gas volume at the end of inspiration 
phase (P01)

% Air · 100/VP01  

%GasP02 Percentage of gas volume at the end of expiration 
phase (P02)

% FRC · 100/VP02  

Tidal Volume (TV) Volume of air exchanged between inspiration and 
expiration

mm3
Air − FRC
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parenchyma (dark-green edges and lung areas in Fig. 1A) 
that are less or non-aerated due to collagen deposition. 
As revealed by the overall dataset, the algorithm success-
fully segmented the entire lung (Additional file  1: Fig. 
S2), the separate lung lobes (Additional file 1: Fig. S3) as 
well as normo-, hypo-, and non-aerated lung compart-
ments of untreated and fibrotic mice at all time-points 
(Additional file 1: Fig. S4). In the representative example 
shown in Fig. 1A, the more severely fibrotic regions were 
apical (red arrows) and seemingly more extended within 
the left lobe. Histological analysis performed on the same 
animal confirmed that the apical regions were indeed 
characterized by the most severe fibrotic lesions (Fig. 1B, 
dark-green areas), while only mild to moderate lesions 
were detected in the caudal regions of the lungs. In this 
case study, the Ashcroft score measurements confirmed 
a higher abundance of severe fibrotic lesions in the left 
(average AS = 5.36) compared to the right (average 
AS = 4.05) lung. Moreover, by separately analyzing the 
two lung lobes, as allowed by the DL-based approach, we 

observed that in the left lung the frequency distribution 
of HU, an indicator of fibrosis, is shifted towards higher 
HU values compared to the right lung (Fig. 1C). Although 
the above data derive from a single representative exam-
ple (but were confirmed and further corroborated by 
subsequent more in-depth analyses), they illustrate quite 
clearly the power of our DL-based approach in the dis-
section and full imaging of the lungs, even under unfa-
vorable, severe fibrosis conditions.

µCT‑DL qualitatively highlights morphological 
and functional changes in the BLM model of lung fibrosis
Representative 3D renderings of SAL, BLM, and 
BLM + NINT mice at different time-points and the cor-
responding aeration compartments (normo-, hypo-, and 
non-aerated) in P02 are shown in Fig.  2A. As expected, 
the SAL control displayed a smaller left lung compared 
to the right one. About 80% of the total lung was classi-
fied as normo-aerated, whereas the remaining tissue was 
considered as hypo-aerated including a small portion 

Fig. 1  Comparative imaging of a representative lung fibrosis mouse model at 21 days of BLM treatment. A A representative 2D coronal µCT slice of 
a fibrotic lung is shown on the left. The semi-automatic segmentation approach failed to visualize the entire lung (light-green line), while DL-based 
segmentation allowed the automated segmentation of the whole lung parenchyma (dark-green line). The 3D renderings shown on the right were 
generated by combining the images obtained with the semi-automatic (light green volume) and the DL-based segmentation approach (dark-green 
volume). The right and the left lung are indicated as RL and LL, respectively. Red pointed arrows indicate the more severe fibrotic lesions. B 
Histological slice of the lung with a dashed line separating the left and the right lungs (the bar corresponds to 1 mm). Regions of increasingly severe 
fibrosis are shown as magnified images (bars correspond to 25 µm), boxed by increasingly dark frames outside of the main picture. Fibrosis severity 
was assessed by Ashcroft score (AS) measurements: no/mild (light green), moderate (green), and severe (dark green). C Hounsfield Units (HU) 
frequency distributions for the left (LL, light blue line) and right (RL, orange line) lungs were determined with the DL-based model
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Fig. 2  Qualitative longitudinal monitoring of lung fibrosis progression in BLM- and BLM + NINT-treated mice. A Representative 3D renderings 
of the lungs at the end of the end-expiratory phase (P02) derived from a randomly chosen animal per group (SAL, BLM, and BLM + NINT). 
Different degrees of lung aeration are shown as false colors (blue: normo-aerated; pink: hypo-aerated; grey: non-aerated). 3D renderings of the 
lungs from BLM- and BLM + NINT-treated mice were generated for each time-point (7, 14, 21 days) in order to longitudinally monitor changes in 
shape and aeration compartments. The representative SAL lung has 81.4% normo-aerated tissue and 18.6% hypo-aerated tissue. In the BLM and 
BLM + NINT representative cases the %non-aerated tissue increased from day 7 to 21, respectively from 1.5% to 38.9%, and from 6.2% to 12.2%; 
the %hypo-aerated compartment increased from day 7 to 21, respectively from 24.7% to 38,4%, and from 36.1% to 39.1%. On the contrary, the 
%normo-aerated tissue decreased in both groups from day 7 to 21, respectively from 73.8% to 22.7%, and from 57.7% to 48.7%. B Representative 
µCT 2D coronal slices of the same lung images shown in A acquired at the end-expiratory phase (P02); cyan-colored, low-intensity pixels represent 
the air content of the lungs
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detected at the boundaries due to respiratory motion 
[11, 28]. BLM administration caused an acute pulmonary 
inflammation on day 7, resulting in a marked increase in 
the total lung. From day 7 to day 21, fibrosis progressed 
in the BLM-treated mice resulting in an increase of the 
non-aerated compartment and in a change of shape in 
the apical lung regions. Overall, similar features were 
detected in the BLM and in the BLM + NINT group on 
day 7, whereas a smaller fraction of non-aerated tissue 
was observed in the BLM + NINT mice on day 21.

The air content decreased dramatically from day 7 to 
day 21 in the BLM-treated mice compared to the SAL 
controls (Fig.  2B), but the caudal portions of the right 
lungs remained well-aerated. A strong decrease in lung 
aeration was also observed in the BLM + NINT mice. 
This was particularly evident during the first week of 
treatment (day 7 to day 14) but was markedly attenuated 
on day 21. Even if the aforementioned instances show-
case a representative animal from each group, they effec-
tively demonstrate how the subsequent quantifications, 
allowed by the µCT-DL analysis, will accurately depict 
actual longitudinal morphological and functional altera-
tions in the lungs.

Longitudinal progression of lung morphological 
biomarkers assessed by µCT‑DL
Results obtained for the SAL control group (reported 
in Additional file  1: Fig. S5) showed that each metric 
was stable over time, again with a significant difference 
between the left and the right lungs (Additional file  1: 
Fig. S5C–E and Additional file  1: Table  S1). Based on 
these SAL data, all µCT parameters of the BLM- and 
BLM + NINT-treated groups were normalized with 
respect to the mean value of each parameter measured in 
the control group, except for %Non which is not present 
in healthy mice (equal to 0).

The normo-aerated volume (%Normo) was significantly 
lower in BLM and BLM + NINT mice compared to the 
SAL group at days 14 and 21 in the whole and right lungs, 
and at all time-points in the left lungs (Fig. 3A). From day 
7 to day 21, %Normo for the whole lungs significantly 
decreased in both the BLM and BLM + NINT groups but 
with different rates (p < 0.001 and p < 0.01, respectively). 
As a result, on day 21 a significant recovery of %Normo 
in the BLM + NINT group compared to the vehicle was 
measured (+ 33%, p < 0.05). Although less pronounced, 
a similar trend was observed in the left lung where the 
decline in %Normo was significant from day 7 to day 21 
both in the BLM and BLM + NINT groups (p < 0.01 and 
p < 0.05, respectively), but significantly slowed down 
by Nintedanib treatment compared to BLM group at 
day 21 (+ 35%, p < 0.05). In the right lobes, a significant 

longitudinal decrease of %Normo was apparent only in 
BLM mice (p < 0.05).

The percentage of hypo-aerated volume (%Hypo) was 
significantly increased in BLM and BLM + NINT mice 
compared to the SAL controls at all time-points, except 
for the whole and right lungs on day 7 (Fig. 3B). However, 
despite slight fluctuations, %Hypo remained stable over 
time in both groups.

The non-aerated compartment (%Non) markedly pro-
gressed from day 7 to day 21 in both the BLM and the 
BLM + NINT groups in the whole lungs (p < 0.001) and 
in the left lungs (p < 0.001) (Fig. 3C). In the right lungs, a 
longitudinal increase of %Non reached significance only 
in the BLM group (p < 0.001). Moreover, as revealed by a 
comparison between BLM and the BLM + NINT-treated 
mice, a significant reduction of the fractional non-aerated 
compartment by Nintedanib treatment could be detected 
on day 21 both in the whole lung (− 57%, p < 0.001 vs. 
BLM) and in individual lung lobes (− 58% and − 53%, 
p < 0.001 vs. BLM, in the left and right lung, respectively).

The non-gas volume of the lung (Tissue), whose vari-
ations are due to tissue edema caused by inflammation 
and to collagen deposition, increased in both the BLM 
and the BLM + NINT groups compared to the SAL con-
trol (Fig. 3D). Nintedanib treatment significantly reduced 
the tissue component of the whole and left lung paren-
chyma at day 21 (p < 0.01 and p < 0.05, respectively).

Significant differences in morphological parameters, 
and thus in the severity of fibrotic lesions, between the 
right and the left lungs are evidenced in Table 3. Indeed, 
on days 14 and 21, the decline of the normo-aerated 
compartment, along with the accumulation of non-aer-
ated regions, resulted to be unequal between the two 
lobes, in agreement with the hypothesis that fibrosis pro-
gression preferentially occurs in the left lobe. On day 7, 
no significant difference in the Tissue component was 
detected between the two lung lobes both in the BLM 
and in the BLM + NINT group. However, at later time-
points, Tissue in the right lungs was higher compared to 
the left lung in both groups, thus indicating an inflamma-
tory component that tends to last longer in the former 
district.

Longitudinal progression of functional µCT biomarkers
Total expiratory lung volume (VP02) was significantly 
increased on day 7 in the BLM and BLM + NINT 
groups compared to the SAL control, both in the whole 
parenchyma and in individual lung lobes, suggest-
ing that this parameter may reflect the inflammatory 
response to BLM administration, as previously reported 
[20, 23]. VP02 tended to decrease, although non-signifi-
cantly in the BLM group, at subsequent time-points in 
the whole and in the left lungs, suggesting that on day 
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Fig. 3  Longitudinal assessment of morphological µCT biomarkers in the P02 phase for the whole, left, and right lungs. A Quantification of the 
Normo-aerated compartment expressed as percentage (%Normo). B Quantification of the Hypo-aerated compartment expressed as percentage 
(%Hypo). C Quantification of the Non-aerated compartment expressed as a percentage (%Non). D Lung volume without gas (Tissue) quantification. 
All values reported for the BLM and BLM + NINT groups were normalized with respect to the mean values of the SAL group averaged on days 7, 14, 
and 21, except for %Non which is expressed as absolute percentage value. The black lines set at 1.0 represent the “untreated” condition obtained by 
dividing the SAL mean value by itself, while in C the black line is set at 0. BLM (red) and BLM + NINT (green) data are given as mean ± SEM. Statistical 
significance of longitudinal changes of CT parameters in the BLM and BLM + NINT groups was assessed by Two-way ANOVA followed by Šidák 
post-hoc test (#p < 0.05; ##p < 0.01; ### p < 0.001). Statistical significance of differences between groups was calculated by Two-way ANOVA followed 
by Dunnett’s t post-hoc test (*p < 0.05; **p < 0.01; ***p < 0.001 vs. BLM group) and the relative percentage of inhibition (−) or recovery (+) at 21 days 
was reported at the top right-side of each plot
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21 the inflammation in the left lung was replaced by 
fibrotic and scarred tissue. On the contrary, only slight 
fluctuations could be observed in the right lungs, also 
suggesting a compensatory mechanism. Consequently, 
the effect of Nintedanib slowing collagen deposition 
resulted in a longitudinal drop of VP02 only in the left 
lobe (p < 0.05).

The percentage of air content (%GasP01) at the 
end-inspiratory phase declined in both BLM and 
BLM + NINT-treated groups compared to SAL at all 
time-points (Fig. 4B). A significant drop in %GasP01 was 
observed in the whole lung parenchyma as well as in 
the left and right lungs of BLM mice from day 7 to day 
21 (p < 0.001, p < 0.01, and p < 0.001, respectively). Nint-
edanib treatment stabilized the %GasP01 decline, which 
was (on average) + 50% higher compared to the BLM 
group in the whole lungs (p < 0.01), + 47% in the left 
lungs (p < 0.001), and + 53% in the right lungs (p < 0.01). 
%GasP01 in the whole lungs of BLM + NINT-treated 
mice was also significantly higher than in the BLM 
group on day 14 (p < 0.05).

%GasP02 significantly decreased from day 7 to day 21 
in both the BLM and the BLM + NINT groups at the 
whole lung level (p < 0.001 and p < 0.01, respectively) 
and in the left lung lobes (p < 0.01, p < 0.05, respec-
tively) (Fig. 4C). In the right lungs, a marked decline of 
%GasP02 was found only in BLM mice (p < 0.001). On 
day 21, a significant recovery of %GasP02 was measured 
in BLM + NINT mice compared to the BLM group both 
in the whole and in the left lungs (p < 0.01), thus point-
ing to a left lobe-preferential effect of Nintedanib.

In BLM mice, the Tidal Volume (TV) of the whole, 
right, and left lungs resulted significantly impaired 
compared to the SAL controls at all time-points 
(Fig.  4D). The single-lobe analysis performed on BLM 
mice revealed that in the left lungs, this impairment 
was constant over time (p < 0.001 vs. SAL) while it 
attenuated from day 7 (p < 0.001) to day 21 (p < 0.05) 
in the right lungs; however, no significant longitudinal 

differences were detected. In the whole lung and in the 
right lung lobes, the Nintedanib treatment resulted in 
a significant increase of the TV from day 7 to day 21 
(p < 0.01) and was significantly higher compared to 
the TV in the BLM group at the end of the treatment 
(p < 0.05). Comparing data from the right and the left 
lungs (Table 4), the increment in VP02 resulted weaker 
in the left lungs at all time-points in both the BLM 
and the BLM + NINT groups, suggesting a compensa-
tory effect of the right lobes and indicating a stronger 
inflammatory response to BLM than their contralat-
eral. Similarly, %GasP02 values in the left lungs were 
statistically lower compared to those measured in the 
right lungs at all time-points both in the BLM and in 
the BLM + NINT group. These differences were less 
marked, but still present, at the end-inspiratory phase, 
indeed %GasP01 values tended to be higher in the right 
lobes in both BLM and BLM + NINT groups. No sig-
nificant differences in TV between the left and the right 
lungs could be detected on days 7 and 14. On day 21, 
however, TV values in the right lungs were statistically 
higher than those of the left lungs in both BLM and 
BLM + NINT groups, in agreement with the hypothesis 
of a compensatory effect of the right lung.

Histological assessment of lung fibrosis 
and the anti‑fibrotic effect of Nintedanib
The SAL controls displayed an overall normal lung archi-
tecture with no detectable alterations, whereas BLM 
mice lungs were characterized by evident fibrotic lesions 
with confluent conglomerates of substitutive collagen 
and inflammatory infiltrates, as reported in Fig. 5A, that 
appeared less extensive in the BLM + NINT group.

As expected, the mean AS significantly increased in 
the BLM group compared to the SAL controls, both in 
the whole lung parenchyma and in individual lung lobes 
(p < 0.001, Fig.  5B). Nintedanib treatment significantly 
reduced the AS in the whole parenchyma and in the left 
lung (− 18% and − 21% respectively; p < 0.05 vs. BLM), 

Table 3  p-values derived from a paired Student’s t-test analysis comparing the morphological biomarkers measured in the right and 
left lungs both in the BLM and BLM + NINT groups at each time-point

ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

Paired t-test: left vs. right lungs

Morphological 
biomarkers

Day 7 Day 14 Day 21

BLM BLM + NINT BLM BLM + NINT BLM BLM + NINT

%Normo ** *** * ** ** **

%Hypo * ns ns ns ns ns

%Non ns ns * *** ** ***

Tissue ns ns * ** ** ***
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Fig. 4  Longitudinal assessment of functional µCT biomarkers for the whole, left and right lungs in the respiratory phases P02 and P01. A 
Quantification of the Total Lung Volume at the end of expiration (VPO2). B Quantification of the air content at the end of inspiration expressed as 
percentage (%GasP01). C Quantification of the air content at the end of expiration expressed as percentage (%GasP02). D Quantification of the Tidal 
Volume (TV). All values reported for the BLM and BLM + NINT groups were normalized with respect to the mean values of the SAL group averaged 
on days 7, 14, and 21. The black lines arbitrarily set at 1.0 represent the “untreated” condition obtained by dividing the SAL mean value by itself. BLM 
(red) and BLM + NINT (green) data are given as mean ± SEM. Statistical significance of the longitudinal changes of CT parameters in the BLM and 
BLM + NINT groups was assessed by Two-way ANOVA followed by Šidák post-hoc test (#p < 0.05; ##p < 0.01; ###p < 0.001). Statistical significance of 
differences between groups was determined by Two-way ANOVA followed by Dunnett’s t post-hoc test (*p < 0.05; **p < 0.01; ***p < 0.001 vs. BLM 
group) and the relative percentage of inhibition (−) or recovery (+) at 21 days was reported at the top right-side of each plot
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whereas no significant difference between the BLM and 
BLM + NINT groups was observed in the right lung. 
In keeping with µCT data, histological assessment of 
fibrosis confirmed that the left lungs of both BLM and 
BLM + NINT groups were significantly more affected 
compared to their respective right lungs (p < 0.05 and 
p < 0.01, respectively).

Predictably, the lungs of the SAL group were totally 
classified as tissue with no/mild lesions, both at the whole 
lung and individual lobe levels (Fig.  5C). Moderate and 
severe fibrotic lesions were prominent, instead, in BLM 
and BLM + NINT lungs. Overall, Nintedanib inhibited 
lung fibrosis compared to the BLM group, especially by 
reducing the frequency of severe lesions (severe: − 52%, 
p < 0.05 vs. BLM group) and partially recovering no/mild 
lesions percentage (+ 23%). Also in this case, when the 
two lung lobes were separately examined, a greater fre-
quency of severe fibrotic areas was observed in the left 
lungs compared to the right lungs of the BLM group 
(p < 0.05), and interestingly, Nintedanib strongly reduced 
more severe fibrosis especially in left lungs (severe: 
− 47%, p < 0.05 vs BLM) rather than in right lungs (severe: 
− 34%).

All µCT-derived biomarkers measured at day 21 in the 
SAL, BLM, and BLM + NINT groups were compared to 
the AS assessed in the whole lung parenchyma and in 
the left and right lungs (Fig. 5D). As expected, only the 

volumetric biomarkers (values not underlined in Fig. 5D) 
were found not to be correlated with AS (p > 0.05).

Despite the bidimensional nature of histological meas-
urements, a good correlation with µCT biomarkers was 
observed in the whole lung and in the left lobe. This was 
markedly reduced in the case of the right lobes, likely due 
to the difficulty of precisely determining the AS in the 
four right lobes through a single cut of the entire lung. 
Nevertheless, µCT-derived parameters more closely 
related to the extent of fibrosis (non-aerated volume and 
tissue lung volume) were found to be well-correlated with 
the Ashcroft score both in the left and in the right lung.

Discussion
Effective preclinical discovery of new drugs requires the 
development of reliable animal models of human diseases 
and highly efficient approaches for their detailed inves-
tigation. In various animal models, µCT imaging has 
proven to be a powerful tool to visualize and precisely 
quantify the dynamic evolution and regional severity of 
disease [20, 23]. However, to take full advantage of this 
imaging approach, it is necessary to automate the post-
processing phase of analysis, including lung segmenta-
tion. This can be particularly challenging in the case of 
degenerative pathologies such as lung fibrosis, where 
fibrotic lesions are often only partially detected by com-
mercial software requiring highly time-consuming and 
operator-bias-prone manual interventions [9]. Applied 

Table 4  p-values derived from a paired Student’s t-test analysis comparing the functional biomarkers measured in the right and left 
lungs both in the BLM and BLM + NINT groups at each time-point

ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

Paired t-test: left and right lobes

Functional biomarkers Day 7 Day 14 Day 21

BLM BLM + NINT BLM BLM + NINT BLM BLM + NINT

VP02 *** *** * ** * **

%GasP01 * ns * ns ns *

%GasP02 * * * ** * **

TV ns ns ns ns * *

(See figure on next page.)
Fig. 5  Histological assessment of fibrosis progression in BLM model and Nintedanib effect. A Representative images of Masson’s trichrome stained 
histological sections from SAL (left), BLM (middle), and BLM + NINT (right) mice at 21 days. B Ashcroft score (AS) quantification for the SAL, BLM, 
and BLM + NINT groups in the whole, left (LL), and right (RL) lungs as indicated. Statistical significance of the differences between groups for the 
whole lung were calculated by Two-way ANOVA followed by Dunnett’s t post-hoc test (*p < 0.05; ***p < 0.001 vs. BLM group), whereas a Student’s 
t-test analysis was used to evaluate the statistical significance of AS differences between the left and the right lobe of the same group (#p < 0.05; 
##p < 0.01). C AS class frequency distribution (no/mild, moderate, and severe) for the whole, left, and right lungs. Statistical differences between the 
class frequencies of BLM and BLM + NINT groups were evaluated via Two -way ANOVA followed by Dunnett’s t post-hoc test (*p < 0.05). Student’s 
t-test analysis was used to evaluate the statistical significance of AS class frequency differences between the left and the right lobe of the same 
groups (#p < 0.05; ##p < 0.01). D Heat-map representation of Spearman correlation coefficients (R) between CT-derived parameters and AS in the 
whole, left, and right lungs; no significant correlations (p-value < 0.05) have not been reported
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to an established mouse model of BLM-induced lung 
fibrosis, this work documents, for the first time, the 
ability of a retrained fully automated DL-based algo-
rithm to improve and speed up lung segmentation and 

the measurement of morphological and functional bio-
markers in both the whole lung parenchyma and in indi-
vidual lung lobes from both inspiratory and expiratory 
μCTs. Targeted validation was achieved by launching the 

Fig. 5  (See legend on previous page.)
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DL-based algorithm against the entire µCT images data-
set of a pharmacological experiment containing 46 scans 
per time-point. The time required for segmentation and 
biomarker information extraction was cut down from 
40 to 10  min per image, thus reducing the cumulative 
time required to analyze the entire dataset from 45 days 
to one day. The DL-guided analysis enabled the auto-
matic extrapolation of µCT-derived morphological and 
functional biomarkers. This allowed us to longitudinally 
investigate fibrosis progression and response to Nint-
edanib, which has recently been approved for progressive 
pulmonary fibrosis in humans [29, 30] using both inspira-
tory and expiratory μCTs.

We paid special attention to the separate examination 
of the left and the right lungs, which is simply unfeasi-
ble with manual segmentation, because we suspected 
a marked difference in the intensity of the pro-fibrotic 
effect induced by BLM in the two lung lobes, caused 
by their anatomical and size differences, with the left 
lobe covering approximately only one-third of the total 
lung volume [31]. Due to this size difference, follow-
ing an initially balanced distribution of BLM (delivered 
by oropharyngeal aspiration) at the tracheal bifurca-
tion between the left and the right bronchus, the local 
BLM concentration becomes significantly higher in the 
left lung, which thus tends to develop more severe and 
progressive fibrotic lesions. The potentially confound-
ing effects associated with this uneven BLM accumula-
tion were successfully addressed by our µCT DL analysis, 
which allowed an accurate evaluation of the spatial distri-
bution of fibrotic lesions.

Multiple lung biomarkers, both morphological and 
functional, were longitudinally assessed in parallel and 
µCT-derived data were systematically compared with 
those obtained from more conventional, especially 
histological, analyses. By investigating morphological 
biomarkers at the whole-lung level, we found their pro-
gression to be consistent with the BLM-induced model 
of lung fibrosis [20, 23]. A better understanding of the 
model and its progression was achieved through the 
separate analysis of the right and the left lungs. In both 
BLM- and BLM + NINT-treated animals, the left lung 
was characterized by smaller normo-aerated areas and 
larger fibrotic (non-aerated volume) regions compared 
to the right lung. These data, together with the results 
of histological analyses conducted in parallel, further 
corroborate the notion that the left lung is significantly 
more affected than the right lung by BLM administra-
tion. Despite the limited number of animals employed 
in this study, the overall consistent results we obtained 
by automated µCT DL and histological analyses 
strongly suggest that our approach can reliably guide 
anti-fibrotic therapy evaluation in-vivo. Specifically, 

the automated µCT-DL algorithm allowed for accurate 
segmentation of the lungs and extraction of quantita-
tive parameters, which were consistent with the find-
ings from the histological analysis. Another important 
practical correlate of the reliability and non-invasive 
nature of µCT-DL consists in a reduction of the num-
ber of animals required per experiment, in agreement 
with the 3R goals for animal protection (Refinement, 
Replacement, Reduction) and its ongoing reinforce-
ment [29]. It should be noted, however, that while 
micro-CT protocols involving weekly follow-up are not 
associated with radiotoxicity effects [32] and we did not 
detect the occurrence of any histopathological changes 
following irradiation on the SAL group by standard his-
tological analysis, previous studies have suggested that 
MRI could serve as a non-ionizing radiation imaging 
alternative for quantifying lung injury and evaluating 
the effects of pharmacological treatments in the bleo-
mycin murine model [33, 34].

In both lungs, Nintedanib significantly ameliorated 
various morphological and functional parameters. From 
the longitudinal analysis of the morphological biomark-
ers, we found that Nintedanib slowed the progression 
of those parameters that are causally related to the most 
severe and progressive fibrotic areas (e.g., non-aerated 
volume and tissue); thus, Nintedanib slowed collagen 
deposition, leading to the pharmacological effect to be 
particularly evident in the left lungs where bleomycin-
induced fibrotic lesions are more severe and progres-
sive, also suggesting that harsher lesions might be more 
responsive to the pharmacological treatment as reported 
in clinical studies [27].

Among functional biomarkers, total lung volume 
turned out to be the best indicator of the acute, BLM-
induced inflammatory phase associated with the fluid 
accumulation and edema detected on day 7. This early 
inflammation is a typical feature of the BLM-induced 
fibrosis mouse model and tends to diminish at later time-
points [20]. Similarly, VP02 increased at both the whole 
and individual lung levels on day 7 and declined thereaf-
ter in the whole and left lungs, on the contrary, the right 
lungs remained stable over time, suggesting that inflam-
mation vanishes faster in the left lobes.

This observation together with disease progression 
highlighted by longitudinal functional biomarkers evalu-
ation suggested a marked compensatory mechanism of 
the right lobe.

Indeed, at all time-points, higher %GasP02 and TV 
values appeared to be concentrated in the right lung of 
BLM- and BLM + NINT-treated mice. This compensa-
tory response, which has never been described before, 
could lead to an overestimate of the effects of anti-
fibrotic drug candidates on ventilatory and mechanical 
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lung parameters, such as forced vital capacity and over-
all functionality of the respiratory system, if they are 
not determined longitudinally. We can hypothesize, that 
compensatory effects occurred in the caudal part of the 
right lobes since the histological analysis unveiled that 
severe fibrotic lesions are mainly located in lung apical 
regions.

The possibility afforded by µCT-DL of automatically 
and non-invasively deriving in-vivo longitudinal bio-
markers associated with different sites and stages of 
fibrosis development offers several advantages. First, 
since each mouse acts as its own control, experimental 
variability is significantly reduced. Second, the meas-
ured biomarkers can be quantitatively compared across 
experiments, increasing the overall robustness of in-vivo 
acquired data. Finally, since the post-processing stage 
is fully automated and free of any operator-dependent 
bias (even though segmentation and data acquisition are 
supervised), the ensuing results are more consistent and 
reproducible.

The above improvements compared to more conven-
tional bioanalytical approaches are expected to advance 
explorative in-vivo drug discovery studies, especially 
regarding a more effective (i.e., earlier and more reliable) 
identification of the most promising drug candidates, 
ultimately leading to a significant cutback of the overall 
cost of drug discovery [35].

The present study has some limitations. First, our deep-
learning model requires access to a computing cloud, 
which may not be affordable for all researchers. Addi-
tionally, while the algorithm accurately segments the 
lung lobes and excludes major blood vessels, minor ves-
sels may be still included in the segmented lungs. Also, 
a limited number of individuals per group was included 
in the study. Nevertheless, significant differences were 
still found between groups suggesting the sensitivity of 
the proposed method. Despite these limitations, our 
work provides valuable insights into the application of 
deep-learning models in preclinical pharmacological 
experiments for the study of pulmonary fibrosis and the 
response to putative treatments, which can help guide 
future research in this field.

Full validation of our µCT-DL approach as a routine, 
general-use bioanalytical tool will have to await its uti-
lization by other preclinical investigation laboratories. 
However, its ease of operation and the fact that it entirely 
relies on standard imaging instrumentation, makes us 
quite confident about its successful transfer to other 
laboratories and to other preclinical settings in addition 
to pulmonary research, perhaps including clinical diag-
nostic applications, which is recently moving towards 
the identification of radiological markers of disease 

progression for both diagnosis and prognosis purposes 
[2, 36, 37].

Finally, also worthy of note is the clinical transla-
tion potential, exemplified here for Nintedanib, of the 
mode of action information on established or new can-
didate drugs that can be acquired with the precision 
in-vivo preclinical studies afforded by artificial intelli-
gence-guided imaging.
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