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Abstract

Statistical effects of cortical metrics derived from standard T1- and T2-weighted

magnetic resonance imaging (MRI) images, such as gray–white matter contrast

(GWC), boundary sharpness coefficient (BSC), T1-weighted/T2-weighted ratio

(T1w/T2w), and cortical thickness (CT), are often interpreted as representing or being

influenced by intracortical myelin content with little empirical evidence to justify

these interpretations. We first examined spatial correspondence with more biologi-

cally specific microstructural measures, and second compared between-marker age-

related trends with the underlying hypothesis that different measures primarily driven

by similar changes in myelo- and microstructural underpinnings should be highly

related. Cortical MRI markers were derived from MRI images of 127 healthy subjects,

aged 18–81, using cortical surfaces that were generated with the CIVET 2.1.0 pipe-

line. Their gross spatial distributions were compared with gene expression-derived

cell-type densities, histology-derived cytoarchitecture, and quantitative R1 maps

acquired on a subset of participants. We then compared between-marker age-related

trends in their shape, direction, and spatial distribution of the linear age effect. The

gross anatomical distributions of cortical MRI markers were, in general, more related
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to myelin and glial cells than neuronal indicators. Comparing MRI markers, our results

revealed generally high overlap in spatial distribution (i.e., group means), but mostly

divergent age trajectories in the shape, direction, and spatial distribution of the linear

age effect. We conclude that the microstructural properties at the source of spatial

distributions of MRI cortical markers can be different from microstructural changes

that affect these markers in aging.
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aging, boundary sharpness coefficient, cortical myelin, cortical thickness, gray–white matter
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1 | INTRODUCTION

The varying microstructural organization of the human brain is

defined, in aggregate, by numerous cellular-level compositions includ-

ing the cytoarchitecture (neuronal cell bodies), myeloarchitecture

(organization of myelin sheaths), iron distribution, neuronal processes,

vasculature, and glial cells (Bock et al., 2009; Eickhoff et al., 2005;

Fukunaga et al., 2010; Tardif et al., 2016). The observable

T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imag-

ing (MRI) intensities are thought to result from the underlying distri-

butions of combinations of these microstructural properties.

However, the relationship between intensity values and these biologi-

cal sources is not yet completely understood (Tardif et al., 2016). The

neurobiological specificity attributable to different intensities in T1w

and T2w images is further confounded by experimental design

choices such as MRI hardware and sequence acquisition parameters.

Nonetheless, there are still some clues that allow us to better under-

stand the underlying neurobiological basis of these signals. For

instance, histological studies have demonstrated that cortical T1w sig-

nal is influenced by both myelo- and cyto-architectural properties,

although myelin was shown to be the main contributor to the contrast

(Bock et al., 2009; Eickhoff et al., 2005). Other studies observed that

myelin was the largest contributor to quantitative T1 contrast, while

iron was the largest contributor to quantitative T2* contrast (Stüber

et al., 2014). However, iron in cortical gray matter is mostly localized

in oligodendrocytes, which are the cell bodies of myelin sheaths

(Fukunaga et al., 2010). Taken together, these findings relate the corti-

cal MRI signal mainly to myeloarchitecture in the healthy cortex.

In spite of these biophysical contrast mechanisms, several studies

use metrics derived from the signal intensity as a representation of

cortical “microstructure,” a non-specific term that does not have an

agreed-upon biologically meaningful definition. Furthermore, metrics

derived from T1w and T2w images are often interpreted as being

influenced by myeloarchitecture, and more specifically the density or

concentration of gray matter (GM) myelin (Glasser & Van

Essen, 2011; Olafson et al., 2021; Salat et al., 2009). The most fre-

quently derived cortical MRI markers of microstructure are, first, the

ratio of gray-to-white matter T1w signal intensities (gray–white mat-

ter contrast [GWC]), as originally proposed in Salat et al. (2009), which

is often used as a putative marker for myelination of deeper cortical

layers (Chwa et al., 2020; Drakulich et al., 2021; Jørgensen

et al., 2016; Vidal-Piñeiro et al., 2016). Second, the ratio of T1w to

T2w signal (T1w/T2w ratio), has been proposed to be more sensitive

to myelin than either image alone (Glasser & Van Essen, 2011;

Grydeland et al., 2013, 2019) due to the general inverse dependence

of T1w and T2w signals on myelin.

In addition to these, our group developed the boundary sharpness

coefficient (BSC), which examines the sharpness of the change in T1w

signal intensity from superficial white matter (SWM) to cortical gray

matter (Olafson et al., 2021). The BSC was inspired by methods used

in cytoarchitectonic histological examinations in Avino and Hutsler

(2010) and is less sensitive to confounds related to cortical curvature

that can be observed in GWC. Lastly, cortical thickness

(CT) measurements rely on the placement of the gray-white matter

boundary on T1w images, which is typically established by algorithms

as the location where the greatest change in contrast occurs (Salat

et al., 2009), thus potentially influenced by intracortical myelin den-

sity. Indeed, Natu et al. (2019) found that CT reductions in the visual

cortex observed during development were driven by myelination of

deep cortical layers.

These cortical measures have also been reported as being sensi-

tive to maturation and aging (Drakulich et al., 2021; Fjell et al., 2009;

Grydeland et al., 2019; Olafson et al., 2021; Salat et al., 2009, 2011;

Vidal-Piñeiro et al., 2016). Such statistical effects of GWC, T1w/T2w

ratio, BSC, and to a lesser extent CT measures, are generally inter-

preted similarly (i.e., effects of intracortical myelin) despite an overall

lack of validation with post-mortem measures of microstructure from

different modalities. As previously mentioned, other neuroanatomical

properties such as cortical iron and overall cell density have been

shown to affect MRI signal (Eickhoff et al., 2005; Fukunaga

et al., 2010), thus potentially also impacting the statistical effects of

cortical measures. Furthermore, SWM myelin could also have an

impact, especially for the BSC and GWC markers, which sample inten-

sities partly in the SWM. These other potential microstructural

sources are rarely mentioned.

In humans, whole-brain ex vivo assessments of microstructure

are extremely difficult and time-consuming to acquire. Consequently,

such measurements are typically done on a single or very few sub-

jects, resulting in inadequate sample sizes to assess the microstruc-

tural sources of subtle MRI statistical effects (Amunts et al., 2013;

Hawrylycz et al., 2012). Because of this limitation, it may be more fea-

sible to assess the similarity of statistical effects between these MRI
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cortical markers that have similar microstructural interpretations in

the same sample with uniform MRI acquisitions and processing, with

the rationale that effects driven by the same microstructural tissue

property (i.e., density of intracortical myelin) should, as a minimal con-

dition, result in similar statistical effects between the measures.

In sum, there is a need to assess the biological specificity of MRI

cortical markers (i.e., GWC, T1w/T2w ratio, BSC, CT) to help validate

these biological interpretations. In the first part of the manuscript, we

assessed gross anatomical distribution relationships of the cortical

MRI markers between themselves and with microstructural measure-

ments derived from other modalities. More specifically, we compared

the average spatial distributions of these measures with (1) the den-

sity of seven canonical cell types derived from gene expression data

(Seidlitz et al., 2020), (2) overall cell density in GM and SWM from the

histology-derived BigBrain dataset (Amunts et al., 2013), and (3) quan-

titative R1 maps, an MRI contrast less biased by experimental choices

and more specific to biophysical properties of the tissue (Marques

et al., 2010; Tardif et al., 2016). In the second part of the manuscript,

to better quantify the similarity between the microstructural sources

of subtle MRI statistical effects across the whole cortex and to dem-

onstrate the impact of their differential sensitivity, we compared the

age effect of MRI cortical markers between themselves in a healthy

population spanning the adult lifespan. More specifically, we assessed

similarities and differences in age-related trends with respect to the

shape, direction, and spatial distribution of the linear age effect

between the measures.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 174 healthy individuals were recruited across two studies,

the Alzheimer's Disease Biomarkers (ADB) and Healthy Aging

(HA) studies. Signed informed consent from all participants was

obtained and the research protocol was approved by the Research

Ethics Board of the Douglas Mental Health University Institute, Mon-

treal, Canada. Exclusion criteria for both cohorts included a history of

neurological and psychiatric illness, physical injuries such as head

trauma and concussion, alcohol/substance abuse or dependence, and

current drug use. Data from these two cohorts were published in pre-

vious papers from our group (Bussy, Plitman, et al., 2021; Bussy, Patel,

et al., 2021; Tullo et al., 2019). The original data can be obtained

through collaborative agreement and reasonable request but is not

publicly available due to the lack of informed consent by these human

participants. Complete demographic information of both samples is

detailed in Table 1, and associated histograms for each variable are

available in Figure S1.

• Alzheimer's disease biomarkers (ADB). In this cohort, subjects were

recruited across the Alzheimer's disease spectrum, but only the

healthy controls were included in this study. The cognition of the

participants was evaluated with the Mini-Mental State Exam

(MMSE; Arevalo-Rodriguez et al., 2015), Montreal Cognitive

Assessment (MoCA; Nasreddine et al., 2005), and Repeatable Bat-

tery for the Assessment of Neuropsychological Status (RBANS;

Randolph et al., 1998). Subjects with an MMSE ≥24/30 and a

MoCA ≥26/30 were categorized in the control group.

• Healthy aging (HA). In this cohort, participants throughout the

healthy adult lifespan were recruited. The cognitive abilities of the

subjects were also evaluated with the MMSE and RBANS (but not

the MoCA), and their IQ was assessed with the Wechsler Abbrevi-

ated Scale of Intelligence (WASI; Wechsler, 2007).

2.2 | MRI acquisition

MRI images were acquired at the Cerebral Imaging Center, associated

with the Douglas Research Center in Montréal, Canada. All scans

were conducted on the same Siemens Trio 3T MRI scanner using a

32-channel head coil.

TABLE 1 Subject demographics.

Pre-QC Post-QC R1 subsample

Total ADB HA Total ADB HA Total ADB HA

N 174 68 106 127 45 82 35 26 9

Mean age

(years ± SD)

55.3 ± 17.6 69.9 ± 5.6 45.8 ± 16.1 53.4 ± 18.0 69.6 ± 5.7 44.5 ± 16.1 62.7 ± 13.3 70.0 ± 5.2 41.8 ± 4.9

Sex (female:male) 95:79 41:27 54:52 76:51 29:16 47:35 21:14 16:10 5:4

WASI (±SD) 104.3 ± 18.8 – 104.3 ± 18.8 105.5 ± 18.8 – 105.5 ± 18.8 102.1 ± 21.1 – 102.1 ± 21.1

MMSE (±SD) 28.6 ± 1.5 28.3 ± 1.7 28.8 ± 1.3 28.7 ± 1.5 28.2 ± 1.8 29.0 ± 1.3 28.5 ± 1.6 28.3 ± 1.8 29.0 ± 0.8

MOCA (±SD) 25.5 ± 2.7 25.5 ± 2.7 – 25.2 ± 2.8 25.2 ± 2.8 – 25.2 ± 3.0 25.2 ± 3.0 –

RBANS (±SD) 99.9 ± 13.8 97.1 ± 12.9 101.6 ± 14.0 101.3 ± 13.0 98.2 ± 13.6 102.9 ± 12.4 98.0 ± 13.0 94.5 ± 12.8 106.6 ± 9.1

Note: Demographic information by dataset before quality control (QC), after QC, and in the R1 subsample (see Section 2.2).

Abbreviations: ADB, Alzheimer's Disease Biomarkers cohort (controls only); HA, Healthy Aging cohort; MMSE, Mini-Mental State Exam; MOCA, Montreal

Cognitive Assessment; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; SD, standard deviation; WASI, Wechsler

Abbreviated Scale of Intelligence.

PARENT ET AL. 3025



• T1-weighted. T1w images were derived from the magnetization-

prepared rapid acquisition gradient echo (MPRAGE) sequence

acquired with parameters established by the Alzheimer's Disease

Neuroimaging Initiative (Jack et al., 2008); repetition time [TR] =

2300 ms; echo time [TE] = 2.98 ms; inversion time [TI] = 900 ms;

flip angle [α] = 9�; GRAPPA = 2; slice thickness = 1 mm for 1 mm

isotropic voxels.

• T2-weighted. T2w images derived from the SPACE sequence with

the following parameters (TR = 2500 ms; TE = 198 ms; FOV =

206 mm; slice thickness = 0.64 mm for 0.64 mm isotropic voxel

dimensions). The slice partial Fourier was set to 6/8 for the T2w

scan of the ADB cohort, as a means to shorten the scan time and

reduce the likelihood of motion artifacts. While this technique

slightly decreases the signal-to-noise ratio, the image contrast

should not be affected (Feinberg et al., 1986), and the two T2w

sequences should be directly comparable. These images were origi-

nally acquired to facilitate examination of the hippocampal sub-

fields (Bussy, Patel, et al., 2021; Bussy, Plitman, et al., 2021).

• MP2RAGE. R1 maps were derived from the MP2RAGE sequence

(Marques et al., 2010) acquired for a subset of the participants

(N = 52) with the following parameters (TI1 = 700 ms; TI2 =

2000 ms, TE = 2.01 ms; TR = 5000 ms; α1 = 4�; α1 = 5�; FOV =

256 � 240 mm2; slice thickness = 0.8 mm for 0.8 mm isotropic

voxels).

2.3 | Image processing

2.3.1 | Preprocessing

T1w images were preprocessed using the minc-bpipe-library (https://

github.com/CobraLab/minc-bpipe-library). The procedure consists of

an N4 bias field correction (Tustison et al., 2010), cropping of the neck

region, and brain extraction using the BEaST algorithm (Eskildsen

et al., 2012). An example of the preprocessed T1w volume for one

subject is available in Figure S2. The preprocessed T1w volumes were

used for the extraction of CT, GWC, and BSC measures.

2.3.2 | Generation of cortical surfaces

From these outputs, the gray–white matter boundary and pial surfaces

were generated with the CIVET 2.1.0 processing pipeline (https://

www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-References) (Kim

et al., 2005), and were then transformed into standard MNI space using

BestLinReg (Collins et al., 1994; Dadar et al., 2018).

2.3.3 | Quality control

Quality control procedures for all raw scans and cortical segmenta-

tions are detailed in supplementary methods. After these proce-

dures, a total of 127 participants (51 males and 76 females,

mean age = 53.35 ± 18.04, age range 18–81) were included in the

main analyses. The R1 subsample consisted of 35 participants (9 from

the Healthy Aging cohort and 24 from the Alzheimer's disease

Biomarkers cohort, 14 males and 21 females, mean age = 62.71 ±

13.52, age range 36–79). Other demographic variables are available

in Table 1 and histograms are available in Figure S1.

2.4 | Cortical marker generation

In order to extract the cortical markers, surfaces generated by CIVET

were used. Figure 1 illustrates how each marker is calculated. All

markers were surface smoothed with a 20 mm full-width half-

maximum (FWHM) heat kernel and were projected onto a common

cortical surface mesh (the ICBM 152-2009b sym model) to enable

cross-subject comparisons. Additionally, analyses are rerun on

markers smoothed with a 5-mm FWHM heat kernel applied after

regressing out curvature in order to assess if our results are robust to

those parameter variations (see Figures S9–S13).

2.4.1 | Cortical thickness

CT estimates were generated with the CIVET 2.1.0 processing pipe-

line which calculated the Laplace distance between the gray–white

matter boundary surface and the pial surface at each vertex

(Figure 1a). These surfaces were subsequently used for the processing

of the other markers, by providing a base from which other surfaces

were generated in order to sample the intensities at various frac-

tions of CT.

2.4.2 | Gray–white matter contrast

GWC measures are calculated on the T1w volume linearly trans-

formed in MNI space by dividing the white matter intensity sampled

at a distance equivalent to 25% of the CT in the direction of white

matter by the gray matter intensity sampled at 25% of the CT along

the normal of the surface at each vertex (Figure 1b). The GM sampling

distance was chosen because previous studies show higher rates of

myelination changes in childhood at around 1/4 of the cortical depth

(Whitaker et al., 2016), potentially indicating a higher sensitivity to

aging, while the WM sampling distance was chosen in order to mini-

mize partial volume effects.

2.4.3 | T1w/T2w ratio

The T1w/T2w ratio was developed by Glasser and Van Essen (2011)

following the rationale that the T1w and T2w sequences are both

sensitive to myelin, but in opposite directions (T1w signal being pro-

portional to the quantity of myelin, while T2w signal being inversely

proportional to the quantity of myelin). Hence, the ratio of those
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two images enhances the contrast-to-noise ratio of myelin

(Glasser & Van Essen, 2011). To enable voxel-by-voxel correspon-

dence between the two images, T2w images were rigidly registered

to T1w images using BestLinReg (Collins et al., 1994; Dadar

et al., 2018). The two volumes were then mathematically divided to

obtain T1w/T2w ratio images. An example of the resulting volume

for one subject is available in Figure S2. Subsequently, the

T1w/T2w ratio values were sampled at both 25% and 50% of CT in

GM at each vertex (Figure 1c). This was in order to make sure that

our results were not dependent on the specific cortical depth at

which the T1w/T2w ratio was sampled. However, we chose the

T1w/T2w ratio at 25% of CT to be the primary GM T1w/T2w ratio

analysis, as this sampling distance is the same as the GM sampling

distance of the GWC, and given the higher concentration of myelin

at more superficial layers previously described (Whitaker

et al., 2016). Furthermore, to obtain SWM T1w/T2w ratio values,

F IGURE 1 Methods for generating markers. (a) Cortical Thickness (CT) estimates were calculated as the Laplacian distance between the pial
surface and the gray–white matter boundary surface at each vertex on the T1-weighted volume in native space. (b) Gray-white matter contrast
(GWC) was calculated by dividing the intensity at 25% of CT translated into superficial white matter (SWM) by the intensity at 25% of CT into
gray matter (GM) at each vertex on the T1-weighted volume in MNI space. (c) The T1w/T2w ratio measures were generated by sampling the
T1w/T2w ratio volume in native space at various distances. GM T1w/T2w ratio was sampled at 25% of CT. SWM T1w/T2w ratio was sampled at
25% of CT translated into SWM. Additionally, a second GM T1w/T2w ratio measure was sampled at 50% of CT in GM (referred to as GM
T1w/T2w ratio at 50% of CT). (d) The boundary sharpness coefficient (BSC) was calculated by first sampling 10 T1-weighted intensities in MNI
space around the gray-white matter boundary (between 50% of CT in GM and 25% of CT in SWM), then fitting a sigmoid curve to the resulting
intensity profile at each vertex. The BSC represents the growth parameter of the sigmoid curve, with a higher BSC indicating a sharper gray–
white matter transition and a lower BSC representing a more gradual transition.

PARENT ET AL. 3027



the T1w/T2w ratio was sampled at 25% of CT translated in the

direction of white matter.

2.4.4 | Boundary sharpness coefficient

The BSC measures the T1w intensity transition between cortical GM

and SWM. Compared to the GWC, the BSC is less affected by the

gray–white matter boundary placement as it quantifies the transition

zone continuously, and has been shown to correlate only in limited

regions to cortical curvature (Olafson et al., 2021). The computation

of the BSC is explained in detail by Olafson et al. (2021). The BSC is

defined as the growth parameter of a sigmoid function fit to a depth

profile of 10 T1w intensity values (from 25% of CT in WM to 50% of

CT in GM) along a path perpendicular to the gray-white matter

boundary surface (Figure 1d). High BSC values represent a sharper

transition between gray and white matter, while low BSC values rep-

resent a more gradual transition. Values were log-transformed in

order to ensure that the assumption of a normal distribution of the

general linear model was respected.

2.4.5 | Mean curvature

Since cortical markers previously described have been shown to cor-

relate with the curvature of the cortical surfaces (Olafson et al., 2021;

Shafee et al., 2015), we acquired curvature estimates of the gray–

white matter surface with the CIVET 2.1.0 pipeline to residualize the

markers against mean curvature and limit its influence on downstream

age-related trends. This process is done after the smoothing proce-

dure for analyses in the main text, and before the smoothing proce-

dure in supplementary analyses (see Figures S9–S13).

2.5 | Gross anatomical distribution relationships

We assessed the spatial correspondence of cortical MRI markers with

cell-specific microstructural measurements derived from other modali-

ties in order to examine the putative biological correlates of the gross

anatomical distribution of these measures. All spatial correlations

between surface maps were assessed and hypothesis-tested following

the “spin test” procedure detailed in Section 2.7.

First, the average spatial distribution of each MRI cortical marker

was generated by calculating the vertex-wise mean value across sub-

jects. Resulting surface maps were then correlated between them-

selves (Figure 2). Considering the wide age range of our sample

(18–81 years old), we compared the spatial distribution of cortical

MRI markers of younger and older participants (based on a median

split, which was defined as younger or older than 57 years old) as a

preliminary analysis. Since spatial distributions of cortical markers in

younger and older participants are virtually identical (r > 0.97; see

Figure S3), we did not perform additional analyses separating these

two age groups.

Second, we correlated cortical MRI markers with density maps

of seven canonical cell types derived from gene expression data

(Seidlitz et al., 2020). This open-access cell-type atlas is derived by

examining transcription factors related to single-cell RNA sequenc-

ing experiments. It was retrieved from https://github.com/jms290/

PolySyn_MSNs/blob/master/Data/AHBA/cell_classes_AHBA_lh152

parc.txt on April 4, 2022. In brief, the authors used data from five

single-cell gene expression studies (Darmanis et al., 2015; Habib

et al., 2017; Lake et al., 2018; Li et al., 2018; Zhang et al., 2016) to

categorize each gene into 58 different cell classes. The median

expression for each cell class gene set of the aligned and averaged

microarray gene expression data from the six adult donors of the

Allen Human Brain Atlas (AHBA; Hawrylycz et al., 2012; Romero-

Garcia et al., 2019) was computed. The 58 cell classes were then

clustered into seven categories with hierarchical clustering (based on

spatial overlap) and t-distributed stochastic neighborhood embed-

ding. This process resulted in cell density maps for each of the seven

cell types (astrocytes [astro], endothelial [endo], microglia [micro],

excitatory neurons [neuro-ex], inhibitory neurons [neuro-in], oligo-

dendrocytes [oligo], oligodendrocyte precursor cells [OPC]), which

are parcellated in a 152-region subparcellation of the Desikan-

Killany atlas spanning the left hemisphere only (the right hemisphere

was omitted because it was under-sampled in the AHBA). To make

the MRI cortical marker maps comparable to the cell-type maps, we

parcellated the left hemisphere of the MRI cortical markers' average

spatial distribution maps into the same 152-region Desikan–Killany

subparcellation of the cell-type atlas. The resulting correlations with

cortical MRI markers are available in Figure 4. Of note, these ana-

lyses are not repeated with a 5-mm smoothing kernel because the

data is parcellated.

Third, we related cortical MRI markers with overall cell density

maps derived from histology. The “BigBrain” is an ultrahigh resolution

(up to 20 μm isotropic voxel dimension) digital reconstruction of a

complete brain that was sliced and stained for cell bodies (Amunts

et al., 2013) using the Merker staining method (Merker, 1983), where

areas with high cell-body density (e.g., gray matter) have low intensi-

ties and areas with low cell-body density (e.g., white matter) have high

intensities (i.e., intensity is inversely related to the density of cells), as

can be seen in Figure S2. The brain was donated by a 65-year-old

male. The digital reconstruction was then non-linearly registered to

the standard MRI template ICBM152 (Fonov et al., 2009). High-

resolution gray–white matter boundary and pial surfaces were then

generated on the BigBrain volume downsampled to 400 μum isotropic

voxels in MNI space (Lewis et al., 2014). In this study, we used the

8-bit 400 um resolution BigBrain volume in MNI ICBM 152 space,

which is the same space as our MRI surface results. BigBrain surfaces

were downsampled from 163,842 vertices per hemisphere to 40,962

vertices per hemisphere (i.e. the same number of vertices as MRI

CIVET surfaces), thus allowing for direct comparison between Big-

Brain and MRI findings. BigBrain intensities were sampled at the same

depths as the T1w/T2w ratio measures (i.e., 25% of CT in GM, 50% of

CT in GM, and 25% of CT in SWM). These values were inverted to

simplify the interpretation of results since raw BigBrain intensities are
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inversely related to cell-body density. The resulting correlations with

cortical MRI markers are available in Figure 5.

Fourth, we related the cortical MRI markers, which are derived

from weighted MRI sequences, to R1 maps derived from quantitative

MRI. Quantitative MRI sequences differ from conventional

(i.e., weighted) MRI sequences in that they directly measure the abso-

lute relaxation times of the observable protons. As a result, they are a

more interpretable measure of the physical properties of the tissue,

and to some degree of the biology (Weiskopf et al., 2021). The rate of

longitudinal relaxation time R1 (1/T1) has been shown to be highly

positively correlated with myelin content (Stüber et al., 2014). The R1

images calculated from the MP2RAGE sequence (Marques

et al., 2010) in native space were used to extract GM and SWM R1

values. The CIVET surfaces of each subject generated on T1w images

were registered and transformed to the subject-specific R1 volume.

The R1 values were sampled at both 25% and 50% of CT in GM, and

at 25% of CT in the direction of white matter at each vertex. An

example of the R1 volume for one subject is available in Figure S2.

Resulting correlations with other cortical MRI markers are available in

Figure 6.

2.6 | Comparing age-related trends between MRI
markers

To better quantify the similarity between the microstructural sources

of subtle MRI statistical effects across the whole cortex, we compared

age-related trends of MRI cortical markers between themselves in a

healthy population spanning the adult lifespan with the rationale that

effects driven by the same microstructural tissue property

(i.e., density of intracortical myelin) should, as a minimal condition,

result in similar statistical effects between the measures.

As a preliminary step, and since we observed widespread vertex-

wise correlations between curvature and the BSC, GWC, and CT met-

rics (see Figure S6), curvature was regressed out of all markers at the

vertex-wise level to limit its influence on our downstream analyses for

age-related trajectories.

First, for each cortical MRI marker, we calculated the shape of

age-related trends that best fit the data. Age trajectories were mod-

eled using linear models in R version 3.5.1 (https://www.r-project.

org), more specifically with the vertexLm function of the RMINC pack-

age version 1.5.2.3 (Lerch et al., 2017). We compared linear, quadratic,

and cubic models of age, with sex as a covariate, at each vertex using

the Akaike information criterion (AIC) as in our previous work

(Bedford et al., 2019; Bussy, Plitman, et al., 2021; Tullo et al., 2019):

1: Marker � age + sex.

2: Marker � age + age2 + sex.

3: Marker � age + age2 + age3 + sex.

The AIC respects the principle of parsimony by penalizing every

additional predictor variable added to the statistical model

(Mazerolle, 2006). Hence, the model with the lowest AIC at each

vertex was considered the model which best fit the data. The number

of vertices that were best fit by each model was computed for each

marker in order to compare the shape of the age trajectories between

the markers (see Figure 7a).

Second, to further quantitatively compare the age trajectories

between the markers, we compared the spatial distribution of the age

effect. To do so, using a unified and simple age model for all markers

was necessary. A linear age model with sex as a covariate (model

1 above) was fit at each vertex of each marker. Purely for visualization

purposes, the resulting p-values were corrected for multiple compari-

sons using the false discovery rate (FDR) correction, which controls

the proportion of null hypotheses that are falsely rejected (Genovese

et al., 2002). We then quantitatively compared the un-thresholded

beta coefficients of the age component by performing correlations

between the surface maps (Figure 8a). We further visualized linear

trajectories for each marker at a single vertex in the precentral gyrus,

where the linear age effect of all markers was significant (see

Figure 8b).

2.7 | Spatial correspondence between
surface maps

The spatial correspondence between bilateral surface maps (i.e., left

and right hemispheres bundled together) generated with the previous

steps was assessed with Pearson's correlation coefficients. Each cor-

relation was then hypothesis-tested using a bilateral “spin test”
(Alexander-Bloch et al., 2018). This novel statistical technique gener-

ates a null distribution of the spatial overlap across a set of random

rotations to spherical projections of the surfaces around each axis.

Critically, this approach maintains the spatial relationship between

vertices, in contrast with conventional parametric approaches that

falsely assume independence of each vertex which leads to exces-

sively high rates of false positives (Alexander-Bloch et al., 2018). In

our analyses, we chose to do 1000 permutations, because results

have been shown to converge between 500 and 1000 permutations

(Markello & Misic, 2021). This technique outputs a p-value for each

correlation. The p-values were then corrected for multiple compari-

sons using the FDR within each analysis (i.e. each correlation matrix)

and considered significant below the 0.05 threshold. Of note, the

medial wall was excluded from all analyses since the cortical markers

are not valid in those regions. Furthermore, the correlation coefficient

has to be interpreted in a spatial context. For example, if the correla-

tion coefficient is positive, it means that where the values of the first

surface are higher, the values on the second surface also tend to be

higher, and vice versa.

In addition to the correlations, linear regressions on the Z-scored

cortical maps were calculated. By definition, the beta of that regres-

sion, which is standardized, is exactly the same value as the Pearson's

correlation coefficient. This allows us to (1) graphically examine the

relationship between cortical maps, and (2) map the residuals to the

common cortical surface. It is then possible to assess which areas

exhibit the relationship more (i.e., areas with lower residuals) and
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which areas exhibit the relationship less (i.e., areas with higher

residuals).

3 | RESULTS

3.1 | Comparing the spatial distributions between
MRI markers

We assessed the spatial correspondence between average distribu-

tions of MRI cortical markers (see Figure 2). The values of the BSC

were higher, indicating a sharper gray-white matter transition, in the

temporal pole, the precentral gyrus, and the insula, while the values

were lower in the occipital pole and postcentral regions, indicating a

more gradual gray-white matter transition. For the GWC, the values

were higher in lateral temporal, prefrontal lobe, and temporo-parietal

regions, while the values were lower in sensorimotor areas, occipital

pole, and insula. For CT, the values were higher in the temporal pole

and insula, while the values were lower in the occipital lobe and post-

central gyrus. For the GM T1w/T2w ratio at both cortical depths

(i.e., 25% of CT and 50% of CT), the values were higher in the occipital

lobe and sensorimotor regions, while the values were lower in the

frontal lobe, the lateral temporal and temporo-parietal regions. Lastly,

for the SWM T1w/T2w ratio, the values were higher in the lateral

occipital and superior temporal lobe while the values were lower in

the insula and temporal pole.

The spatial correspondence between these surface maps was

assessed with correlations, which were then hypothesis-tested via

spin tests, and the resulting p-values were corrected for multiple com-

parisons using the FDR (see Figure 2). There was a positive spatial

correspondence between BSC and CT maps (r = 0.77, p < .001).

Moreover, this relationship was exhibited across the vast majority of

the cortex, as only a few regions in the medial temporal inferior cortex

displayed high residuals (see Figure 3).

The spatial distribution of GM T1w/T2w ratio sampled at 25% of

CT correlated negatively and significantly with all other markers, and

the correlation was highest with the GWC (r = �0.73, p < .001), fol-

lowed by the correlation with CT (r = �0.63, p < .001) and the correla-

tion with the BSC (r = �0.52, p < .001). In general, these relationships

showed higher residuals in the precentral gyrus, the insula, and the lat-

eral temporal pole, indicating a poorer fit of the correlation in those

regions (see Figure 3). Also, a significant positive correlation was found

between GM T1w/T2w ratio and SWM T1w/T2w ratio (r = 0.58,

p < .001). This relationship showed higher residuals in sensorimotor

regions, the medial occipital lobe, and the inferior lateral temporal lobe

(see Figure 3). The correlations assessed with the GM T1w/T2w ratio

at 50% of CT were not meaningfully different (see Figure 2).

Lastly, a significant and negative spatial correspondence was

found between SWM T1w/T2w ratio and the BSC (r = �0.62,

p < .001), which showed higher residuals mostly in medial cortical

regions (see Figure 3). All other correlations of the spatial distribution

between the markers were not significant at the FDR 0.05 level.

F IGURE 2 Spatial distributions of the markers and correlations. For each marker, the mean and standard deviation of the surface were
calculated and used to threshold the colors. Purple areas indicate lower values relative to the mean of that marker, while yellow areas indicate
higher values. The correlation matrix includes Pearson's correlation coefficients (r) and FDR-corrected p-values. The color of each correlation
block is linked to the correlation coefficient: positive coefficients are red and negative coefficients are blue, high coefficients are more saturated
and low coefficients tend toward white. Significant correlations at the FDR 0.05 level are highlighted with a green outline.
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Using a 5-mm smoothing kernel (instead of 20 mm), we found

generally lower correlation coefficients, but a significant spatial corre-

lation between SWM T1w/T2w ratio and CT which was not found in

the main analysis (Figure S9). We conclude that there is a generally

high spatial correspondence of the gross anatomical distribution of

the cortical MRI markers between themselves.

3.2 | Correlations between MRI markers and gene-
expression-derived densities of seven canonical cell
types

We then assessed the spatial correspondence of cortical MRI

markers with cell-specific microstructural measurements derived

from other modalities in order to examine the putative

biological correlates of the gross anatomical distribution of these

measures.

We analyzed the spatial correspondence between average distri-

butions of MRI markers and densities from seven canonical cell types

derived from gene expression data (Seidlitz et al., 2020) (see Figure 4).

Astrocyte density correlated positively with BSC (r = 0.40, p < .001),

GWC (r = 0.28, p = .025), and CT (r = 0.42, p < .001) measures, and

negatively with GM T1w/T2w ratio (r = �0.45, p < .001) and SWM

T1w/T2w ratio (r = �0.36, p < .001) measures. Endothelial cell den-

sity correlated negatively with the GWC (r = �0.36, p = .007), and

positively with GM T1w/T2w ratio (r = 0.43, p = .002). Microglial

density did not correlate significantly with any MRI markers. Both

inhibitory and excitatory neuronal densities correlated negatively with

the BSC (r = �0.21, p = .004; r = �0.32, p < .001), and positively with

SWM T1w/T2w ratio (r = 0.24, p < .001; r = 0.38, p < .001).

F IGURE 3 Spatial distribution relationships: graphs and residuals. For each significant correlation, the left figure is the spatial regression in
graph form, where the x-axis is the Z-scored values of the first marker, the y-axis is the Z-scored values of the second marker, the regression line
is shown in black, and the +1 SD and �1 SD lines are shown in red and blue, respectively (representing the thresholds set for values that are far
from the regression line and exhibit less the observed relationship). The right figure is the vertex-wise residuals from the regression thresholded
at ±1 SD (cold colors indicate vertices below the regression line in blue in the left graph and warm colors indicate vertices above the regression
line in red in the left graph, and lighter colors indicate higher residual values and darker colors indicate lower residual values). For example, the
relationship between GWC and GM T1w/T2w ratio (top right) is linear in most areas, as seen in the graph on the left, except for a group of
vertices below the regression line which we can locate in the residual figure on the right (in this case, in the insula and medial temporal pole).
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Oligodendrocyte density correlated negatively with the GWC

(r = �0.21, p = .001), and positively with GM T1w/T2w ratio (r =

0.23, p < .001) measures. Oligodendrocyte precursor cell (OPC) den-

sity correlated positively with BSC (r = 0.54, p < .001) and CT (r =

0.53, p < .001) measures, and negatively with GM T1w/T2w ratio

(r = �0.54, p < .001) and SWM T1w/T2w ratio (r = �0.48, p < .001)

measures. In sum, the spatial distribution of cortical MRI markers was

in general more related to glial cell topography, particularly with OPCs

and astrocytes, compared to neuronal densities.

3.3 | Correlations between MRI markers and
histologically derived overall cell density

In order to assess the overlap between MRI markers and overall cell

density, we correlated the spatial distribution of the MRI markers to

GM and SWM cell densities from the BigBrain (Amunts et al., 2013)

(see Figure 5). In GM at both cortical depths, BigBrain cell densities

were higher in posterior regions and lower in anterior regions. In

SWM, cell densities were higher in temporo-parietal regions and

lower in frontal and occipital regions. In general, T1w/T2w ratio mea-

sures correlated positively with GM BigBrain cell densities and nega-

tively with SWM BigBrain cell densities, while the inverse pattern was

observed for CT, BSC, and GWC measures. However, despite

correlation coefficients being moderately high for some relationships

(r between 0.4 and 0.6), the only significant correlation at the

FDR <0.05 level is between the SWM BigBrain cell density and CT

(r = 0.44, p = .018). Residuals from that relationship were higher in

temporo-parietal and frontal regions (see Figure S4). Using a 5-mm

smoothing kernel (instead of 20 mm), spatial distribution maps of

BigBrain densities were visually noisier and we found additional signif-

icant relationships of SWM BigBrain cell density with BSC, GM

T1w/T2w, and SWM T1w/T2w ratio, despite generally lower correla-

tion coefficients. Hence, while some relationships between cortical

MRI markers and overall cell density were observed, most of these

were not significantly different from chance, thus preventing us from

concluding that cortical MRI markers and GM cytoarchitecture are

related, although some methodology-dependent relationships

between SWM cytoarchitecture and cortical MRI markers were

uncovered.

3.4 | Correlations between MRI markers and
quantitative R1

We then related cortical MRI markers with quantitative R1, a measure

also derived from MRI but less influenced by nonbiological sources

and more sensitive to intracortical myelin (see Figure 6). SWM R1

F IGURE 4 Correlations between MRI markers and gene-expression-derived densities of seven canonical cell types. For each marker, the
mean and standard deviation were calculated and used to threshold the colors. More specifically, purple areas indicate lower values relative to the
mean of that marker, while yellow areas indicate higher values. The correlation matrix includes Pearson's correlation coefficient (r) and FDR-
corrected p-values. The color of each correlation block is linked to the correlation coefficient: positive coefficients are red and negative
coefficients are blue, high coefficients are more saturated and low coefficients tend toward white. Significant correlations at the FDR 0.05 level
are highlighted with a green outline.
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correlated negatively with the BSC (r = �0.44, p = .002), while the

GWC correlated negatively with GM R1 at both cortical depths

(r = �0.72, p < .001; r = �0.73, p < .001). R1 and T1w/T2w ratio

sampled at the same cortical depths showed very high positive spatial

correspondence (25% of CT in GM: r = 0.94, p < .001; 50% of CT in

GM: r = 0.91, p < .001; 25% of CT in SWM: r = 0.90, p < .001). Again,

residuals of those relationships were mostly located in medial regions

and the insula (Figure S5). Using a 5-mm smoothing kernel, we

F IGURE 6 Correlations between the spatial distributions of MRI markers and quantitative R1 maps. For each marker, the mean and standard
deviation were calculated and used to threshold the colors. More specifically, purple areas indicate lower values relative to the mean of that
marker, while yellow areas indicate higher values. The correlation matrix includes Pearson's correlation coefficient (r) and FDR-corrected p-values.
The color of each correlation block is linked to the correlation coefficient: positive coefficients are red and negative coefficients are blue, high
coefficients are more saturated and low coefficients tend toward white. Significant correlations at the FDR 0.05 level are highlighted with a green
outline.

F IGURE 5 Correlations between MRI markers and histologically derived overall cell density from the BigBrain dataset. For each marker, the
mean and standard deviation were calculated and used to threshold the colors. More specifically, purple areas indicate lower values relative to the
mean of that marker, while yellow areas indicate higher values. The correlation matrix includes Pearson's correlation coefficient (r) and FDR-
corrected p-values. The color of each correlation block is linked to the correlation coefficient: positive coefficients are red and negative
coefficients are blue, high coefficients are more saturated and low coefficients tend toward white. Significant correlations at the FDR 0.05 level
are highlighted with a green outline.
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additionally detected relationships for GM R1 with BSC and CT, and

for SWM R1 with CT. We conclude that the GWC and T1w/T2w ratio

measures are spatially similar to myelin-related physical properties of

the tissue, while the BSC was more related to these properties

in SWM.

3.5 | Comparing the shape of age trajectories

To better quantify the similarity between the microstructural sources

of subtle MRI statistical effects across the whole cortex, we compared

age-related trends of MRI cortical markers between themselves in a

healthy population spanning the adult lifespan with the rationale that

effects driven by the same microstructural tissue property

(i.e., density of intracortical myelin) should, as a minimal condition,

result in similar statistical effects between the measures.

In order to determine which age trajectory shape was more

appropriate for each marker, linear models with linear, quadratic, and

cubic age variables at each vertex (with sex as a covariate) were com-

pared using the AIC. For each marker, the number of vertices for

which each age model was the best fit was counted (see Figure 7a).

For CT and GWC measures, a linear model was the best fit for most

vertices, followed by a cubic model and a quadratic model. For the

BSC, a quadratic model was the best fit for most vertices, followed by

a linear model and a cubic model. For all T1w/T2w ratio measures, a

quadratic model was the best fit for most vertices, followed by a cubic

model and a linear model. The spatial distribution of age trajectory

shapes is available in Figure 7b.

Using a 5-mm smoothing kernel after regressing out curvature,

spatial maps of age trajectory shapes appeared visually noisier, and

the BSC showed mostly linear age-related trends compared to qua-

dratic in the main analysis (Figure S12). In sum, there is significant het-

erogeneity regarding the shape of age-related trends between the

markers.

3.6 | Comparing the spatial distribution of the age
trajectories

To compare the spatial distribution of the age trajectories of the dif-

ferent markers, linear models with a linear age term and sex as a

covariate were fit at each vertex. Since the goal of this study is not to

best describe the age trajectories of the different markers, but to

compare the age effect between markers, using a uniform and simpler

F IGURE 7 Vertex-wise best
age trajectory shape between
linear, quadratic, and cubic for
each marker. (a) Table illustrating
the proportion of vertices best
fitted by each age model for each
marker according to the Akaike
Information Criterion (AIC), with
the age model best fitting the

highest proportion of vertices
highlighted in green. (b) Spatial
distribution of the AIC results.
Purple areas indicate a better fit
of the linear age trajectory, green
areas indicate a better fit of the
quadratic age trajectory, and
yellow areas indicate a better fit
of the cubic age trajectory.
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linear age model across the markers is a preferred approach

(Figure 8a).

A significant linear increase of the BSC with age was found pri-

marily in anterior superior frontal regions and in parts of the insula

and lateral occipital lobe. For the GWC, a significant linear decrease

with age was observed across most of the cortex, and this decrease

was steeper in frontal regions. For CT, a similar widespread significant

linear decrease with age was observed, which was steeper in frontal

and temporal regions. For GM T1w/T2w ratio, a significant linear

increase with age was found across most of the frontal lobe and in

temporo-parietal regions, with the latter mostly in the right hemi-

sphere, and no areas showed drastically steeper change with age. For

SWM T1w/T2w ratio, a significant linear decrease was observed

across most of the cortex and was steeper in the inferior temporal

lobe. Graphs of the linear age trajectories of each marker at one ver-

tex in the precentral gyrus (where the linear age betas of all markers

were significant) are available in Figure 8b.

The spatial correspondence between these surface maps was

assessed with correlations, which were then hypothesis-tested via

spin tests and the resulting p-values were corrected for multiple

F IGURE 8 Spatial distribution of the linear age effect of the markers and correlations. (a) For each marker, the mean and standard deviation
of the age betas were calculated and used to threshold the colors. Cortical maps are thresholded for significance at the FDR 0.05 level. Cold
colors indicate negative age betas and warm colors indicate positive age betas. Light colors indicate higher age betas and dark colors indicate
lower age betas. The correlation matrix includes Pearson's correlation coefficient (r) and FDR-corrected p-values. The color of each correlation
block is linked to the correlation coefficient: positive coefficients are red and negative coefficients are blue, high coefficients are more saturated
and low coefficients tend toward white. Significant correlations at the FDR 0.05 level are highlighted with a green outline. (b) Example of the age
trajectory of each marker at one vertex in the precentral gyrus where the age beta of each marker was significant at the FDR 0.05 level. Blue
observations represent male participants and red observations represent female participants. The x-axis is age and the y-axis is the marker value
residualized for mean curvature.
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comparisons using the FDR (see Figure 8a). While the vertex-wise age

betas shown in the figure are thresholded for significance at the FDR

0.05 level, the cortical maps that were correlated were not thre-

sholded. There was a significant positive relationship between the

spatial distribution of the age betas of the GWC and the SWM

T1w/T2w ratio (r = 0.48, p < .001), meaning that where the GWC

decreases more rapidly with age, the SWM T1w/T2w ratio also tends

to decrease more rapidly. There was a significant negative relationship

between the GWC and the GM T1w/T2w ratio only at mid cortical

depth (r = �0.65, p < .001), meaning that where the GWC decreases

more rapidly with age, the GM T1w/T2w ratio at mid cortical depth

tends to increase more rapidly. Higher residuals of both relationships

were mostly found in superior frontal and medial temporal regions

(see Figure S7). Using a 5-mm smoothing kernel after regressing out

curvature, we observed that significant linear changes with age are

less spatially extensive and visually noisier in the supplementary anal-

ysis, but spatial correlations between markers are more significant

(i.e., lower p-values), although correlation coefficients remain generally

low and similar to ones in the main analysis (Figure S13). In sum, few

spatial relationships of linear age effect between markers above what

is expected by chance were detected, highlighting that it is highly

unlikely that all measures are equally sensitive to the same microstruc-

tural property (i.e., intracortical myelin density) in aging.

Even if it is not the main goal of this article, the quadratic age tra-

jectories of each marker were described, in order to compare our

results with previous findings of quadratic age trajectories for some

markers (Drakulich et al., 2021; Grydeland et al., 2013, 2019) and to

accurately describe for the first time the quadratic age trajectory of

the BSC. To do so, linear regressions with age linear, age quadratic

and sex as predictors were fit at each vertex for each marker. The

betas of the quadratic age term were then thresholded at the FDR

0.05 level and mapped to the common cortical surface (see Figure 9a).

For the BSC, the quadratic age term was significant and positive, indi-

cating a u-shaped trajectory, across most of the cortex, except for

sensorimotor regions and in the occipital pole. CT and GWC measures

did not show significant quadratic age betas across the cortex. The

T1w/T2w ratio, both in GM and in SWM, showed significant and neg-

ative quadratic age terms across the cortex, indicating inverted U-

shaped age trajectories. Graphs of the quadratic age trajectories of

each marker at one vertex in the precentral gyrus are available in

Figure 9b.

4 | DISCUSSION

Commonly used MRI markers of microstructure, namely CT, GWC,

BSC, and T1w/T2w ratio measures, and their associated statistical

effects are often interpreted as being representative of intracortical

myelin density. Indeed, a higher gray–white matter boundary sharp-

ness on T1w images (indicated by a lower BSC), higher contrast

between cortical gray matter and SWM on T1w images (indicated by

a lower GWC), lower gray matter T1w/T2w ratio, and to a lesser

extent lower CT, could all be interpreted as being driven by decreases

in the overall density of intracortical myelin. Although these measures

are sometimes used interchangeably, there is significant relevance to

compare these measures against one another and to assess their sen-

sitivity to more biologically specific microstructural assessments. In

this study, to investigate microstructural sources of cortical MRI

markers, we assessed gross anatomical distribution relationships

between these markers and putative biological measurements derived

from more specific modalities. We then assessed the similarity of age-

related trends between cortical MRI markers to investigate if similar

microstructural properties were at the source of these trends.

Our results generally showed high correlations between the spa-

tial distributions of these markers, as well as higher spatial correlations

between MRI markers and myelin and glial cell indicators compared to

other cell types and cytoarchitecture. However, the age trajectories of

these markers diverge to a large extent, both in the shape, direction,

and spatial distribution of the age effect, indicating that different

microstructural properties are likely at the source of more subtle age-

related trends.

4.1 | High spatial correspondence of cortical MRI
markers with myelin-related indicators from other
modalities

We investigated spatial correspondence of cortical MRI markers

with more biologically-specific microstructural measures derived

from gene expression, histology, and quantitative MRI. At the level

of individual metrics, our observed average spatial distributions are

highly consistent with the literature. Indeed, we found spatial distri-

butions of CT (Fjell et al., 2009), GWC (Salat et al., 2009), BSC

(Olafson et al., 2021), T1w/T2w ratio (Glasser & Van Essen, 2011),

and R1 measures (Sereno et al., 2013) that correspond with previ-

ously reported spatial patterns. This provides confidence in our

methodology and the generalizability of our findings outside our

sample.

For cell-specific spatial densities derived from the AHBA and

single-cell RNA sequencing studies, we reported generally higher spa-

tial relationships with cortical MRI markers and glial cells than neuro-

nal cells. This is with the exception of the BSC, which also showed

significant negative relationships with inhibitory and excitatory neuro-

nal densities, possibly demonstrating a higher sensitivity to neuronal

topography than other markers. Interestingly, the GM T1w/T2w ratio

measures showed inverted spatial relationships with OPCs and oligo-

dendrocyte density (i.e., positive correlation to oligodendrocytes and

negative correlation to OPCs). This finding could be explained by

observations that myelination continues well into adulthood with dif-

ferent ages of peak myelination between regions (Grydeland

et al., 2019), thus resulting in late-myelinating regions that would have

a lower oligodendrocyte density but higher OPC density, and

inversely for early myelinating regions. For example, Grydeland et al.

(2019) report late-myelination (between 40 and 50 years old) of

most of the temporal lobe, which is a region with low oligodendrocyte

density and high OPC density in the cell-density atlas
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(Seidlitz et al., 2020). Hence, we believe that our findings still support

higher spatial overlap between some cortical MRI markers and myelin

indicators. However, this was mostly the case for GM T1w/T2w ratio,

since oligodendrocyte density did not correlate significantly with BSC,

CT, and SWM T1w/T2w ratio measures and OPC density did not cor-

relate significantly with the GWC. Furthermore, all markers correlated

significantly with astrocyte density, and some markers (GWC and GM

T1w/T2w ratio) correlated with endothelial cell density. This is possi-

bly explained by the high concentration of iron in glial cells. Indeed,

while oligodendrocytes are the cell type with the highest iron concen-

tration, it is estimated that astrocytes contain on average more than

twice the intra-cellular iron of neuronal cells (Reinert et al., 2019).

Endothelial cells are also critically involved in iron homeostasis and

can store iron (Chiou et al., 2019). This shows that the spatial overlap

with MRI markers is not limited to myelin-related cells, but to iron-rich

glial cells in general (with the exception of microglial cells), which is

consistent with the known impact of iron on MRI signal (Fukunaga

et al., 2010). It is important to note that we cannot infer a causal link

F IGURE 9 Quadratic age trajectories. (a) For each marker, the mean and standard deviation of the age betas were calculated and used to
threshold the colors. Cortical maps are thresholded for significance at the FDR 0.05 level. Cold colors indicate negative age betas and warm
colors indicate positive age betas. Light colors indicate higher age betas relative to the marker mean, and dark colors indicate lower age betas.
(b) Example of the age trajectory of each marker at one vertex in the precentral gyrus. Blue observations represent male participants and red
observations represent female participants. The x-axis is age and the y-axis is the marker value residualized for mean curvature.
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between the densities of these different cell types and cortical MRI

markers from our reported spatial correlations.

Investigating the spatial correspondence of cortical MRI markers

and overall cell density derived from the BigBrain histological dataset,

our results are somewhat inconclusive. While some correlations were

moderately high (r > 0.4), the only relationship that attained signifi-

cance was the correlation between SWM cell density and CT. Using a

smoothing kernel of 5 mm instead of 20 mm (see Figure S10), rela-

tionships were more significant, but only with SWM cell density. We

speculate that the added noise stemming from the single-subject

nature of the BigBrain dataset resulted in low statistical power, which

prevented us from detecting meaningful spatial associations with cor-

tical MRI markers. We thus cannot confidently conclude that there is

a spatial correspondence between GM cytoarchitecture and cortical

MRI markers above what is expected by chance, but there are some

methodology-dependent spatial correspondences between SWM cell

density and BSC, CT, and GM T1w/T2w ratio. Interestingly, this sup-

ports our previously observed higher sensitivity of the BSC to

cytoarchitecture.

Lastly, our results with the R1 maps derived from quantitative

MRI showed very high spatial correspondence with the T1w/T2w

ratio in the same regions (e.g., GM T1w/T2w ratio with GM R1), simi-

lar to previous reports (Shams et al., 2019). The GM R1 also correlated

significantly with the GWC, and SWM R1 correlated significantly with

the BSC. These results are to be interpreted cautiously since both the

cortical MRI markers and R1 measures are derived from MRI and

influenced by similar physical properties of the tissue. Large correla-

tions could thus stem from similar physical rather than biological

underpinnings. Still, quantitative MRI has a large advantage over met-

rics derived from qualitative MRI sequences in measuring microstruc-

ture in vivo since it is less influenced by non-biological variations and

is better interpretable with minimal processing. From that analysis, we

conclude that the T1w/T2w ratio and GWC measures are more

related to physical tissue properties related to myelin in GM, while

BSC is more related to these properties in SWM.

Taken together, our results point to a higher spatial correspon-

dence of cortical MRI markers with myelin and glial markers than with

cytoarchitectural and neuronal markers. This was particularly the case

for the GM T1w/T2w ratio as it was related to the gene-expression-

derived density of oligodendrocytes, OPCs, astrocytes, and endothe-

lial cells, as well as showing very high correlations with quantitative

MRI-derived GM R1 measures but no significant correlation with

histology-derived overall cell density. This sensitivity (but not specific-

ity) to myelin of the T1w/T2w ratio corresponds well with findings by

Ritchie et al. (2018) who reported that the T1w/T2w ratio was related

to gene-expression-derived indicators of myelin, but also molecule

size, mitochondria, and PH. Comparatively, the spatial distribution of

the BSC was related additionally to neuronal densities, SWM cell den-

sity (methodology-dependent), and SWM R1, thus being more sensi-

tive to cytoarchitecture and SWM microstructure than other markers.

This is an important finding, as SWM microstructure is often ignored

despite the BSC sampling MRI signal in SWM. The GWC was related

to OPC, endothelial cell, and astrocyte density (but not

oligodendrocyte density), as well as with GM R1. As such, it was still

mostly related to myelin and glial indicators, but to a lesser extent

than the T1w/T2w ratio. Lastly, there were fewer correlations

between the spatial distribution of CT and microstructural measures

derived from other modalities, as we only observed significant rela-

tionships with OPC and astrocyte density, as well as an intriguing rela-

tionship with SWM cell density. This was to be expected since CT is

thought to be influenced by intracortical myelin in certain contexts

and regions (Natu et al., 2019), but does not aim to represent myelin

as it is a morphological measure and not a microstructural measure.

Still, we did not replicate the previously reported spatial correspon-

dence between CT and GM R1 (Patel, Shin, et al., 2020).

4.2 | Diverging age-related trends between
cortical MRI markers

To investigate if cortical MRI markers are sensitive to similar micro-

structural changes in aging, we assessed the similarity of age-related

trends between these MRI cortical markers that have similar micro-

structural interpretations in the same sample with uniform MRI acqui-

sitions and processing, with the rationale that effects driven by the

same microstructural tissue property (i.e., density of intracortical mye-

lin) should, as a minimal condition, result in similar statistical effects

between the measures. Again, our observed age-related trends across

the adult lifespan were highly similar to those reported in the litera-

ture. Indeed, a widespread linear decrease of CT in healthy aging was

observed both in Fjell et al. (2009) and in our sample, with a steeper

age-related decline in frontal regions. For the GWC, our observation

of a linear decline with aging higher in the frontal lobe was consistent

with previous findings (Vidal-Piñeiro et al., 2016). For the GM

T1w/T2w ratio, we reproduce the well-known inverted-U-shaped age

trajectory (Grydeland et al., 2013, 2019). To our knowledge, this is the

first time the age trajectory of SWM T1w/T2w ratio was character-

ized, showing an inverted-U-shaped aging pattern similar to GM

T1w/T2w ratio, but with a steeper decline in the elderly. This is some-

what similar to previously described age trajectories of fractional

anisotropy (FA) in SWM (Nazeri et al., 2015), but we observed a more

pronounced increase in SWM T1w/T2w ratio in early adulthood and a

delayed decline compared to SWM FA. Compared to one study

reporting a mixture of inverted U-shaped and linear age trajectories of

the magnetization transfer ratio (MTR) in SWM, another measure sen-

sitive to myelin, our SWM T1w/T2w ratio quadratic age trajectories

are more widespread (Wu et al., 2016). Lastly, we have described the

age effect of the BSC in the adult lifespan for the first time. Paired

with the developmental trajectories described in Olafson et al. (2021),

we can describe for the first time the general age trajectory of the

BSC across the whole lifespan: the boundary between GM and SWM

becomes more gradual during childhood and adolescence, plateaus in

adulthood, and becomes sharper in the elderly, showing a U-shaped

age trend across the whole lifespan.

Next, we compared how between-marker gross anatomical spatial

distribution correlations differ from between-marker age-related
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trends since this directly shows how spatial correlations compare to

subtle statistical effects. An important contribution of this paper is the

observed discrepancy between spatial distribution relationships and

aging relationships. Most of the correlations between the spatial dis-

tributions of the markers are significant and are of moderate to high

effect sizes (r > 0.4). As an example, GM T1w/T2w ratio, which we

interpret as the cortical MRI marker that is most likely sensitive to

intracortical myelin based on our previously-described findings, corre-

lated significantly and negatively with the BSC, GWC, and CT, which

could be interpreted as a myelin-specific dependency for these

markers. On the other hand, the spatial correlations of the linear age

effect between the markers are mostly non-significant and have much

smaller effect sizes. For example, the spatial distribution of the BSC

correlated negatively with the GM T1w/T2w ratio. Meanwhile, the

spatial distribution of the linear age effect of the BSC does not corre-

late significantly with the GM T1w/T2w ratio. Furthermore, the shape

and direction of the age trajectories differed to a large extent, with

the BSC showing quadratic U-shaped trajectories increasing in the

elderly, T1w/T2w ratio measures showing quadratic inverted U-

shaped trajectories, and CT and GWC showing linear decline trajecto-

ries. While the general direction of BSC and T1w/T2w ratio age tra-

jectories would point to a decrease of intracortical myelin density

under the common interpretation and thus follow the known myelin

decline in the elderly (Wang et al., 2020), the GWC (and to a lesser

extent CT) age trajectories would point to intracortical myelin

increases in the elderly under the common interpretation. This dis-

crepancy highlights an important point: it is highly unlikely that

change in overall intracortical myelin density is the primary micro-

structural driver in aging of all the cortical MRI markers, and our find-

ings indicate that while some measures tend to spatially overlap at the

cortex-wide level, age trajectories are likely influenced by different

interactions of microstructural changes. This also shows that micro-

structural properties driving spatial distributions of MRI markers can

be different from microstructural properties at the source of statistical

effects. As such, while most markers were spatially correspondent

with myelin and glial cell indicators, this does not necessarily translate

to these same microstructural properties being the primary drivers of

age-related effects. This rationale can also potentially extend to other

pathology-related effects. Our findings warrant caution in the inter-

pretation of age- and pathology-related MRI effects as being driven

by the same microstructural properties as the spatial distribution.

For example, the GWC spatial distribution correlated significantly,

and in the expected direction, with oligodendrocyte density, GM R1,

and GM T1w/T2w ratio but not SWM T1w/T2w ratio, while its age

trajectory, which is not in the expected direction of intracortical mye-

lin decreases in the elderly, was also related to SWM T1w/T2w ratio.

This supports findings of a change in SWM microstructure and T1w

signal driving age-related effects of GWC (Westlye et al., 2009) and

further demonstrates that a microstructural property with little spatial

overlap on average could still be a source of variation of more subtle

statistical effects of cortical MRI markers.

While these findings highlight an important limitation in the bio-

logical interpretations of these commonly acquired cortical MRI

markers, it also indicates that markers are likely sensitive to different

microstructural cortical changes and could thus provide complemen-

tary predictive power on cognition, behavior, and other clinical vari-

ables. For example, one study has implemented the GWC together

with CT measures to better predict cognitive changes in Alzheimer's

disease (Li et al., 2020). Hence, a more complete characterization of

cortical changes with all cortical MRI markers included in this study

could leverage the additional microstructural information available in

commonly acquired T1w and T2w images and increase prediction

accuracy (e.g., for a particular diagnosis), but would be limited in bio-

logical inference without further histological validation studies.

Interestingly, some between-marker spatial relationships visually

appeared non-linear (e.g., between GM T1w/T2w ratio and SWM

T1w/T2w ratio). While our goal was to assess the amplitude of spatial

relationships, which is done adequately with linear correlations, ana-

lyzes aiming to provide a more detailed description of spatial overlap

should not assume a linear relationship.

4.3 | High residuals of spatial correlations in the
medial cortex

One incidental finding in our analyses was the high residuals from

most spatial correlations in medial regions, most prominently in the

medial temporal lobe. While this area may have a different relation-

ship between biological microstructure and MRI signal than the rest of

the cortex, a more probable explanation is the unreliability of the mea-

sures caused by very low cortical thickness (<2 mm), which could

induce partial volume effects. Indeed, the GWC, BSC, and T1w/T2w

ratio measures are calculated by sampling the signal at different frac-

tions of CT. Hence, very low CT could lead to the multiple sampling

points being very close to each other, thus leading to unreliable mea-

sures. In order to test this hypothesis, we spatially correlated CT with

the residuals from the six significant spatial distribution correlations

(see Figure S8B). Supporting this hypothesis, 4 out of 6 of those cor-

relations were significant. Furthermore, we calculated the sum of

squared residuals from the sigmoid curve used to generate the BSC at

each vertex, then averaged the values across subjects, and found high

residuals in the same areas, meaning a worse fit of the sigmoid curve

to the cortical profile in those areas (Figure S8A). Following those

observations, we advise caution in interpreting the results of these

cortical markers in medial areas of very low CT.

4.4 | Influence of smoothing kernel and curvature
regression order

The main analyses done on markers smoothed with a 20 mm FWHM

heat kernel applied before regressing out curvature (Figures 2, 5–8)

are compared with supplementary analyses done on markers

smoothed with a 5-mm FWHM heat kernel applied after regressing

out curvature (Figures S9–S13). In general, results from the supple-

mentary analyses are similar and lead to similar conclusions compared
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to results from the main analyses, with the possible exception of a

mostly linear age trajectory of the BSC in the supplementary analysis

as opposed to a mostly quadratic age trajectory in the main analysis.

Since cortical maps at a lower smoothing kernel appear visually nois-

ier, and since higher smoothing kernels have been shown to increase

precision (Lerch & Evans, 2005), we conclude that the higher smooth-

ing kernel used in the main analyses was the most appropriate for our

data. Interestingly, correlation coefficients are in general lower in the

supplementary analyses, but p-values derived from spin tests

(Alexander-Bloch et al., 2018) are generally lower (more significant).

One possible explanation is that correlation coefficients from spun

surfaces (i.e., correlations forming the null distribution for the spin

test) are disproportionately lower than the correlation of the non-

spun surfaces at lower smoothing kernel values, thus leading to a big-

ger difference between the original correlation and the null distribu-

tion resulting in a lower p-value. This interaction between p-values

derived from spin tests and smoothing kernels should be further

investigated in the future.

4.5 | Limitations

As a first limitation, it is important to note that our analyses are at the

cortex-wide level. Hence, some interactions in local areas between

markers and intracortical myelin could still be present. For instance,

Natu et al. (2019) reported that the increased myelination of the cor-

tex during development directly leads to reductions in CT specifically

in the ventral temporal cortex, and this finding was validated

histologically.

Second, our analyses cannot exclude that different characteristics

of the myeloarchitecture could cause the age-related trends of the

markers. In other words, the overall density of myelin in GM can be

uncorrelated with some markers, but specific changes in laminar pat-

terns of myelin could still differentially affect each of the markers,

leading to dissimilar age trajectories that are caused by changes in dif-

ferent aspects of myelination. However, we argue that such interpre-

tations would need to be precisely characterized and empirically

justified. It is also possible that the gross anatomical distribution of

the markers, and the T1w signal, represents myelin to a large extent,

but that more subtle age- or disease-related changes could stem from

changes in other microstructural properties also contributing to the

signal, such as iron (Callaghan et al., 2014).

Third, the linear age effects we used to compare the spatial distri-

bution of the age trajectories between the markers are not optimal

models in all cases, since the BSC and T1w/T2w ratio measures dis-

play mostly quadratic trajectories. However, those markers still display

a significant linear component of those age trajectories, with the pos-

sible exception of the BSC showing somewhat spatially constrained

significant linear age effects in anterior frontal areas. We argue that

the different age trajectory shapes between the markers, rendering

the quantitative comparison of the spatial distribution of the age

effect more difficult, supports our interpretation that the age trajecto-

ries are different and driven by different microstructural properties.

4.6 | Future work

Our results advise against attributing a specific microstructural

property to the source of age- or pathology-related changes of cor-

tical MRI markers without further validation. While our findings

highlight a discrepancy in the microstructural interpretation of the

cortical markers, our conclusions do not aim to discourage the use

of these MRI-derived markers, as they have been reported to be

sensitive to various pathologies (Olafson et al., 2021; Salat

et al., 2011), and could be useful for such purposes. Future work

aiming to assess specific cortical microstructural properties and

infer biologically relevant information should consider the use of

multimodal quantitative MRI. Indeed, the advent of quantitative

MRI allows for the unprecedented assessment of brain microstruc-

tural properties in vivo, sometimes referred to as in-vivo histology

(Weiskopf et al., 2021). However, the same rationale displayed here

could also apply to quantitative MRI, meaning that the microstruc-

tural properties contributing the most to the contrast could be dif-

ferent from microstructural properties at the source of statistical

effects. Hence, we advise for the use of combined quantitative MRI

modalities in order to increase the confidence of biological interpre-

tations, as we have demonstrated in recent work from our group

(Patel, Steele, et al., 2020; Robert et al., 2022). However, as the

adoption of quantitative MRI is lagging, our findings illustrate that

many largely independent markers can be derived from the growing

number of publicly available standard T1w and T2w scans, although

specific biological underpinnings of these markers would need to be

further investigated.

5 | CONCLUSION

In this study, with the goal of better understanding the biological

underpinnings of commonly-acquired MRI markers claiming to repre-

sent intracortical myelin, we first investigated the gross anatomical

distribution relationships of the BSC, GWC, CT, and T1w/T2w ratio

with more biologically specific microstructural assessments derived

from gene expression, histology, and quantitative MRI. We observed

higher spatial correlations of cortical MRI markers with indicators of

myelin and glial cells than cytoarchitecture, with the T1w/T2w ratio

showing the most consistent relationships with intracortical myelin

indicators.

In the second part of the manuscript, we examined and compared

the spatial distributions and age trajectories of cortical MRI markers

between themselves in order to assess if microstructural properties at

the source of age-related trends were similar. Our results showed sim-

ilar spatial distributions between the markers, but few relationships in

aging. We conclude that the microstructural properties at the source

of spatial distributions of MRI cortical markers (e.g., GM myelin) can

be different from microstructural changes that affect these markers in

aging. This warrants care in interpreting the age- or disease-related

effects of these MRI markers when aiming to show changes in a spe-

cific property of the cortical microstructure.
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