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Abstract 

Study Objectives:  Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep 
scoring systems are trained using labels annotated by a single-scorer, whose subjective evaluation is transferred to the model. When 
annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus. The averaged 
scorer’s subjectivity is transferred into the model, losing information about the internal variability among different scorers. In this 
study, we aim to insert the multiple-knowledge of the different physicians into the training procedure. The goal is to optimize a model 
training, exploiting the full information that can be extracted from the consensus of a group of scorers.

Methods:  We train two lightweight deep learning-based models on three different multi-scored databases. We exploit the label 
smoothing technique together with a soft-consensus (LSSC) distribution to insert the multiple-knowledge in the training procedure of 
the model. We introduce the averaged cosine similarity metric (ACS) to quantify the similarity between the hypnodensity-graph gen-
erated by the models with-LSSC and the hypnodensity-graph generated by the scorer consensus.

Results:  The performance of the models improves on all the databases when we train the models with our LSSC. We found an increase 
in ACS (up to 6.4%) between the hypnodensity-graph generated by the models trained with-LSSC and the hypnodensity-graph gener-
ated by the consensus.

Conclusion:  Our approach definitely enables a model to better adapt to the consensus of the group of scorers. Future work will focus 
on further investigations on different scoring architectures and hopefully large-scale-heterogeneous multi-scored datasets.
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Graphical Abstract 

Statement of Significance

Visual scoring of polysomnography is a highly subjective procedure. Several studies consistently reported the poor agreement 
between different physicians scoring the same whole-night recording. Existing sleep scoring algorithms, trained on multi-scored 
databases, overlook to encode in their models the variability among the scorers. We propose a technique to wholly insert the mul-
tiple-knowledge of the different physicians into the training procedure of a scoring algorithm. Our approach enables the model to 
better adapt to the consensus of the group of scorers. Whenever multi-scored databases are available, future researchers should 
train their models considering the annotations of all the physicians at the same time, rather than averaging their labels and train-
ing their algorithm on the averaged consensus.

Introduction
Sleep disorders represent a significant public health problem 
that affects millions of people worldwide [1]. Since the late 
1950s, the polysomnography (PSG) exam has been the gold 
standard to study sleep and to identify sleep disorders. It moni-
tors electrophysiological signals such as electroencephalogram 
(EEG), electrooculogram (EOG), electromyogram (EMG), and 
electrocardiogram (ECG). The physicians visually extract sleep 
cycle information from these signals. The whole-night recording 
is divided in 30-s epochs, and each epoch is classified into one 
of the five sleep stages (i.e. wakefulness W, stage N1, stage N2, 
stage N3, and stage REM) according to the AASM guidelines [2]. 
Worst case scenario, an 8-h PSG may require up to 2 h of tedious 
repetitive and time-consuming work to be scored. In addition, 
this manual procedure is highly affected by a low inter-rater 
scoring agreement (i.e. the agreement between different physi-
cians scoring the same whole-night recording). The inter-rater 
scoring agreement value ranges from 70% up to slightly more 
than 80% [3–5]. In Ref. [3] the averaged inter-rater agreement of 
about 83% results from a study conducted on the AASM inter-
scorer reliability dataset, by using sleep stages annotated from 
more than 2500 sleep scorers. The agreement was higher than 
84% for awake, N2 and REM stages, but it dropped to 63% and 
67% for N1 and N3 stages, respectively. In fact, the inter-rater 

agreement varies among sleep stages, patients, sleep disorders, 
and across sleep centers [3, 6].

Since 1960 many different approaches and algorithms have 
been proposed to automate this time-consuming scoring pro-
cedure. Mainly, two different approaches emerged: sleep scoring 
algorithms learning from well-defined features extracted from 
the knowledge of the experts (shallow learning), and sleep scoring 
algorithms learning directly from the raw data (deep learning). 
Thorough reviews about feature based [7, 8] and deep learn-
ing-based [9, 10] sleep scoring algorithms can be found in liter-
ature. Although the latter algorithms emerged only 5 years ago, 
their impressive results have never been reached with the pre-
vious conventional feature based approaches. Autoencoders [11], 
deep neural networks [12], convolutional neural networks (CNNs) 
[13–20], recurrent neural networks [21–23], and different combi-
nations of them [24–30] have been all proposed only in these last 
5 years.

Almost all of the above algorithms have been trained on 
recordings scored by a single expert physician. The first remark-
able exception comes from Ref. [27], where they consider 
recordings scored by six different physicians [31]. The scoring 
algorithm was trained on the six-scorer consensus (i.e. based on 
the majority vote weighted by the degree of consensus from each 
physician). In Ref. [23] the Dreem group introduced two publicly 
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available datasets scored by five sleep physicians. Similarly, they 
used the scorer consensus to train their automated scoring sys-
tem. It has been shown that the performance of an automated 
sleep scoring system is on-par with the scorer consensus [23, 
27], and mainly that their best scoring algorithm is better than 
the best human scorer—i.e. the scorer with the higher consen-
sus among all the physicians in the group. Although they both 
considered the knowledge from the multiple-scorers—by aver-
aging their labels and by training their algorithm on the aver-
aged consensus—they still trained the algorithm on a single 
one-hot encoded label. Indirectly, they are still transferring the 
best scorer’s subjectivity into the model, and they are not explic-
itly training the model to adapt to the consensus of the group 
of scorers.

In this work, we train two existing lightweight deep learn-
ing-based sleep staging algorithms, our DeepSleepNet-Lite 
(DSN-L) [32] and SimpleSleepNet (SSN) [23], on three open-ac-
cess multi-scored sleep datasets. First, we assess the perfor-
mance of both scoring algorithms trained with the labels given 
by scorer consensus (i.e. majority vote among the different scor-
ers) and compare it to the performance of the individual scor-
er-experts. Then we propose to exploit label smoothing along 
with the soft-consensus distribution (base+LSSC) to insert the mul-
tiple-knowledge into the training procedure of the models and 
to better calibrate the scoring architectures. For the first time 
in sleep scoring, we are considering the multiple-labels in the 
training procedure, the annotations of all the scorers are taken 
into account at the same time. We finally assess the perfor-
mance and we quantify the similarity between the hypnoden-
sity-graph generated by the models—trained with and without 
label smoothing—and the hypnodensity-graph generated by the 
scorer consensus.

In the present work we investigate a different approach in 
exploiting multi-scored database information. In particular: (1) 
we demonstrate the efficiency of label smoothing along with the 
soft-consensus distribution in both calibrating and enhancing the 
performance of both DSN-L and SSN; (2) we show how the model 
can better resemble the scorer group consensus, leading to a sim-
ilarity increase between the hypnodensity-graph generated by 
the model and the hypnodensity-graph generated by the scorer 
consensus.

Methods
In this section we first present the three publicly available data-
bases used in this study: IS-RC (Inter-scorer Reliability Cohort) 
[31]; DOD-H (Dreem Open Dataset-Healthy) and DOD-O (Dreem 
Open Dataset-Obstructive) [23]. We then briefly describe the 
architectures of the two deep learning-based scoring algo-
rithms DSN-L [32] and SSN [23]. Next, we show how to compute 
the consensus in a multi-scored dataset, i.e. how to compute 
the label among multiple-scorers so as to train our baseline 
algorithms and to be able to evaluate their performance. In 
Label smoothing with soft-consensus subsection we describe 
in detail how to compute the soft-consensus distribution, and 
how to exploit it along with the label smoothing technique dur-
ing the training procedure. The aim is to show how to insert 
the multiple-labels of the different scorers into the training 
procedure of our algorithms. We finally report all the experi-
ments conducted on both DSN-L and SSN algorithms, i.e. base, 
base+LSU, and base+LSSC models, and the metrics exploited to 
evaluate their performance.

Datasets
IS-RC.
The dataset contains 70 recordings (0 males and 70 females) from 
patients with sleep-disordered breathing aged from 40 to 57. The 
recordings were collected at the University of Pennsylvania. Each 
recording includes the EEG derivations C3-M2, C4-M1, O1-M2, 
O2-M1, one EMG channel, left/right EOG channels, one ECG chan-
nel, nasal airway pressure, oronasal thermistor, body position, 
oxygen saturation, and abdominal excursion. The recordings are 
sampled at 128 Hz.

We only consider the single-channel EEG C4-M1 to train our 
DSN-L architecture, and we use multi-channel EEG, EOG, EMG, 
and ECG to train the SSN architecture. A band-pass Chebyshev 
IIR filter is applied between [0.3, 35] Hz. Each recording is scored 
by six clinicians from five different sleep centers (i.e. University 
of Pennsylvania, University of Wisconsin at Madison, St. Luke’s 
Hospital (Chesterfield), Stanford University, and Harvard 
University) according to the AASM rules [2].

The dataset contains the following annotations W, N1, N2, N2, 
R, and NC, where NC is a not classified epoch. Some epochs are 
not scored by all the six physicians, and even for some of them 
we do not have any annotation (i.e. NC). We decided to remove the 
epochs classified by all the scorers as NC. Epochs with less than 
six annotations are equally taken into account to avoid excessive 
data loss.

DOD-H.
The dataset contains 25 recordings (19 males and 6 females) from 
healthy adult volunteers aged from 18 to 65 years. The recordings 
were collected at the French Armed Forces Biomedical Research 
Institute’s (IRBA) Fatigue and Vigilance Unit (Bretigny-Sur-Orge, 
France). Each recording includes the EEG derivations C3-M2, 
C4-M1, F3-F4, F3-M2, F3-O1, F4-O2, O1-M2, O2-M1, one EMG chan-
nel, left/right EOG channels, and one ECG channel. The recordings 
are sampled at 512 Hz.

DOD-O.
The dataset contains 55 recordings (35 males and 20 females) 
from patients suffering from obstructive sleep apnea aged from 
39 to 62 years. The recordings were collected at the Stanford Sleep 
Medicine Center. Each recording includes the EEG derivations 
C3-M2, C4-M1, F4-M1, F3-F4, F3-M2, F3-O1, F4-O2, FP1-F3, FP1-M2, 
FP1-O1, FP2-F4, FP2-M1, FP2-O2, one EMG channel, left/right EOG 
channels, and one ECG channel. The recordings are sampled at 
250 Hz.

We only consider the single-channel EEG C4-M1 to train our 
DSN-L architecture, and we use all the available channels to train 
SSN architecture, on both DOD-H and DOD-O. As in Ref. [23], a 
band-pass Butterworth IIR filter is applied between [0.4, 18] Hz to 
remove residual PSG noise, and the signals are resampled at 100 
Hz. The signals are then clipped and divided by 500 to remove 
extreme values. The recordings from both DOD-H and DOD-O 
datasets are scored by five physicians from three different sleep 
centers according to the AASM rules [2].

DOD-H and DOD-O contain the following annotations W, 
N1, N2, N3, R, and NC, where NC is a not classified epoch. All 
the scorers agree about the NC epochs (100% of agreement). 
Therefore, all of them are removed from the data. Unlike the 
previous IS-RC database, for each epoch five annotations are 
always available.
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In Table 1 we report a summary of the total number and per-
centage of the epochs per sleep stage for the DOD-H, DOD-O, and 
IS-RC datasets.

Deep learning-based scoring architectures
DSN-L [32] is a simplified feed-forward version of the original 
DeepSleepNet by Ref. [24]. Unlike the original network, in Ref. 
[32] we proposed to employ only the first representation learn-
ing block, and we proposed to simply train it with a sequence-
to-epoch learning approach. The architecture receives in input 
a sequence of 90-s epochs, and it predicts the corresponding 
target of the central epoch of the sequence, i.e. many-to-one 
or sequence-to-epoch classification scheme. The representation 
learning architecture consists of two parallel CNN) branches, 
with small CNNθSmall and large CNNθLarge filters at the first layer. 
The principle is to extract high-time resolution patterns with 
the small filters, and to extract high-frequency resolution 

patterns with the large ones. This idea comes from the way the 
signal processing experts define the trade-off between tem-
poral and frequency precision in the feature extraction pro-
cedure [33]. Each CNN branch consists of four convolutional 
layers and two max-pooling layers. Each convolutional layer 
executes three basic operations: 1-dimensional convolution of 
the filters with the sequential input; batch normalization [34]; 
element-wise rectified linear unit activation function. Then the 
pooling layers are used to downsample the input. In Figure 1 
we report an overview of the architecture, with details about 
the filter size, the number of filters, and the stride size of each 
convolutional layer. The pooling size and the stride size for each 
pooling layer are also specified.

SSN [23] consists of two main parts as shown in Figure 2: (1) 
The epoch encoder part, inspired by Ref. [22], or what we refer to as 
epoch processing block, is designed to process 30-s multi-channel 
EEG epochs, and it aims at learning epoch-wise features. (2) The 

Table 1. Number and percentage of 30-s epochs per sleep stage for the IS-RC, DOD-H, and DOD-O datasets

 W N1 N2 N3 R Total 

IS-RC 24517
(29.1%)

3773
(4.5%)

40867
(48.5%)

3699
(4.4%)

11475
(13.6%)

84331

DOD-H 3075
(12.5%)

1463
(5.9%)

12000
(48.7%)

3442
(14.0%)

4685
(19.0%)

24665

DOD-O 10520
(19.8%)

2739
(5.1%)

26213
(49.2%)

5617
(10.6%)

8147
(15.3%)

53236

Figure 1. DeepSleepNet-Lite architecture. An overview of the representation learning architecture from Ref. [24], with our sequence-to-epoch training 
approach.
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sequence encoder part, inspired by Ref. [24], or what we refer to as 
sequence processing block (SPB), is designed to process sequences 
of epochs, and it aims to encode the temporal information (e.g. 
stage transition rules). The SPB block consists of two layers of 
bidirectional gated recurrent unit (GRU) with skip-connections 
and the final classification layer. The architecture receives in 
input a sequence of PSG epochs, specifically temporal context is 
set to 21, and it outputs the corresponding sequences of sleep 
stages at once, i.e. many-to-many or sequence-to-sequence clas-
sification scheme.

In both, DSN-L and SSN, the softmax function and the 
cross-entropy loss function H (see Supplementary Analyses) are 
used to train the models to output the probabilities p̂i,k for the 
five mutually exclusive classes K, that correspond to the five 
sleep stages. The cross-entropy loss quantify the agreement 
between the prediction p

i
 and the target y

i
 (i.e. sleep stage label) 

for each sleep epoch. The aim is to minimize the cross-entropy 

loss function H, i.e. minimize the distance between the predic-
tion p

i
 and the target y

i
.

The models are trained end-to-end via backpropagation, using 
mini-batch Adam gradient-based optimizer [35], with a learning 
rate lr. The training procedure runs up to a maximum number of 
iterations (e.g. 100 iterations), as long as the break early stopping 
condition is satisfied (i.e. the validation F1-score stopped improv-
ing after more than a certain epochs; the model with the best val-
idation F1-score is used at test time). All the training parameters 
(e.g. adam-optimizer parameters beta1 and beta2, mini-batch 
size, learning rate, etc.) are all set as recommended in Refs. [32] 
and [23].

In Supplementary Analyses we also report additional mathe-
matical details about both the scoring architectures.

Consensus in multi-scored datasets
Inspired by Refs. [23, 27], we evaluate the performance of the 
sleep scoring architectures, as well as the performance of each 
physician, using the consensus among the five/six different scor-
ers. The majority vote from the scorers has been computed—i.e. 
we assign to each 30-s epoch the most voted sleep stage among 
the physicians. In case of ties, we consider the label from the 
most reliable scorer. The most reliable scorer is the one that is 
frequently in agreement with all the others. We use the Soft-
Agreement metric proposed in Ref. [23] to rank the reliability of 
each physician, and to finally define the most reliable scorer.

We denote with J the total number of scorers and with j the sin-
gle-scorer. The one-hot encoded sleep stages given by the scorer j 
are: ŷj ∈ [0, 1]KxT, where K is the number of classes, i.e. K = 5 sleep 
stages, and T is the total number of epochs. The probabilistic con-
sensus ẑj among the J− 1 scorers (j excluded) is computed using 
the following:

 

ẑj =

J∑
i=1

ŷi[t]

max
J∑

i=1
ŷi[t]

∀t; i �= j

(1)
where t is the t-th epoch of T epochs and ẑj ∈ [0, 1]KxT, i.e. 1 is 
assigned to a stage if it matches the majority or if it is involved in a 
tie. The Soft-Agreement is then computed across all the T epochs as:

 
Soft-Agreementj =

1
T

T∑
t=0

ẑj[yj]
(2)

where ẑj[yj] denotes the probabilistic consensus of the sleep stage 
chosen by the scorer j for the t-th epoch. Soft-Agreementj ∈ [0, 1], 
where the zero value is assigned if the scorer j systematically scores 
all the annotations incorrectly compared to the others, whilst 1 
is assigned if the scorer j is always involved in tie cases or in the 
majority vote. The Soft-Agreement is computed for all the scorers, 
and the values are sorted from the highest—high reliability—to 
the lowest—low reliability. The Soft-Agreement is computed for each 
patient, i.e. the scorers are ranked for each patient, and in case of a 
tie the top-1 physician will be the one used for that patient.

Label smoothing with soft-consensus
The predicted sleep stage for each 30-s epoch is associated to a prob-
ability value p̂i , which should mirror its ground-truth correctness 
likelihood. When this happens, we can state that the model is well 
calibrated, or that the model provides a calibrated confidence meas-
ure along with its prediction [36]. Consider, e.g. a model trained to 
classify images as either containing a dog or not; out of 10 test set 
images it outputs the probability of there being a dog as 0.60 for 
every image. The model is perfectly calibrated if six dog images are 

Figure 2. SimpleSleepNet architecture. An overview of the 
SimpleSleepNet architecture from Ref. [23]. ht−1, h′

t−1 represent 
the hidden states of the GRU layers from the previous epoch of the 
sequence and ht−1, h′

t−1 the hidden states of the GRU layers from the 
next epoch of the sequence. at is the embedding of the current epoch.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
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present in the test set. Label smoothing [37] has been shown to be a 
suitable technique to improve the calibration of the model.

By default, the cross-entropy loss function H is computed 
between the prediction p

i
 and the target y

i
 (i.e. the one-hot encoded 

sleep stages, 1 for the correct class and 0 for all the other classes). 
Whenever a model is trained with the label smoothing technique, 
the hard target is usually smoothed with the standard uniform distri-
bution 1/K equation (3). Thus, the cross-entropy loss function equa-
tion (4) is minimized by using the weighted mixture of the target yLSUi,k .

yLSUi,k = yi,k · (1− α) + α · 1/K (3)

 
H(y

i
, p

i
) =

K∑
k=1

− yLSUi,k · log(p̂i,k)
(4)

where α is the smoothing parameter, K the number of sleep stages, 
yLSUi,k  the weighted mixture of the target and p̂i,k the output of the 
model with the predicted probability values.

In our study, we exploit the label smoothing technique to 
improve the insertion of the knowledge from the multiple-scor-
ers in the learning process. We propose to use the Soft-Consensus 
equation (5) as our new distribution to smooth the hard target yi,k.

 
Soft-Consensusi =

#
(
Yi = yi,k

)
M (5)

where Yi is the set of observations—i.e. annotations given by the 
different physicians—for the i-th epoch, k is the class index, M 
is the number of observations and # is the cardinality of the set (
Yi = yi,k

)
. In simple words, the probability value for each sleep 

stage k is computed as the sum of its occurrences divided by the 
total number of observations.

Soft-consensusi,k ∈ [0, 1]1xK is the one-dimensional vector that 
we use to smooth the hard target equation (6), and then minimize 
the cross-entropy loss function equation (7).

 yLSSCi,k = yi,k · (1− α) + α · soft-consensusi,k (6)

 
H(y

i
, p

i
) =

K∑
k=1

− yLSSCi,k · log( p̂i,k)
(7)

To make it clearer, we report a practical example on how to 
compute the soft-consensus distribution, and how to exploit it to 
smooth our labels. Consider the following set of observations 
Yi = [W, W, W, N1, N2] given by five different physicians for 
the same i-th epoch.

We can calculate the soft-consensus as following:

Soft-Consensusi,k = [ pW = 3/5, pN1 = 1/5, pN2 = 1/5, pN3 = 0/5, pREM = 0/5 ]

Soft-Consensusi,k = [ 0.6, 0.2, 0.2, 0, 0 ]

By applying equations (5) and (6) we obtain the following yLSSCi,k  
smoothed hard target with α = 0.5:

yLSSCi,k = yi,k · (1− α) + α · Soft-Consensusi,k = [0.8, 0.1, 0.1, 0, 0]

that corresponds to the one-hot encoded target:

yi,k = [ pW = 1, pN1 = 0, pN2 = 0, pN3 = 0, pREM = 0]

We perform a simple grid-search to set the smoothing hyperpa-
rameter α. When the model is trained with the labels smoothed 
by the uniform distribution the α value ranges between (0,0.5] with 
step 0.1. Extreme values are not considered as for α = 0 the model 
is trained using the standard hot-encoding vector; whilst for val-
ues higher than 0.5, e.g. α = 1, the model would be trained using 
mainly/only the uniform distribution 1/K for each sleep stage. 
When the model is trained with the labels smoothed by the Soft-
Consensus distribution the α value ranges between (0,1] with step 
0.1. In the latter case we also investigate an α value equal to 1 
to evaluate the full impact of the consensus distribution on the 
learning procedure.

Experimental design
We evaluate DSN-L and SSN using the k-fold cross-validation 
scheme. We set k equal to 10 for IS-RC, 25 for DOD-H (leave-one-
out evaluation procedure) and 10 for DOD-O datasets, consistent 
with what was done in Ref. [23].

In Table 2 we summarize the data split for each dataset.
The following experiments are conducted on both DSN-L and 

SSN models for each dataset:

• base. The models are trained without label smoothing.
• base+LSU. The models are trained with label smoothing 

using the standard 1/K uniform distribution—i.e. the hard 
targets (scorer consensus) are weighted with the uniform 
distribution.

• base+LSSC. The models are trained with label smoothing 
using the proposed soft-consensus—i.e. the hard targets 
(scorer consensus) are weighted with the soft-consensus 
distribution.

These models, differently trained, have been evaluated with and 
without MC dropout ensemble technique. In Tables 4–6 section 
Results we present the results obtained for each experiment on 
both DSN-L and SSN evaluated on IS-RC, DOD-H, and DOD-O 
datasets.

Metrics
Performance. The per-class F1-score, the overall accuracy (Acc.), 
the macro-averaging F1-score, the weighted-averaging F1-score 
(i.e. the metric is weighted by the number of true instances for 
each label, so as to consider the high imbalance between the 
sleep stages) and the Cohen’s kappa have been computed per 
subject from the predicted sleep stages from all the folds to eval-
uate the performance of our model [38, 39].
Hypnodensity graph. The hypnodensity-graph is an efficient visu-
alization tool introduced in Ref. [27] to plot the probability distri-
bution over each sleep stage for each 30-s epoch over the whole 
night. Unlike the standard hypnogram sleep cycle visualization 
tool, the hypnodensity-graph shows the probability of occurrence 
of each sleep stage for each 30-s epoch; so it is not limited to the 
discrete sleep stage value (see Figure 3).

Table 2. Data split on the IS-RC, DOD-H, and DOD-O datasets

 Size Experimental
Setup 

Held-out
Validation Set 

Held-out
Test Set 

IS-RC 70 10-fold CV 13 subjects 7 subject

DOD-H 25 25-fold CV 6 subjects 1 subjects

DOD-O 55 10-fold CV 12 subjects 6 subjects
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In our study we have used the hypnodensity-graph to display 

both the model output—i.e. the probability vectors p̂i,k and the 
multi-scorer Soft-Consensusi,k probability distributions.

The averaged cosine similarity (ACS) is used to quantify 
the similarity between the hypnodensity-graph generated by 
the model and the hypnodensity-graph generated by the Soft-
Consensus. The ACS has been computed as follows:

 
ACS =

1
N

N∑
i=1

soft− consensusi,k · p̂i,k∣∣∣∣ soft− consensusi,k
∣∣∣∣ ·

∣∣∣∣ p̂i,k
∣∣∣∣

(8)

where N is the number of epochs in the whole night, ‖ · ‖ is the 
norm computed for the predicted probability vector p̂i,k and the 
Soft-Consensusi,k ground-truth vector for the i-th epoch. Thus, 
the cosine-similarity is averaged across all the epochs N to obtain 
our averaged ACS unique score of similarity. The cosine-similarity 
values may range wbetween 0, i.e. high dissimilarity and 1, i.e. 
high similarity between the vectors.
Calibration. The calibration of the model is evaluated by using 
the expected calibration error (ECE) metric proposed in Ref. [40]. 
By (ECE) we compute the difference in expectation between the 
accuracy acc and the conf (i.e. the softmax output probabilities) 
values. More in detail, the predictions are divided into M equally 
spaced bins (with size 1/M), then we compute the accuracy acc(Bm) 
and the average predicted probability value conf(Bm) for each bin 
as follows:

 

acc (Bm) =
1

|Bm|
·
∑
i∈Bm

1
(
ŷi = yi

)

(9)

 

conf (Bm) =
1

|Bm|
·
∑
i∈Bm

p̂i
(10)

where yi is the true label and ŷi = argmax( p̂i,k) is the predicted 
label for the i-th epoch; Bm is the group of samples whose pre-
dicted probability values fall in Im = ( m−1

M , m
M ] and p̂i = max(p̂i,k ) 

is the predicted probability value for sample the i-th 30-s epoch. 

Finally, the ECE value is computed as the weighted average of the 

difference between the acc and the conf among the M bins:

 
ECE =

M∑
m=1

|Bm|
nB

· |acc (Bm)− conf (Bm)|
(11)

where nB is the number of samples in each bin. Perfectly cali-
brated models have acc (Bm) = conf (Bm) for all m ∈ {1, ..., M}, 
resulting in ECE = 0.

Results
In Table 3 we first report for all the multi-scored databases 
IS-RC, DOD-H, and DOD-O, the overall scorers performance and 
their Soft-Agreement), i.e. the agreement of each scorer with the 
consensus among the physicians. On IS-RC we have on aver-
age a lower inter-scorer agreement (SA equal to 0.69, with an 
F1-score 69.7%) compared to both DOD-H and DOD-O (SA equal 
to 0.89 and 0.88, with an F1-score 88.1% and 86.4%, respec-
tively). Consequently, we expect a higher efficiency of our label 
smoothing with the soft-consensus approach (base+LSSC) on the 
experiments conducted on the IS-RC database. The lower the 
inter-scorer agreement, the lower should be the performance 
of a model trained with the one-hot encoded labels (i.e. the 
majority vote weighted by the degree of consensus from each 
physician).

In Tables 4 and 5 we report the overall performance, the cali-
bration measure, and the hypnodensity similarity measure of 
the three different DSN-L and SSN models on the three data-
bases IS-RC, DOD-H, and DOD-O. The performance of the DSN-L 
base models are higher compared to the performance aver-
aged among the scorers on the IS-RC database, but not on the 
DOD-H and DOD-O databases. In contrast, the performance of 
the SSN base models are always higher than the performance 
averaged among the scorers on all the databases. We highlight 
that the results we report for SSN on DOD-H and DOD-O are 

Figure 3. Hypnogram and hypnodensity-graph from the scorers labels. Example of hypnogram and hypnodensity-graph for a subject from the DOD-H 
with the highest percentage 14% of N1 sleep stages. For each 30-s epoch we report on top the hypnogram, i.e. the discrete sleep stage values (majority 
vote from the scorers labels); on bottom the hypnodensity-graph, i.e. the cumulative probabilities of each sleep stage (soft-consensus computed from 
the scorers labels). The hypnodensity-graph allows us to better appreciate the low level of agreement of a specific sleep stage among the different 
scorers. In this example, the sleep stages N1 are often associated with a high percentage of residual probability in awake or N2, thus at the transitions 
from one sleep stage to another.
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slightly different compared to the one reported in Ref. [23]. We 
decided to not compute a weight (from 0 to 1) for each epoch, 
based on how many scorers voted for the consensus. We do not 
balance the importance of each epoch when we compute the 
above mentioned metrics. We think it is unfair to constrain any 
metrics based on the amount of voting physicians. Overall, the 
results show an improvement in performance on all the data-
bases (i.e. overall accuracy, MF1-score, Cohen’s kappa (k), and 
F1-score) from the baseline (base) and the label smoothing with 
the uniform distribution (base+LSU) models, to the ones trained 
with label smoothing along with the proposed soft-consensus dis-
tribution (i.e. base+LSSC).

The ACS is the metric that best quantifies the ability of the 
model in adapting to the consensus of the group of scorers. A 
higher ACS value means a higher similarity between the hyp-
nodensity-graph generated by the model and the hypnoden-
sity-graph generated by the soft-consensus (i.e. the model better 
adapts to the consensus of the group of physicians). As all the 
other metrics the ACS value is computed per subject, but here we 
report the mean and also the standard deviation across subjects 
(µ ± σ). We found a significant improvement in the ACS value 
from the base and the base+LSU models to the base+LSSC models 
on all the databases and on both DSN-L (P-values <.01) and SSN 
(P-values <.05). Hence, our approach enables both DSN-L and SSN 

Table 3. Scorers performance on IS-RC, DOD-H, and DOD-O datasets with Soft-Agreement (SA), overall accuracy (%Acc.), macro 
F1-score (%MF1), Cohen’s Kappa (k), weighted-averaging F1-score (%F1), and % per-class F1-score. The scorer with the best 
performance (i.e. high agreement with the consensus among the different physicians) is indicated in bold

Overall metrics Per-class F1-score

 Scorers SA Acc.  MF1 k F1 W N1 N2 N3 R 

IS-RC Scorer-1 0.79 83.0 69.5 0.72 83.8 83.1 47.2 87.3 48.0 82.1

Scorer-2 0.81 89.4 72.8 0.82 89.2 91.3 57.6 92.5 32.9 89.8

Scorer-3 0.53 40.7 26.5 0.11 40.8 29.8 14.7 54.5 17.9 15.6

Scorer-4 0.52 38.9 26.1 0.12 40.5 28.6 14.7 54.2 15.4 17.5

Scorer-5 0.70 73.7 61.6 0.63 75.8 88.7 36.9 70.2 25.8 86.2

Scorer-6 0.79 87.2 77.2 0.81 88.2 92.5 54.6 89.4 59.8 89.5

Average 0.69 68.7 55.5 0.53 69.7 68.9 37.6 74.7 33.3 63.5

DOD-H Scorer-1 0.88 87.0 81.5 0.81 87.4 87.5 60.0 89.4 84.8 85.7

Scorer-2 0.91 89.3 84.1 0.84 89.7 87.4 65.1 91.6 84.3 92.2

Scorer-3 0.92 90.6 84.5 0.86 90.4 89.9 67.5 92.1 77.9 95.3

Scorer-4 0.84 82.6 76.7 0.75 83.1 76.5 49.1 85.4 80.7 92.0

Scorer-5 0.92 89.9 83.6 0.85 89.9 86.7 66.0 92.1 81.0 92.2

Average 0.89 87.9 82.1 0.82 88.1 85.5 61.5 90.0 81.7 91.5

DOD-O Scorer-1 0.87 85.0 75.1 0.77 84.6 90.0 49.5 85.2 67.6 83.3

Scorer-2 0.87 85.0 78.2 0.78 86.0 89.3 58.4 85.4 69.1 88.6

Scorer-3 0.88 86.0 75.0 0.78 84.6 91.0 54.3 86.5 56.1 87.0

Scorer-4 0.88 86.7 77.7 0.80 87.2 91.2 59.3 89.4 62.9 85.8

Scorer-5 0.91 89.9 82.3 0.84 90.0 93.7 68.3 90.7 70.5 88.2

Average 0.88 86.5 77.6 0.79 86.4 91.0 58.0 87.3 65.2 86.5

Table 4. Overall metrics, per-class F1-score, calibration, and ACS hypnodensity graph similarity measures of the DSN-L models 
obtained from 10-fold cross-validation on IS-RC dataset, from 25-fold cross-validation on DOD-H dataset, and from 10-fold cross-
validation on DOD-O dataset. Best shown in bold

Overall metrics Per-class F1-score Calibration Hypn. 

 Models α Acc.  MF1 k F1 W N1 N2 N3 R ECE conf.  ACS

IS-RC base — 69.6 50.6 0.56 70.0 81.6 11.8 71.9 27.2 60.7 0.096 79.0 0.772 ± 0.075

base+LSU 0.4 74.8 57.0 0.63 75.8 83.3 24.3 79.0 30.6 67.7 0.296 45.2 0.806 ± 0.042

base+LSSC 0.6 75.8 56.5 0.69 75.9 83.5 19.5 79.7 33.3 66.4 0.190 56.7 0.836 ± 0.041

DOD-H base — 76.9 70.0 0.68 77.2 79.7 39.5 78.8 76.5 75.2 0.163 92.7 0.817 ± 0.097

base+LSU 0.2 75.3 68.7 0.66 75.2 78.8 40.0 75.9 72.0 76.8 0.059 68.9 0.829 ± 0.068

base+LSSC 0.8 80.2 72.4 0.72 80.4 80.4 42.3 83.4 77.6 78.8 0.016 81.4 0.873 ± 0.053

DOD-O base — 77.3 67.8 0.66 78.0 80.7 41.2 81.0 68.1 68.3 0.131 90.2 0.840 ± 0.073

base+LSU 0.1 77.5 68.0 0.67 78.2 80.8 41.9 80.4 68.4 68.7 0.009 78.4 0.859 ± 0.072

base+LSSC 1 79.4 69.6 0.69 79.9 80.4 43.8 83.5 72.5 68.1 0.009 78.3 0.878 ± 0.061



Fiorillo et al. | 9

architectures to significantly adapt to the group consensus on all 
the multi-scored datasets.

We could easily infer that the SSN architecture is better (i.e. 
higher performance) compared to our DSN-L architecture. The 
purpose of our study is not to highlight whether one architec-
ture is better than the other, but we can not fail to notice the 
high values of confidence (the conf value is the average of the 
softmax output max-probabilities) obtained on the SSN based 
models. High values of confidence still persist despite smooth-
ing the labels (with both uniform and soft-consensus distribu-
tions) during the training procedure. The SSN architecture is 
not highly responsive to the changes in probability values we 
implemented on the one-hot encoded labels. It always rely/
overfit on the max probability value given for each epoch, i.e. 
the consensus among the five/six different scorers. Indeed, on 
the IS-RC, which is the database with the lower inter-scorer 
agreement, the SSN base+LSSC model reaches a higher value of 
F1-score, i.e. 81.6%, compared to our DSN-L base+LSSC model, 
i.e. 75.9%, but a lower value of ACS (0.817 on SSN and 0.836 
on DSN-L, with a P-value <.01). The SSN model overfit to the 

majority vote or the max probability value given for each 
epoch, whilst the DSN-L better adapts to the consensus of the 
group of scorers (i.e. better encodes the variability among the 
physicians).

The last statement is also strengthened by the Supplementary 
Figure S1 and Figure S2. For DSN-L and SSN we report the ACS 
values across all the experimented α values, on both the base+LSU 
and the base+LSSC models tested on the three databases. As 
expected, the DSN-L model shows a high sensitivity in ACS values 
to changes in α-hyperparameter across all databases. This sensi-
tivity is not as strong with the SSN model.

Moreover, we want to stress that the standard uniform distri-
bution is not as efficient as the proposed soft-consensus distri-
bution in encoding the scorer’s variability. By using the uniform 
distribution we are not able to learn as well the complexity 
of the degree of agreement between the different physicians. 
Indeed, in Supplementary Figure S1, on the DSN-L model, we 
clearly show how the ACS value proportionally increases with 
the α-hyperparameter only by using the proposed soft-consen-
sus distribution. In Figure 4 we also show, on a patient from the 

Table 5. Overall metrics, per-class F1-score, calibration, and ACS hypnodensity graph similarity measures of the SSN models obtained 
from 10-fold cross-validation on IS-RC dataset, from 25-fold cross-validation on DOD-H dataset, and from 10-fold cross-validation on 
DOD-O dataset. Best shown in bold.

Overall metrics Per-class F1-score Calibration Hypn. 

 Models α Acc.  MF1 k F1 W N1 N2 N3 R ECE conf.  ACS

IS-RC base — 81.8 60.8 0.72 80.8 86.3 29.9 85.3 24.3 78.1 0.174 99.4 0.806 ± 0.052

base+LSU 0.3 82.5 59.8 0.72 81.1 86.5 28.8 86.5 18.7 78.7 0.169 99.3 0.811 ± 0.058

base+LSSC 0.7 83.1 60.2 0.73 81.6 86.7 27.6 86.8 20.1 79.8 0.162 99.2 0.817 ± 0.047

DOD-H base — 87.1 80.2 0.81 87.1 83.6 55.5 90.0 83.3 89.0 0.126 99.7 0.890 ± 0.047

base+LSU 0.4 87.6 81.0 0.81 87.5 85.5 57.3 90.2 82.1 90.3 0.120 99.5 0.899 ± 0.034

base+LSSC 0.5 88.8 82.3 0.83 88.7 86.4 58.8 90.9 83.2 92.1 0.108 99.6 0.907 ± 0.039

DOD-O base — 85.3 75.9 0.77 85.2 88.2 50.4 87.1 65.9 88.0 0.145 99.7 0.889 ± 0.056

base+LSU 0.1 85.6 75.8 0.78 85.2 88.2 51.2 87.3 64.3 88.4 0.141 99.6 0.893 ± 0.052

base+LSSC 1 86.8 77.7 0.79 86.7 89.0 51.0 88.3 69.3 91.1 0.125 99.2 0.906 ± 0.043

Table 6. Overall metrics and ACS hypnodensity graph similarity measures on the DSN-L and SSN base+LSSC models, obtained from 
10-fold cross-validation on IS-RC dataset, from 25-fold cross-validation on DOD-H dataset, and from 10-fold cross-validation on 
DOD-O dataset with and without MC. Best shown in bold

Overall metrics Hypn. 

   Acc. MF1 k F1 ACS

IS-RC DSN-L w/o MC 75.8 56.5 0.69 75.9 0.836 ± 0.041

w/ MC 78.6 57.6 0.67 78.0 0.850 ± 0.036

SSN w/o MC 83.1 60.2 0.73 81.6 0.817 ± 0.047

w/ MC 83.0 59.2 0.73 81.1 0.818 ± 0.048

DOD-H DSN-L w/o MC 80.2 72.4 0.72 80.4 0.873 ± 0.053

w/ MC 84.4 75.9 0.76 84.2 0.906 ± 0.026

SSN w/o MC 88.8 82.3 0.83 88.7 0.907 ± 0.039

w/ MC 89.1 82.6 0.84 89.0 0.910 ± 0.039

DOD-O DSN-L w/o MC 79.4 69.6 0.69 79.9 0.878 ± 0.061

w/ MC 80.7 70.8 0.71 80.9 0.889 ± 0.059

SSN w/o MC 86.8 77.7 0.79 86.7 0.906 ± 0.043

w/ MC 87.1 78.0 0.80 86.9 0.909 ± 0.041

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad028#supplementary-data
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DOD-O dataset, how we achieve a higher ACS value with the pro-
posed base+LSSC model with the soft-consensus distribution, com-
pared to base+LSU model with the standard uniform distribution. 
The graph clearly highlights the differences between the output 
probabilities predicted by the different models. The probabili-
ties predicted using our approach base+LSSC (d) are closer to the 
ground-truth (a) compared to the ones predicted from the other 
models (e.g. refer to min. 300 and to the probabilities associated 
with the sleep stage N3).

Discussion
Many deep learning-based approaches are available and from a 
technical point of view there is not that much that is left to be 
done to improve their performance. It is not reasonable to reach 
a performance higher than the gold standard that is used to train 
the architectures. Infact, the real limitation is the low inter-rater 
agreement due to subjective interpretation.

Therefore in this paper we focus on how to better integrate 
the inter-rater agreement information into the automated 
sleep scoring algorithms. Presently, information about the var-
iability is not completely exploited. The algorithms are trained 
on the majority vote consensus, leading to overfitting on the 
majority vote weighted by the degree of consensus from each 
physician.

We introduce a more complete methodology to integrate scor-
er’s variability in the training procedure. We demonstrate the 
efficiency of label smoothing along with the soft-consensus distri-
bution in encoding the scorers’s variability into the training pro-
cedure of both DSN-L and SSN scoring algorithms. The results 
show an improvement in overall performance from the base 
models to the ones trained with base+LSSC. We introduce the ACS 
metric to better quantify the similarity between the probability 
distribution predicted by the models and the ones generated by 
the scorer consensus. We obtain a significant improvement in 
the ACS values from the base models to the base+LSSC models 
on both DSN-L and SSN architectures. Based on the reported 

high confidence values, we found that SSN tends to overfit on 
each dataset. Specifically, it tends to overfit on the majority vote 
weighted by the degree of consensus from each physician, but 
does not encode as well their variability.

To our knowledge, our work is the first attempt to transfer the 
variability, the uncertainty and the noise among multiple-scorers 
to an automated sleep scoring system.

We have proved the strength of our approach and especially 
the use of the soft-consensus distribution by comparing it with 
the base models and the implemented models trained with label 
smoothing but using the uniform distribution. We clearly show 
on all the experiments the higher overall performance and ACS 
values achieved with the soft-consensus distribution.

In order to generalize our approach, there are two big limi-
tations. The first is that a far bigger datasets, highly heteroge-
neous (with different diagnosis, age range, gender, etc.) scored 
by multiple-scorers would be necessary. The second is that the 
recordings exploited in this study are not labeled by a homo-
geneous group of board certified sleep scorers. Further studies 
should be carried out to better quantify the resilience and the 
reproducibility of the proposed approach. To achieve a high-per-
formance sleep scoring algorithm, we must take into account 
both the variability of the recordings and the variability between 
the different sleep scorers. We should train our sleep scoring 
models on PSG recordings from different large-scale-heteroge-
neous data cohorts, and ideally with each recording scored by 
multiple physicians.

In summary, the possibility of exploiting the full set of 
information that is hidden in a multi-scored dataset would 
certainly enhance automated deep learning algorithms per-
formance. The present approach enables us to better adapt to 
the consensus of the group of scorers, and, as a consequence, 
to better quantify the disagreement we have between the 
different scorers. The proposed approach results quite effec-
tive in encoding the complexity of the scorers’ consensus 
within the classification algorithm, whose importance is often 
underestimated.

Figure 4. Hypnodensity-graphs from the scorers labels and from the predicted probabilities from the experimented models. Example of 
hypnodensity-graphs for a subject from the DOD-O. (a) Soft-consensus computed from the scorers labels; (b) DSN-L base model; (c) DSN-L base+LSU; 
(d) DSN-L base+LSSC. We also report the ACS value computed between the hypodensity-graph associated to soft-consensus and the ones generated 
from the predicted probabilities of each model. We reach a higher ACS value with the proposed base+LSSC model with the soft-consensus distribution (d), 
compared to the baseline (b) and the base+LSU model with the standard uniform distribution (c).
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