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Abstract

Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production,
redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction,
metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases,
including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such
as parkinsonism, amyotrophic lateral sclerosis, and glaucoma.
Recent Advances: New evidence supports that increased energy metabolism protects neuron function during
aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that
the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important
factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria.
Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such
as glaucoma, Alzheimer’s disease, and Parkinson’s disease is important for developing new therapies. Func-
tional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and
membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and
metabolic stress is a major challenge.
Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and
promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-
associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new
opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in
the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial
architecture. Future work will need to delineate the molecular details of these processes. Antioxid. Redox Signal.
38, 896–919.
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Introduction

M itochondria are complex and essential organelles
that now have emerged as key metabolic and signaling

hubs in a cell. In addition to their well-known energy con-
version functions, mitochondria are recognized as critical
sites for heme and iron–sulfur cofactor synthesis, calcium

buffering, metabolic and redox signaling, and innate immune
responses. Moreover, a plethora of cellular metabolic path-
ways is known to either converge on or emerge from the
mitochondria. The metabolic requirement of oxygen for these
pathways puts tremendous burden on mitochondria to
maintain enzyme complexes of the electron transport chain
(ETC) and adenosine triphosphate (ATP) synthase. Aberrant
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reactions of oxygen with redox complexes in the ETC can
lead to reactive oxygen species (ROS) initiating a cascade of
damage to the organelle. It is therefore not surprising that the
functional integrity of mitochondria is critical for cellular
physiology. This is especially true for postmitotic cells with
high bioenergetic demand such as neurons, myotubes, and
cardiomyocytes.

Mitochondria are highly dynamic organelles and, in many
cell types, are organized into interconnected networks, whose
shape and morphology support and modulate cellular metabolic
responses to homeostatic challenges including nutrient depri-
vation, mitochondrial uncoupling, or hypoxic insults (Giaco-
mello et al, 2020; Hackenbrock, 1966; Sprenger and Langer,
2019). Changes in mitochondrial network behavior, commonly
referred to as fusion (network expansion) and fission (network
fragmentation), lead to changes in metabolic and bioenergetic
outputs of mitochondria. Such alterations are now recognized
as important physiological contributors to cellular differentia-
tion, ‘‘stemness’’ and senescent states, and cell death.

Mitochondria comprise 1000–1300 proteins of dual ge-
netic origin, in which the vast majority of mitochondrial
proteome is encoded by nuclear genome, synthesized in cy-
tosol, and imported in the organelle (Morgenstern et al, 2021;
Pagliarini et al, 2008; Rath et al, 2021; Schmidt et al, 2010).
Many of these polypeptides are then stoichiometrically
paired with a handful of mitochondria-encoded proteins to
form the ETC complexes in the inner mitochondrial mem-
brane (IM). The IM and mitochondrial matrix harbor the
majority of mitochondrial proteome, and are the main sites
for vital mitochondrial activities. A highly protein-rich and
metastable environment in these mitochondrial subcompart-
ments necessitates tight homeostatic control. Failure to fold,
assemble, or rearrange protein complexes in these mito-
chondrial locales is associated with perturbations to protein
homeostasis (proteostasis), increased oxidative damage, ion
imbalance, and bioenergetic deficit.

Consequently, these impediments impinge on the fusion
and fission balance of mitochondrial network, thereby lead-
ing to downstream physiological alterations in the cell
(Higuchi-Sanabria et al, 2018).

The functional integrity of mitochondria is established and
maintained through several interrelated mechanisms, many
facets of which are highly conserved throughout the eukary-
otes. Operating at both the molecular and organellar levels,
these multilayered and overlapping mechanisms protect the
organelle from the aforementioned homeostatic challenges to
safeguard mitochondrial and cellular health. At the molecular
level, mitochondrial welfare is surveyed and corrected by
molecular machines localized outside and within the organelle.
The former group includes several mechanisms converging on
the ubiquitin–proteasomal system (UPS), and the latter group
is represented by molecular chaperones and proteases local-
ized to mitochondrial subcompartments, with the major frac-
tion of these factors being integral to or associated with the IM.
At the organellar level, mitochondrial health is protected by
mechanisms encompassing mitochondrial fusion and frag-
mentation, selective autophagy of mitochondria (known as
mitophagy), and interorganellar retrograde signaling.

In this study, we briefly discuss these mechanisms and
their molecular links to mitochondrial form, proteostasis,
function, and metabolism and attempt to review these mo-
lecular pathways in the context of glaucoma.

Mitochondrial Metabolism and Oxidative Stress

Energy pathways

The mitochondrion is home to several metabolic pathways
that are interconnected and integrate into the respiratory
chain. The tricarboxylic acid (TCA) cycle, located in the
matrix of mitochondria, serves as the central hub for con-
necting different metabolic pathways and provides the ma-
jority of ATP in the cell via reduced nicotinamide adenine
dinucleotide (NADH). Acetyl-CoA generated via pyruvate
and pyruvate dehydrogenase (PDH) and also fatty oxidation
is the key feeder molecule into the TCA cycle with other
metabolites also supplied to maintain cycle flux. Metabolites
of the TCA cycle are kept properly balanced by linkages to
glycolysis and gluconeogenesis, fatty acid oxidation and
biosynthesis, amino acid metabolism, and nucleic acid
metabolism.

NADH produced by the TCA cycle is oxidized by complex
I (NADH dehydrogenase) of the mitochondrial ETC. Com-
plex I catalyzes a hydride transfer from NADH to the flavin
mononucleotide (FMN) and then funnels electrons to the
ubiquinone (Q) reduction site via multiple Fe-S clusters
(eight in mammals) thereby adding reduced ubiquinone
(QH2) to the coenzyme Q (CoQ) pool of the IM (Baradaran
et al, 2013; Fiedorczuk et al, 2016; Parey et al, 2020). QH2

serves as an electron carrier in the membrane by delivering
electrons to complex III via the QH2 oxidation sites (Iwata
et al, 1998).

Through a series of one-electron transfer steps involving
cytochrome c, electrons eventually are taken up by cyto-
chrome c oxidase (complex IV), which catalyzes the reduc-
tion of oxygen to water (Hartley et al, 2019; Tsukihara et al,
1996). Proton transfer (10 protons total) that is coupled to the
different electron transport steps in complexes I, III, and IV
generates a proton gradient between the IM space and the
mitochondrial matrix. This gradient drives complex V (ATP
synthetase) production of ATP, thus providing the needed
energy to the cell.

Molecules that are able to support TCA cycle activity
and/or provide reducing equivalents directly to the respi-
ratory chain are critical for cellular metabolism and energy
production. For instance, fatty acid oxidation and branched
chain amino acids (leucine, isoleucine, and valine) impact
TCA flux and directly provide reducing power to the re-
spiratory chain. Fatty acid oxidation involves four succes-
sive enzymatic steps in each oxidative cycle that provide
one molecule of acetyl-CoA and 2e- directly to the ubi-
quinone pool via the acyl-CoA dehydrogenase/electron
transfer flavoprotein (ETF)/ETF ubiquinone oxidoreductase
(ETFQO) complex (Zhang et al, 2006). Catabolism of
branched-chain amino acids involves different CoA deriv-
atives that are metabolized by their respective acyl-CoA
dehydrogenases, which are coupled to ETF/ETFQO. The
downstream products are acetyl-CoA and succinyl-CoA
(Mann et al, 2021).

Similar to fatty acid oxidation and branched-chain amino
acids, proline oxidation provides substrates for the TCA cy-
cle and directly funnels electrons to the ubiquinone pool. One
intermediate in particular, a-ketoglutarate, is replenished
from glutamate, which is provided by the catabolism of
proline, histidine, arginine, and glutamine. Figure 1 sum-
marizes these pathways.
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Reactive oxygen species

ROS are by-products of mitochondrial metabolism, a
phenomenon that was shown 50 years ago using isolated
mitochondria (Loschen et al, 1971). Complex I is a major
contributor to superoxide (O2

�-) formation, with the amount
of ROS generated dependent on NADH/NAD+ (nicotin-
amide adenine dinucleotide) and the abundance of QH2

(Murphy, 2009). A reducing pool of quinone has been pro-
posed to drive reverse electron transfer via complex I re-
sulting in a burst of ROS during ischemia–reperfusion injury
(Chouchani et al, 2016; Kim et al, 2018; Niatsetskaya et al,
2012). In addition, complex II has been shown to be a sig-
nificant contributor to ROS both in the forward and reverse
directions of electron flow, with again high levels of QH2

helping drive reactions in the reverse direction (Quinlan
et al, 2012). Thus, enzymes that directly feed electrons into
the quinone pool also contribute to ROS production by
providing reducing equivalents that support reverse electron
transfer.

These enzymes include those shown in Figure 1 (e.g.,
ETFQO and proline dehydrogenase), and others such as a-
glycerophosphate dehydrogenase, dihydroorotate dehydro-
genase, and hydrogen sulfide CoQ oxidoreductase.

Oxidative and proteostatic stress of mitochondrial
enzymes

In considering the circumstance of proteostatic stress, it
seems that some proteins may be more susceptible to oxi-
dative modification than others. The different sensitivity can
be due to the nature of the enzyme reaction and the cofactors
and active site residues required to catalyze the reaction. A
well-known example is aconitase, which does not catalyze an
electron transfer reaction but contains an essential Fe-S
cluster (Humphries et al, 2006). The cluster functions as a
Lewis-acid in the rearrangement reaction of citrate to iso-
citrate. One of the Fe atoms in the cluster is reactive to hy-
drogen peroxide, the result of which is destruction of the Fe-S
cluster and loss of aconitase activity (Humphries et al, 2006).

Thus, measurement of aconitase activity is used as a
readout of oxidative stress levels. Another TCA cycle en-
zyme that is also sensitive to oxidative insults is succinate
dehydrogenase (complex II), which contains a flavin and an
Fe-S cluster and catalyzes the oxidation of succinate to fu-
marate (Wallace, 2005). Again, the Fe-S cluster is the target
of oxidative damage, which leads to loss of enzyme activity.

The respiratory chain of course contains a number of Fe-S
clusters in complex I, III, and IV. These complexes can also

FIG. 1. Metabolic pathways of the mitochondrion. The TCA cycle is shown with pyruvate, acetyl-CoA, and glutamate
feeding into the cycle. The roles of complexes I, II, III, IV, and V in mitochondrial energy production are highlighted.
Complexes I and II reduce ubiquinone (Q), which provides QH2 for the reduction of Cyt c by Complex III. The electron
transfer events in the IM are coupled with proton transport out of the matrix to ultimately drive ATP production by complex
V. Catabolism of fatty acids (and branched chain amino acids) and proline also leads to QH2 via the ETFQO and PRODH,
respectively. ACD, acyl-CoA dehydrogenase; ACON, aconitase; ATP, adenosine triphosphate; Cyt c, cytochrome c; ETF,
electron transfer flavoprotein; ETFQO, ETF ubiquinone oxidoreductase; GSALDH, l-glutamate-c-semialdehyde dehy-
drogenase; IM, inner mitochondrial membrane; KGDH, a-ketoglutarate dehydrogenase; PRODH, proline dehydrogenase;
PYCR, D1-pyrroline-5-carboxylate reductase; Q, ubiquinone; QH2, reduced ubiquinone; SDH, succinate dehydrogenase;
TCA, tricarboxylic acid.
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be damaged via loss of Fe-S clusters, but their reactivity
toward oxidative molecules is somewhat protected by their
location in membrane-bound proteins. Thus, these clusters
are not necessarily considered to be the ‘‘first hit’’ under
oxidative or proteostatic stress. By the time these complexes
are being hit with oxidative damage, the integrity of the
mitochondria is likely far gone and headed toward a path of
mitophagy.

In addition to the destruction of metal cofactors, oxidative
stress can lead to the modification of proteins that reduce the
overall stability of the protein. Oxidative damage in proteins
that is associated with aging and different pathologies can
occur through different types of mechanisms. Oxidative
carbonylation of protein occurs, namely, by direct oxidation
of amino acid side chains of Arg, Lys, Pro, His, and Thr, but
also can occur at the protein backbone (Mannaa and Hanisch,
2020). Oxidative carbonylation is a significant mechanism of
irreversible protein damage with the total amount of protein
carbonylation in a cell or tissue used as a marker of oxidative
damage (Mannaa and Hanisch, 2020). Indeed, it is well es-
tablished that the carbonyl content of proteins generally in-
creases with age in different species resulting in lower protein
stability in old age (de Graff et al, 2016).

Oxidative modifications of proteins occur randomly, but
proteins with a high surface charge may be destabilized more
easily (de Graff et al, 2016). In addition to carbonylation,
proteins can also be modified by lipid peroxidation products
(e.g., 4-hydroxyl-2-nonenal [HNE] and malondialdehyde)
and by glycoxidation resulting in advanced glycation end-
products (Hamon et al, 2020).

An interesting study of senescent cells identified enzymes
that were oxidized in energy metabolism relative to matching
young cells. In senescent fibroblasts, several mitochondrial
enzymes were identified (Ahmed et al, 2010), including
l-glutamate-c-semialdehyde dehydrogenase (GSALDH or
ALDH4A1), which is responsible for catalyzing the second
step in proline catabolism of the NAD+-dependent oxidation
of D1-pyrroline-5-carboxylate (P5C) to glutamate (Hamon
et al, 2020). Lack of GSALDH causes accumulation of P5C
and proline, a condition known as type II hyperprolinemia.
P5C is a highly reactive metabolic intermediate prone to
damage proteins (Lerma-Ortiz et al, 2016). Thus, oxidative
damage of GSALDH would not only limit glutamate pro-
duction, but also potentially lead to increased levels of re-
active P5C contributing to a cascade effect of damage. Other
mitochondrial enzymes found to be modified in senescent
fibroblasts included malate dehydrogenase, a-ketoglutarate
dehydrogenase (KGDH), succinate dehydrogenase, and or-
nithine aminotransferase (Ahmed et al, 2010; Hamon et al,
2020).

Oxidative stress and disease

The importance of various pathways in energy metabolism
of course is dependent on the context of the cellular envi-
ronment and metabolic regulation. Some cells are content
with glycolytic survival under conditions of limiting oxygen,
whereas other cells are highly dependent on mitochondrion
oxidative metabolism and oxygen levels. In addition, the fuel
that is used to drive mitochondrial metabolism will be de-
pendent on the nutritional sources available to the cell. For
example, it is interesting to compare the metabolic prefer-

ences of skeletal muscle and the brain. The main fuel for
skeletal muscle is glucose, with robust anaerobic and aerobic
glycolytic metabolism. Under poor nutrient conditions,
muscle cells are able to mobilize amino acids via proteolysis
to help with energy demands. In the brain, demand for acetyl-
CoA by the TCA cycle is met by glucose and ketones.

In age-related neurodegenerative diseases such as Alz-
heimer’s disease, Parkinson’s disease, Huntington disease,
frontotemporal dementia, and amyotrophic lateral sclerosis,
it is thought that disruption of brain energy metabolism is a
key contributor to disease onset (Cunnane et al, 2020). Var-
ious redox proteomic studies have identified critical energy
metabolic enzymes to be susceptible to damage leading to
inactivation and destabilization. For example, mal-
ondialdehyde was shown to decrease the activities of PDH,
KGDH, and respiratory complex I and II, and complex V in
rat brain mitochondria (Long et al, 2009). PDH and KGDH
are also inactivated by HNE in rat heart mitochondria
(Humphries and Szweda, 1998; Humphries et al, 2006).
Another enzyme found to be modified by oxidative stress is
malate dehydrogenase.

In a large proteomic study of adult brain, a higher abun-
dance of mitochondrial enzymes, such as PDH complex
(PDHA1), aconitase (ACO2), nicotinamide nucleotide tran-
shydrogenase (NNT), several subunits of complex I, and a
subunit of complex III (UQCRFS1) (Wingo et al, 2019), were
associated with higher cognitive stability in older adult
brains. Thus, indicating that maintenance of energy metab-
olism is a key factor in protecting against the declining
function of the brain during aging. Another target of oxida-
tive inactivation in the brain is glutamine synthetase, which
leads to glutamate accumulation and potential neurotoxicity
(Oliver et al, 1990).

Proteostatic Mechanisms in Mitochondria

Outer mitochondrial membrane

Mechanisms that protect mitochondrial enzymes and
proteins are critical for maintaining mitochondrial integrity.
As indicated above, the vast majority of mitochondrial pro-
teins are encoded by the nuclear genome and produced in the
cytosol as precursor proteins that are subsequently imported
in the mitochondria. Virtually all mitochondria-destined
polypeptides are imported in an unfolded state through the
protein translocase of the outer mitochondrial membrane
(TOM) complex in the outer mitochondrial membrane (OM);
a large fraction of proteins subsequently undergo transloca-
tion via the two translocases of the inner mitochondrial
membrane (TIM) complexes (Neupert and Herrmann, 2007;
Pfanner et al, 2019). To avoid undesired accumulation of
unfolded mitochondrial precursor proteins in the cytosol, the
synthesis and import thereof are tightly coordinated (Bykov
et al, 2020).

In many cases, mitochondrial precursor proteins are syn-
thesized by cytosolic ribosomes that are localized on the OM,
thereby allowing for nearly simultaneous import of nascent
polypeptides in the mitochondria (Gold et al, 2017; Williams
et al, 2014). Furthermore, the synthesis of cytosolic and mi-
tochondrial proteins appears to occur in a concerted manner
(Couvillion et al, 2016), likely to facilitate stoichiometric
pairing of imported and mitochondria-borne polypeptides. In
addition to tightly coordinated synthesis and import, cytosol-
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borne mitochondrial precursor proteins are chaperoned by the
cytosolic molecular chaperones of the Hsp70- and Hsp90-
family to ensure their import-competent state (Bykov et al,
2020; Fan et al, 2006; Opalinski et al, 2018; Young et al,
2003; Zara et al, 2009).

Mitochondrial protein import, however, represents one of
the challenges to mitochondrial proteostasis, as translocation
stalling and accumulation of unimported polypeptide on the
mitochondrial surface—for example, due to reduced mito-
chondrial membrane potential required for vectorial transfer
of newly synthesized polypeptide through the protein trans-
location pore of the TOM complex. A result is depleted pools
of mitochondrial enzymes and transporters with short half-
lives (Bomba-Warczak et al, 2021), thereby impinging on the
organelle’s bioenergetic and metabolic capacity. In addition,
accumulated polypeptides can prematurely fold or misfold
and further impact the functional integrity of mitochondria
and other organelles in the cell (Liu et al, 2019). In extreme
cases, mitochondrial precursor accumulation can result in
proteostatic stress known as mitochondrial precursor over-
accumulation stress, mPOS, which can trigger an unfolded

protein response activated by mistargeting of proteins (UP-
Ram) subsequently leading to cellular damage, and—in most
extreme cases—death (Wang and Chen, 2015; Wrobel et al,
2015).

To avoid such unfavorable scenarios, a series of molecular
machines cooperate with the UPS machinery to facilitate
proteolytic turnover of the OM-associated precursor proteins
(Fig. 2). In addition to ubiquitylation and UPS-mediated re-
moval of proteins en route to mitochondria, a more special-
ized conserved mechanism, termed mitochondria-associated
degradation (MAD; also known as OMMAD), is in place to
ensure proteostasis at the OM. MAD comprises AAA+ AT-
Pase Cdc48/p97/VCP and its substrate adapters such as
dominant optic atrophy mitofusins (Doa) 1/PLAA—the
components shared with other UPS-interceded degradation
pathways such as ERAD. These two factors act in concert to
facilitate the removal of stalled polypeptides by UPS (Heo
et al, 2010; Wu et al, 2016; Xu et al, 2011).

Interestingly, the results of a recent study by Liao et al
(2020) suggest that MAD could extend beyond the OM and
may also be responsible for the degradation of oxidatively

FIG. 2. Quality control factors external to mitochondria. A cartoon summarizing ubiquitin–proteasome system-
mediated quality control events at the OM, known as MAD. General steps include protein ubiquitylation and binding of a
complex containing VCP/p97/Cdc48 AAA-ATPase and its adaptor protein PLAA/Doa1 to mitochondrial substate (1),
followed by protein extraction (2), substrate deubiquitylation by DUBs (3), and degradation by the proteasome. Insets show
specific subtypes of MAD that thus far have been mainly characterized in yeast but are likely to be conserved in eukaryotes.
These degradation scenarios include direct ubiquitylation of OM-associated substrates, followed by Cdc48-assisted deg-
radation (upper left inset); extraction of substrates crossing the OM import pore (TOM complex) with the help of bridging
factors such as Ubx2 (upper right inset) or Cis1 and OM-anchored AAA-ATPase Msp1 (lower left inset); or specific
modification and protection/degradation of nascent mitochondria-destined polypeptides translated on mitochondria-
associated ribosomes in the vicinity of the TOM machinery, via the components of ribosomal quality control pathway:
protein Rqc2, peptidyl-tRNA hydrolase Vms1, and E3 ubiquitin ligase Ltn1 (lower middle and right insets). See Outer
Mitochondrial Membrane section for additional details. AAA, ATPases associated with diverse cellular activities; Doa,
dominant optic atrophy mitofusins; DUBs, deubiquitylases; MAD, mitochondria-associated degradation; OM, outer mi-
tochondrial membrane; TOM, translocase of the outer mitochondrial membrane.
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damaged mitochondrial intermembrane space (IMS) and
matrix proteins. In addition, variations of MAD include the
ribosomal quality control of mitochondrial polypeptides
(mitoRQC) (Izawa et al, 2017; Verma et al, 2013; Zurita
Rendon et al, 2018), and p97-mediated extraction of poly-
peptides halted within the TOM translocase, a process re-
ferred to as TAD (Martensson et al, 2019). In addition to p97,
the mitoRQC mechanism involves peptidyl-tRNA hydrolase
Vms1/ANKZF1 and E3 ubiquitin ligases Rkr1/LTN1 and
Rqc2/NEMF. These factors interact with the OM-associated
cytosolic ribosomes to facilitate import and expulsion of the
stalled nascent polypeptides (Izawa et al, 2017; Zurita Re-
ndon et al, 2018).

The mitoRQC pathway appears to work on polypeptides
that are imported into the mitochondria in a cotranslational
manner. Stalling of these polypeptides results in so-called
CAT-tailing—the Rqc2-mediated attachment of alanyl/
threonyl sequences on the C-termini of stalled polypeptides
on 60S ribosomes; such modification promotes aggregation
of said polypeptides rendering them inaccessible to UPS
(Shen et al, 2015). To counteract this process, Vms1 is re-
cruited to the 60S ribosome to displace Rqc2 and curtail
CAT-tailing, thereby either stimulating their translocation
into mitochondria or allowing for Rkr1-mediated ubiquity-
lation and p97-mediated disaggregation of the stalled poly-
peptides and their subsequent removal by UPS (Izawa et al,
2017; Verma et al, 2013; Zurita Rendon et al, 2018).

Finally, another AAA+ ATPase, Msp1/ATAD1, has been
shown to represent yet another facet of MAD (Matsumoto
et al, 2019). Distributed in the OM as well as on peroxisomes,
Msp1 functions as an ATP-fueled extraction factor facilitating
degradation of mistargeted polypeptides such as tail-anchored
proteins, thereby ensuring their proper subcellular localiza-
tion (Chen et al, 2014; Matsumoto et al, 2019; Okreglak and
Walter, 2014). In addition, Msp1 has been postulated to par-
ticipate in the clearance mechanism for mitochondrial pre-
cursor proteins with bipartite targeting sequences to prevent
their overaccumulation on the OM (Weidberg and Amon,
2018). Such a mechanism termed mitoCPR (for the mito-
chondrial compromised protein response) includes a protein
Cis1, whose expression is increased in response to precursor
overaccumulation at the translocation pore; Cis1 then binds to
accumulated precursor polypeptides and helps to recruit Msp1
for their retrotranslocation, and the subsequent removal by
UPS (Weidberg and Amon, 2018).

At present, however, it is unclear if such a mechanism is
fully conserved as no Cis1 orthologs have been identified
outside of fungi. Several other IMS-localized proteins have
been reported to be retrotranslocated to the cytosol via the
TOM40 import pore (Bragoszewski et al, 2015); however,
whether this process involves Msp1 and/or Cis1 has not been
investigated. Going forward, it will be interesting to deter-
mine if and how these various MAD-related mechanisms act
in concert to mediate the OM proteostasis, and to examine
their conservation in higher eukaryotes.

Inner mitochondrial compartments

Mitochondrial proteins are not uniformly distributed across
the organelle’s compartments. The IM and mitochondrial
matrix harbor the majority of the mitochondrial proteome,
with the IM being among the most protein-rich compartments

in a cell. Such a metastable proteome creates a challenging
environment with a high probability of protein misfolding,
malfunction, and aggregation. Failure to insert, fold, assem-
ble, or rearrange protein complexes in these mitochondrial
compartments—which happen to be the site of many vital
mitochondrial activities—is associated with altered proteos-
tasis, increased oxidative damage, ion dyshomeostasis, and
bioenergetic deficit. Naturally, such homeostatic challenges
necessitate a tight control of protein quality in mitochondria.
Although some reports on ubiquitylation of mitochondrial
proteins exist (Lavie et al, 2018; Liao et al, 2020; Sulkshane
et al, 2020), it is generally believed that once within the or-
ganelle, mitochondrial proteins become largely inaccessible to
UPS. Therefore, another molecular surveillance mechanism is
required to ensure the quality of mitochondrial proteins within
the organelle. Indeed, mitochondria are equipped with a variety
of conserved molecular chaperones and proteases that mediate
folding, degradation, or controlled proteolysis of mitochondrial
polypeptides (Bohovych et al, 2015a; Deshwal et al, 2020)
(Fig. 3). This diverse group of quality control factors en-
compasses more than 40 different enzymes, with nearly half of
these being bona fide proteolytic enzymes (Bohovych et al,
2015a; Deshwal et al, 2020; Quiros et al, 2015). Table 1 pro-
vides a list of known mitochondrial proteases.

While the function and role of some of these enzymes are
only beginning to emerge, others have been relatively well-
characterized. Mitochondrial proteases can be broadly di-
vided into ATP-dependent and ATP-independent enzymes.
For example, several conserved protein quality control
modules survey and correct the IM and matrix subproteomes,
including ATP-fueled enzymatic complexes: the i-AAA (for
the intermembrane space-facing AAA+ protease), the
m-AAA (for the matrix-facing AAA+ protease), Lon pepti-
dase 1 (LONP1), and chaperone subcomplex attachment
(CLPXP) (Deshwal et al, 2020; Glynn, 2017; Quiros et al,
2015; Steele and Glynn, 2019). Additional key factors in-
clude ATP-independent proteases OMA1 and PARL (Desh-
wal et al, 2020; Levytskyy et al, 2017).

Growing evidence indicates functional versatility and
well-orchestrated actions of these proteolytic machineries
that appear to be functionally interconnected and function
beyond simple quality control (Alavi, 2021; Deshwal et al,
2020; Levytskyy et al, 2017). Such an integration and partial
functional redundancy of these factors likely exist to ensure
the flexibility and resilience of mitochondrial protein quality
control mechanisms.

The matrix-residing LONP and CLPXP are serine prote-
ases equipped with the protein unfolding/translocating
AAA+ module—which is either integrated with the same
polypeptide (LONP1) or present as a CLPXP. LONP1, a
homo-hexameric complex, in which the protease units are
organized into a trimer of dimers (Shin et al, 2021; Shin et al,
2020), has been shown to act as a versatile regulator of mi-
tochondrial proteostasis (Venkatesh et al, 2012). For exam-
ple, mammalian LONP1 plays a role in mitochondrial
genome maintenance and expression, achieved through se-
lective degradation of the mitochondrial DNA (mtDNA)-
associated factor TFAM (Lu et al, 2013; Matsushima et al,
2010), and proteolytic processing of mitochondrial gene
expression-related factors SLIRP, MTERFD3, and FASTKD2
(Bota and Davies, 2016; Lagouge et al, 2015; Zurita Rendon
and Shoubridge, 2018).
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FIG. 3. Mitochondrial quality control proteases. Schematic depiction of key intrinsic mitochondrial quality control
proteases in the IM and the matrix compartments. Some of the factors are not depicted for simplicity. IMS, mitochondrial
intermembrane space.

Table 1. Intrinsic Human Mitochondrial Proteases

Protease
Yeast

ortholog Category Class
Mitochondrial

localization Function

CLPP — ATP-dependent Serine Matrix PQC, mitochondrial biogenesis
LONP1 Pim1 ATP-dependent Serine Matrix PQC, mitochondrial biogenesis
SPG7 (m-AAA) Yta10 ATP-dependent Metallo IM/Matrix PQC, mitochondrial biogenesis
AFG3L2 (m-AAA) Yta12 ATP-dependent Metallo IM/Matrix PQC, mitochondrial biogenesis
YME1L (i-AAA) Yme1 ATP-dependent Metallo IM/IMS PQC, mitochondrial biogenesis
PARL Pcp1 ATP-independent processing Serine IM Mitochondrial biogenesis,

mitophagy, apoptosis
OMA1 Oma1 ATP-independent processing Metallo IM/IMS PQC, mitochondrial biogenesis,

dynamics, mitophagy, apoptosis
ATP23 Atp23 ATP-independent processing Metallo IMS PQC, mitochondrial biogenesis
IMMP1L Imp1 ATP-independent processing Serine IM/IMS Mitochondrial biogenesis
IMMP2L Imp2 ATP-independent processing Serine IM/IMS Mitochondrial biogenesis
PMPCB Mas1 ATP-independent processing Metallo Matrix Mitochondrial biogenesis,

protein import
METAP1D Map1 ATP-independent processing Metallo Matrix Mitochondrial biogenesis,

protein import/activation
OSGEPL1 Qri7 ATP-independent processing Metallo Matrix Mitochondrial biogenesis
XPNPEP3 Icp55 ATP-independent processing Metallo Matrix Mitochondrial biogenesis,

protein import/activation
MIP Oct1 ATP-independent processing Metallo Matrix Mitochondrial biogenesis,

protein import/activation
MEP Prd1 ATP-independent

oligopeptidase
Metallo IMS PQC

PITRIM1 Mop112 ATP-independent
oligopeptidase

Metallo Matrix PQC

HTRA2 — ATP-independent Serine IMS PQC, mitophagy, apoptosis
LACTB — ATP-independent Serine IMS Mitochondrial biogenesis
USP30 Ubp16 ATP-independent Cysteine OM Mitochondrial dynamics,

mitophagy

ATP, adenosine triphosphate; i-AAA, intermembrane space-facing AAA+ protease; IM, inner mitochondrial membrane; IMS,
mitochondrial intermembrane space; LONP1 Lon peptidase 1; m-AAA, matrix-facing AAA+ protease; Metallo, metallopeptidase; OM,
outer mitochondrial membrane; PQC, protein quality control.
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In addition, this protease is known to regulate mitochon-
drial bioenergetics and metabolism through proteolytic re-
moval of normoxic form of the COX4 subunit of the
respiratory complex IV under low oxygen conditions, thereby
mediating hypoxic retuning of mitochondrial ETC, and by
degrading oxidatively damaged TCA cycle enzyme aconi-
tase, respectively (Bota and Davies, 2002; Fukuda et al, 2007;
Sepuri et al, 2017).

The highly conserved proteolytic complex CLPXP com-
prised the 14 copies of serine caseinolytic protease CLPP
assembled into a double-ringed barrel-like structure capped
at each end by an AAA-ATPase chaperone CLPX (Gatso-
giannis et al, 2019; Kang et al, 2005; Sauer et al, 2022). This
large, proteasome-like molecule resides in the mitochondrial
matrix. This enzymatic complex is responsible for degrading
various excess proteins, including ribosome-stalled transla-
tion polypeptides (Hofsetz et al, 2020; Szczepanowska and
Trifunovic, 2021). While the exact role of mitochondrial
CLPXP is not yet fully understood, recent studies implicated
it as a critical regulator of protein homeostasis in the organ-
elle, especially complex I and complex II (Nguyen et al,
2022; Seo et al, 2016; Szczepanowska et al, 2020), under-
scoring its importance for mitochondrial metabolism.

Recent studies have also demonstrated the importance of
the CLPXP machinery in mitochondrial protein synthesis
through its role in the proteolytic control of mitochondrial
ribosome assembly regulator ERAL1 (Szczepanowska et al,
2016). In addition, the nonproteolytic CLPX chaperone
moiety of CLPXP has been shown to facilitate mitochondrial
heme metabolism and erythropoiesis via activation of 5-
aminolevulinic acid synthase (ALAS), a key enzyme in heme
biosynthetic pathway catalyzing the condensation of glycine
and succinyl CoA to form 5-aminolevulinic acid (Kardon
et al, 2020; Kardon et al, 2015).

The IM-anchored m-AAA and i-AAA proteases are para-
logous zinc metalloproteases equipped with an integrated
AAA+ module facing the mitochondrial matrix and the IMS,
respectively (Deshwal et al, 2020; Leonhard et al, 1996;
Levytskyy et al, 2017). Both m-AAA and i-AAA proteases
combine unfoldase/protein extraction function with subse-
quent proteolytic processing, although in certain instances,
these enzymes have also been shown to act as bona fide
molecular chaperones (Arlt et al, 1996; Leonhard et al, 1999;
Schreiner et al, 2012). In mammalian mitochondria, m-AAA
protease—a conserved hexameric complex exists either as a
homo-hexamer composed of six identical AFG3L2 subunits
or a hetero-hexametric complex encompassing several copies
of AFG3L2 and its paralogous subunit SPG7/paraplegin
(Atorino et al, 2003; Koppen et al, 2007; Puchades et al,
2019).

Of note, the latter molecular architecture appears to be
exclusive for the yeast m-AAA, in which the enzyme com-
prised the Yta10 and Yta12 subunits—the orthologs of SPG7
and AFG3L2, respectively (Arlt et al, 1996; Leonhard et al,
1996). In human mitochondria, the SPG7 does not appear to
form homo-oligomeric assemblies, most likely because its
maturation is dependent on the proteolytic activity of
AFG3L2 (Koppen et al, 2009). Interestingly, murine mito-
chondria contain yet another variant of the m-AAA complex
harboring a close paralog of AFG3L2, Afg3L1, that morphed
into a pseudogene in humans (Koppen et al, 2007; Krem-
midiotis et al, 2001). The m-AAA protease is a multifaceted

enzyme responsible for proteolytic and chaperoning func-
tions pertinent to the maturation and quality control of
membrane and peripheral proteins on the matrix side of the
IM; these functions are critical to mitochondrial physiology
(Arlt et al, 1996; Glynn, 2017).

For example, in addition to its role in the degradation of
OXPHOS subunits, the m-AAA is crucial for mtDNA sta-
bility and protein synthesis through its role in the biogenesis
of the bL32m subunit of the mitochondrial ribosome (Bonn
et al, 2011; Nolden et al, 2005). Likewise, the enzyme plays a
major role in the maturation of the regulatory subunit EMRE
of the mitochondrial calcium uniporter complex—a key
regulator of mitochondrial calcium homeostasis, which is
also linked to the organelle’s metabolic activity via calcium-
dependent activity of PDH (Hurst et al, 2019; Konig et al,
2016; Patron et al, 2018). Not surprisingly, this function is
vital for the well-being and survival of postmitotic cells.

The i-AAA complex exists exclusively as a homo-
oligomer that comprised six copies of the Yme1/YME1L
protease (Puchades et al, 2017; Shi et al, 2016). The i-AAA is
believed to be the main factor mediating degradation of the
IMS-facing IM polypeptides such as OXPHOS subunits, and
other IMS-resident proteins (Baker et al, 2012; Schreiner
et al, 2012; Stiburek et al, 2012).

The i-AAA protease is implicated in a variety of critical
processes, including the regulation of the mitochondrial
network through controlled proteolysis of the membrane-
shaping GTPase OPA1, which is discussed later, and main-
tenance of IM proteins and lipids via the proteolytic turnover
of the IM translocase TIM23-related proteins TIMM17 and
ROMO1, and phosphatidic acid-shuttling protein Ups1/
PRELID (Anand et al, 2014; Consolato et al, 2018; Ehses
et al, 2009; MacVicar et al, 2019; Ohba et al, 2020; Potting
et al, 2013; Potting et al, 2010; Rainbolt et al, 2013; Richter
et al, 2019; Richter et al, 2015; Wai et al, 2015).

The ATP-independent proteases remain less characterized.
The best-studied enzymes in this diverse group are the
rhomboid protease Pcp1/PARL, and metallopeptidase Oma1.
PARL is a serine intramembrane protease with its serine-
histidine catalytic dyad site buried within the IM (Ha, 2009;
Quiros et al, 2015). The substrate repertoire of PARL remains
somewhat elusive, although several of its substrates have
been identified. These include serine protease HTRA2 (Chao
et al, 2008), lipid transport-related protein Stard7 (Yang et al,
2017), apoptotic factor SMAC/Diablo (Saita et al, 2017),
and—perhaps most notably—the serine/threonine ubiquitin
kinase PINK1 (Deas et al, 2011; Jin et al, 2010), and serine/
threonine phosphatase PGAM5 (Sekine et al, 2012; Wai et al,
2016).

Of note, PARL is also a remarkable example of an evo-
lutionarily divergence, in which the enzyme’s function in
higher eukaryotes is shifted away from processing of the IM
GTPase Mgm1 (yeast ortholog of OPA1); instead, this pro-
cess is mediated through a well-tuned action of the YME1L
and OMA1 proteases (Anand et al, 2014; MacVicar and
Langer, 2016; Wang et al, 2021).

OMA1 is an ATP-independent zinc metallopeptidase,
originally identified as a backup protease for the m-AAA
proteolytic complex (Kaser et al, 2003). However, subse-
quent studies on the yeast and mammalian enzyme estab-
lished OMA1 as a key stress-activated protease in the IMM
(Bohovych et al, 2016; Bohovych et al, 2014; Jiang et al,
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2014; MacVicar and Langer, 2016; Rainbolt et al, 2016;
Richter et al, 2015). Oma1 exists as a homo-oligomeric
complex and is largely dormant under normal physiological
conditions. However, the enzyme becomes rapidly activated
when mitochondrial homeostasis is challenged; such a per-
turbation can be caused by a variety of homeostatic insults
(Baker et al, 2014; Bohovych et al, 2014; Khalimonchuk
et al, 2012; Murata et al, 2020; Zhang et al, 2014). Stress
activation of Oma1 appears to involve conformational
changes within its oligomeric complex (Bohovych et al,
2014), but the exact mechanisms through which Oma1 senses
stress and is activated remain elusive.

Studies in mammalian mitochondria established that
OMA1 activation in mammalian cells is associated with au-
tocatalytic processing of the enzyme (Baker et al, 2014;
Rainbolt et al, 2015; Zhang et al, 2014), which has been
proposed to be a measure for the spatiotemporal control of
OMA1 activity (Baker et al, 2014); this, however, is not the
case for the yeast enzyme (Bohovych et al, 2014). In addition,
the mammalian OMA1 appears to act in concert with the
i-AAA protease, and the two enzymes were shown to exhibit
condition-dependent reciprocity in neuronal cells (Rainbolt
et al, 2016). Known substrates of Oma1 include mutant
variants of IM translocase Oxa1, phosphatidyl serine dec-
arboxylase Psd1 (Ogunbona et al, 2017), and cytochrome c
oxidase subunit Cox1 in yeast (Bohovych et al, 2014; Kha-
limonchuk et al, 2012).

In mammals, OMA1 is involved in the processing of a
different cohort of IMM proteins including respiratory
complex III assembly factor UQCC3 (Desmurs et al, 2015),
integrated stress response (ISR) activator DELE1 (Fessler
et al, 2020; Guo et al, 2020), and GTPase OPA1 (Anand et al,
2014; Ehses et al, 2009; Head et al, 2009), which is discussed
below. Recent studies shown that mammalian OMA1 can
also coordinate its activity with PARL, thereby contributing
to the proteolytic processing of PGAM5 phosphatase (Wai
et al, 2016), and a mutant variant of ubiquitin kinase PINK1
(Sekine et al, 2019).

Mechanisms of Mitochondrial Form and Shape

Several mitochondrial stress-mitigating mechanisms—
both at the molecular and organellar quality control levels—
are coupled to one another through the action of mitochondrial
proteases. Indeed, protein quality control enzymes have
emerged as important regulators of many mitochondrial pro-
cesses. In this study, we mainly focus on mitochondrial net-
work dynamics, one of the central and perhaps most understood
of such processes.

Mitochondrial network dynamics

Mitochondrial morphology and organization vary across
cell types, but one common theme appears to be their dy-
namic organization into tubular networks, which can be
further elongated through the process known as mitochon-
drial fusion or partitioned via the mechanism commonly re-
ferred to as mitochondrial division (also known as fission)
(Giacomello et al, 2020; Labbe et al, 2014; Pernas and
Scorrano, 2016). These opposing effects are mediated by
conserved IM- and OM-associated dynamin-like GTP hy-
drolases (GTPases), with a membrane-tethering activity, that
function in concert. Of note, however, the fusion and fission

processes at the IM and OM are believed to be highly coor-
dinated but physically separate membrane remodeling events
(Malka et al, 2005), although this view has been recently
challenged (Kondadi et al, 2020a).

The molecular mechanisms behind mitochondrial fusion
and fission have been extensively studied for the past two and
a half decades (Labbe et al, 2014; Pernas and Scorrano, 2016)
and are beyond the scope of this review. Briefly, and relevant
to the present review, the main fusion factors for the OM are
mitofusins—the semiredundant mitofusin 1 (MFN1) and
mitofusin 2 (MFN2) in mammals (Chen et al, 2003; Giaco-
mello et al, 2020), and the single yeast ortholog thereof, Fzo1
(Westermann, 2010). Of note, the MFN2 has also been shown
to contribute to the formation of endoplasmic reticulum
(ER)-mitochondria contacts, although the protein’s exact role
in this process is debated (de Brito and Scorrano, 2008; Filadi
et al, 2017; Naon et al, 2017). The profusion activity of these
proteins is countered by the dynamin GTPase Dnm1/
dynamin-related protein 1 (DRP1) (Giacomello et al, 2020;
Labbe et al, 2014; Labrousse et al, 1999).

The OM-anchored mitofusins have their active domains
exposed to the cytosol and therefore are easily accessible to
the UPS, which can modulate these molecules in either a
degradative or nondegradative way (Dietz et al, 2019; Kraus
et al, 2021). For example, MFN1 and MFN2 are ubiquitylated
by the PINK1-dependent E3 ubiquitin ligase Parkin in de-
polarized mitochondria (Chen and Dorn, 2013; Gegg et al,
2010) to be unfolded and removed by the proteasome, thus
resulting in detachment of defective mitochondria from the
ER and their further segregation (McLelland et al, 2018). On
the contrary, MFN2 oligomerization has been shown to be
dependent on the GTPase’s ubiquitylation by another ubi-
quitin ligase, MARCH5 (also known as MITOL) (Nagashima
et al, 2014; Sugiura et al, 2013).

Of note, such a modification has been shown to promote
ubiquitylation of other OMM proteins such as VDAC and
Miro, thereby further facilitating the removal of depolarized
mitochondria via mitophagy (McLelland et al, 2018).

Unlike the mitofusins, DRP1 is not anchored in the OM, but
is recruited to the mitochondrial surface with the help of OM-
associated adapter proteins: mitochondrial fission factor MFF,
and MiD49 and MiD51 (Gandre-Babbe and van der Bliek,
2008; Loson et al, 2013; Palmer et al, 2011). In yeast, Dnm1
recruitment to the mitochondrial surface is mediated by the
adapter proteins Caf4 and Mdv1 (Griffin et al, 2005; Tieu et al,
2002). Another conserved factor, FIS1, has been postulated to
facilitate DRP1 association with the OM although its exact
role in mitochondrial fission remains to be clarified (Koirala
et al, 2013; Loson et al, 2013; Osellame et al, 2016; Yu et al,
2019). Post-translational modifications of these factors are
vast (Elgass et al, 2013; Kraus et al, 2021), and provide a
powerful regulatory handle to control mitochondrial fission.

Of relevance to the present review, ubiquitylation of DRP1
and FIS1 by MARCH5 has been shown to play a role in the
regulation of mitochondrial fission (Dietz et al, 2019;
Nagashima et al, 2014; Sugiura et al, 2013). In line with this
notion, loss of MARCH5 impairs mitochondrial dynamics,
leading to hyperfusion of mitochondrial network, which can
be mitigated by DRP1 overexpression (Karbowski et al,
2007; Park et al, 2010).

In the IM, the GTPase OPA1 (Mgm1 in yeast) is one of the
central elements in the regulation of mitochondrial fusion and
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fragmentation (Faelber et al, 2019; Yan et al, 2020). This
process has been extensively studied in mammalian cell
models. Under normal physiological conditions, OPA1 exists
as a roughly balanced mix of long, IMM-anchored form (L-
OPA1) and short, soluble variant (S-OPA1). The L-OPA1
variant can exist in several splice variants harboring specific
cleavage sites—a well-defined S1 and S2 (Dietz et al, 2019;
MacVicar and Langer, 2016) as well as recently described S3
site (Wang et al, 2021). Processing at the S2 and S3 sites
occurs under basal conditions and is mediated by the i-AAA
protease, resulting in acertain amount of S-OPA1 that is in
equilibrium with S2/S3-less L-OPA1 (Dietz et al, 2019;
MacVicar and Langer, 2016; Wang et al, 2021).

The OMA1 protease has emerged as a key controller of
mitochondrial morphology and metabolic activity via spe-
cific processing of L-OPA1 at the S1 site in response to
changes in metabolic demands or homeostatic insults (Ehses
et al, 2009; Head et al, 2009; MacVicar and Langer, 2016).
As all the L-OPA1 variants contain the S1 site, rapid pro-
teolytic conversion of this variant by OMA1 results in ac-
cumulation of S-OPA1, which promotes IM remodeling in
coordination with the OMM constriction, and subsequently,
fragmentation of the mitochondrial network—a critical event
required for multiple downstream mechanisms such as apo-
ptosis or mitophagy (Anand et al, 2014; Frezza et al, 2006;
Lee et al, 2017; Patten et al, 2014; Rambold et al, 2011;
Yamaguchi et al, 2008).

Consistently, preservation of the unprocessed OPA1 var-
iant through its overexpression or OMA1 depletion can sta-
bilize the mitochondrial network, maintain normal cristae
structure, and exert antiapoptotic effects (Acin-Perez et al,
2018; Anand et al, 2014; Quiros et al, 2012; Varanita et al,
2015).

Why do mitochondria fuse and divide? Elongation and
partitioning of the mitochondrial network are believed to be
important for the organellar and cellular physiology. Mi-
tochondrial fusion appears to be crucial for the organelle’s
metabolic activity, ATP synthesis, and mtDNA maintenance
(Chen et al, 2010; Elachouri et al, 2011). Furthermore, mi-
tochondrial network elongation is believed to have a pro-
tective effect and aid cells in coping with various homeostatic
challenges such as nutrient deprivation and hypoxia (Gomes
et al, 2011; Khacho et al, 2014; Rambold et al, 2011; Tondera
et al, 2009). Indeed, extensive mitochondrial elongation re-
sponse—termed stress-induced mitochondrial hyperfusion
(SIMH)—has been observed under the aforementioned con-
ditions, although the physiological relevance of this response
is not entirely clear and warrants additional investigations.

One model posits that extended mitochondrial networks
formed during starvation-induced SIMH may be the way to
spare mitochondria from degradation via mitophagy, which
requires mitochondrial network fragmentation (Abeliovich
et al, 2013; Gomes et al, 2011; Kageyama et al, 2014; Mac-
Vicar and Lane, 2014; Mao et al, 2013; Rambold et al, 2011;
Tanaka et al, 2010). Of note—in addition to the aforemen-
tioned fusion factors—SIMH is dependent on the IM-
anchored protein SLP2 that appears to function as a platform
to organize the YME1L and PARL proteases within the inner
membrane (Tondera et al, 2009; Wai et al, 2016), further
linking function of the mitochondrial proteases to the regula-
tion of mitochondrial dynamics and mitophagy. It is important
to note, however, that the significance of mitochondrial frag-

mentation as an absolute prerequisite for mitophagy remains
debated (Le Guerroue et al, 2017; Mendl et al, 2011; Yang and
Yang, 2013).

More detailed reviews on this account can be found else-
where (see e.g., a recent review by Ng et al, 2021). In addition
to being important for mitophagy, mitochondrial fragmen-
tation is required for mtDNA inheritance (Hanekamp et al,
2002) and regulation of cell death ( Jenner et al, 2022; Jiang
et al, 2014; Prudent et al, 2015; Varanita et al, 2015; Ya-
maguchi et al, 2008). Indeed, inhibition of mitochondrial
fragmentation—for example, via overexpression of L-OPA1
or OMA1 depletion—precludes BAX-mediated release of
cytochrome c, effectively blocking early steps of apoptosis
(Acin-Perez et al, 2018; Jiang et al, 2014; Viana et al, 2021;
Wai et al, 2015).

Another piecemeal mitophagy-resembling, but presum-
ably distinct cytoprotective mechanism is mitochondria-
derived vesicles (MDVs). It involves formation of small (up
to 100 nm in diameter) single- or double-membrane-bound
vesicles encompassing the OM or both the OM and IM and
containing various mitochondrial proteins as cargo (Konig
et al, 2021; Neuspiel et al, 2008; Sugiura et al, 2014). MDVs
were shown to harbor oxidized mitochondrial proteins and
are selectively delivered to various subcellular locales such
as multivesicular bodies and lysosomes (Konig et al, 2021;
Soubannier et al, 2012). They are formed under both basal
and oxidative stress conditions and their formation appears to
be stimulated in the latter case (Cadete et al, 2016; Neuspiel
et al, 2008).

Interestingly, MDV formation occurs independently of
DRP1 and core autophagy components such as ATG5; how-
ever, at least in some cases, appears to require mitophagy-
related factors PINK1 and Parkin (McLelland et al, 2014;
Neuspiel et al, 2008; Ryan et al, 2020).

A similar phenomenon has been described recently in yeast,
in which larger, MDV-like structures termed mitochondria-
derived compartments (MDCs) are formed in aged or nutrient-
stressed cells, or cells with depolarized mitochondria (Hughes
et al, 2016; Schuler et al, 2021). Currently, there is no com-
plete agreement as to whether MDCs and MDVs are analogous
or distinct structures. However, the fact that formation of
MDCs requires Dnm1, Gem1, and core autophagy proteins
such as Atg5 (English et al, 2020; Hughes et al, 2016) supports
the latter notion. Similarly, it is presently unknown whether
and how mitochondrial quality control mechanisms and fac-
tors could influence MDV- and MDC-mediated processes.
However, considering that some of the key proteins behind
MDV and MDC formation are known to be directly or indi-
rectly influenced by mitochondrial contact site factors, it is
tempting to speculate that such regulation and/or functional
cross talk between said mechanisms could indeed exist.

Mitochondrial architecture

Ultrastructurally, the IM comprises two dynamic domains:
the inner boundary membrane (IBM) and the extended and
folded IM invaginations, called cristae (Cogliati et al, 2016;
Klecker and Westermann, 2021; Kondadi et al, 2020b). The
cristae membranes are specifically enriched in respiratory
chain supercomplexes (RCS) and are important for RCS sta-
bility and retention of cytochrome c pools, thus influencing
mitochondrial bioenergetics and susceptibility to apoptosis
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(Cogliati et al, 2016; Cogliati et al, 2013; Varanita et al, 2015;
Wolf et al, 2019). The IBM is physically connected to the OM
through the mitochondrial contact site and cristae organizing
system (MICOS) machinery (Fig. 4). MICOS is a large evo-
lutionarily conserved complex that resides on the cusp of the
IBM and cristae IM domains. It establishes IM-OM contacts
between said membranes and contributes to the stabilization
of cristae junctions (Van der Laan et al, 2016).

In mammalian mitochondria, additional factors important
for the IM ultrastructure include F1FO-ATP synthase (Daum
et al, 2013; Davies et al, 2012; Quintana-Cabrera et al, 2018)
and OPA1 (Glytsou et al, 2016; Lee et al, 2017). Moreover,
the OPA1 and MICOS oligomers are in physical contact and
were proposed to reciprocally regulate cristae shape in a
semicooperative manner (Barrera et al, 2016; Darshi et al,
2011; Glytsou et al, 2016; Lee et al, 2017).

Studies in yeast and mammalian cells established that
MICOS and OM-IM contact sites are pivotal for mitochon-
drial architecture, lipid transport, and IM homeostasis
(Schorr and van der Laan, 2018; Van der Laan et al, 2016).
Consistent with the critical roles of MICOS machinery in
mitochondrial and cell physiology, a number of neuromus-
cular disorders associated with defects in MICOS or its in-
teracting partners have been reported in recent years
(Khosravi and Harner, 2020).

While it is clear that OM-IM contacts are highly dynamic
structures, little is known about the regulation thereof and
factors involved in this process. Proteolytic processing of
OPA1 by the i-AAA and OMA1 proteases discussed above is
most likely to be one such mechanism. However, the role of
OMA1 in MICOS regulation appears to extend beyond

L-OPA1 processing as recent studies reported that OMA1 is
associated with the MICOS machinery and may modulate its
stability independently of OPA1 (Tang et al, 2020; Viana
et al, 2021). The OMA1-MICOS-mediated intermembrane
connectivity appears to be important for reorganization and/
or stabilization of respiratory complexes, and consequently,
bioenergetic plasticity in response to various physiological or
stress stimuli (Viana et al, 2021).

In line with this notion, Oma1-deficient MEFs exhibit
destabilized respiratory supercomplexes and are bioenerge-
tically compromised under conditions that demand maximal
respiratory output (Bohovych et al, 2015b; Korwitz et al,
2016; Quiros et al, 2012). A similar physiological effect has
been reported in yeast (Bohovych et al, 2016), underscoring
the conserved nature of OMA1-MICOS association.

Similarly, the OMA1-MICOS-mediated intermembrane
connectivity is important for regulation of cell death. Earlier
studies have established that preservation of L-OPA1 oligo-
mers through L-OPA1 overexpression or OMA1 depletion
has an antiapoptotic effect, likely due to the preservation of
tight cristae junctions and the consequent hindrance of cy-
tochrome c release from the intercristae space (Frezza et al,
2006; Jiang et al, 2014; Korwitz et al, 2016; Quiros et al,
2012; Varanita et al, 2015; Wai et al, 2015; Yamaguchi et al,
2008). In addition, disruption of the OMA1-MICOS func-
tional axis was shown to promote the formation of OM-
disconnected but ‘‘locked’’ cristae able to encapsulate and
retain the majority of available cytochrome c pools, thereby
leading to an apoptotic resistance (Viana et al, 2021). While
we have some understanding of these critical events, the
molecular details thereof remain to be clarified.

FIG. 4. Factors mediating mitochondrial architecture. A diagram summarizing factors involved in the shaping of
mitochondrial cristae and intermembrane contacts between the inner and OMs. Cristae harbor respiratory chain complexes
(Complex I, II, III, and IV) along with the F1Fo-ATPase (Complex V), which plays a role in shaping these membrane structures,
whereas the MICOS machinery supports cristae formation at the so-called inner boundary membrane sites, and mediates contacts
between the inner and OMs. The inset provides a more detailed look at the MICOS machinery and its key components. See
Mitochondrial Architecture section for additional details. MICOS, mitochondrial contact site and cristae organizing system.
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Mitochondrial Retrograde Signaling Responses

Accumulation of aberrant mitochondrial proteins and their
aggregation can be a major threat to organellar and cellular
homeostasis. To prevent such scenarios, perturbations to
mitochondrial homeostasis can initiate several retrograde
signaling responses to regulate the expression of certain
mitochondrial proteases and protein chaperones. Detailed
reviews on this account can be found elsewhere (Higuchi-
Sanabria et al, 2018; Ng et al, 2021). Briefly, these target
proteins include the i-AAA, and m-AAA proteases described
above, and the matrix-localized AAA+ protease LON. Ad-
ditional targets include a suite of specialized molecular
chaperones/disaggregases that act in concert to counter pro-
teostatic challenges within the organelle (Fig. 5). These en-
zymes can power protein disaggregation, extraction of
proteins from the lipid bilayer, and protein refolding/re-
activation in various mitochondrial subcompartments (Bo-
hovych et al, 2015a; Ng et al, 2021).

In higher eukaryotes, the abundance of the aforementioned
factors is regulated through several retrograde signaling
mechanisms, most notably the mitochondrial unfolded pro-
tein response (UPRmt). Originally described in mammalian
cells and extensively characterized in the roundworm Cae-
norhabditis elegans model, the UPRmt pathway comprises
two main molecular facets—one involving generation of
signaling peptides through proteolytic processing of unas-
sembled or misfolded polypeptides by the CLPXP protease
and their subsequent export via the HAF-1 peptide trans-
porter (Haynes et al, 2010; Haynes et al, 2007). Another
likely more prominent facet of UPRmt includes bZip tran-
scription factor ATFS-1 equipped with both a mitochondrial

targeting sequence and a nuclear localization signal (Nar-
gund et al, 2012). Under basal conditions, ATFS-1 is targeted
to mitochondria and inactivated through degradation by the
Lon protease. However, upon homeostatic insults, the import
of ATFS-1 is impeded, which permits its localization to the
nucleus; this process also requires the Ub-like protein 5
(UBL-5).

Another transcriptional factor working in concert with
ATFS-1 is DVE-1/SATB2. UPRmt-associated chromatin re-
modeling allows for binding of nuclear-localized ATFS-1 and
DVE-1 to targeted sequences (Haynes et al, 2007; Shao et al,
2020). This promotes the expression of some 400 gene en-
coding proteins involved in mitochondrial proteostasis, me-
tabolism, and innate immunity (Nargund et al, 2015; Pellegrino
et al, 2014). Of note, challenging a paradigm that UPRmt is a
transcriptional response specific to higher eukaryotes, a
UPRmt-like response—the so-called early UPRmt—has been
recently reported in yeast (Poveda-Huertes et al, 2020). The
early UPRmt is triggered by aggergating unprocessed precur-
sor proteins and involves relocalization of transcription factor
Rox1 to mitochondria, in which it binds to mtDNA to preserve
mitochondrial genome expression and promote cell survival
(Poveda-Huertes et al, 2020).

The role of UPRmt in mitochondrial proteostasis in
mammalian cells is less understood. Evidently, it is more
complex and stochastic, and appears to be part of a multi-
faceted cellular response mechanism known as ISR (Ander-
son and Haynes, 2020; Costa-Mattioli and Walter, 2020).
This complex signaling cascade requires sequential activa-
tion of the c-Jun N-terminal kinase, a component of AP-1
transcription factor c-Jun, and the transcriptional factor C/
EBP homologous protein transcription factor (CHOP)

FIG. 5. Mitochondria-to-nucleus communication. A schematic depicting a minimal model of mitochondrial dysho-
meostasis and relevant retrograde signaling responses in mitochondria with perturbed proteostasis. CHOP, C/EBP homol-
ogous protein transcription factor; ETC, electron transport chain; ISR, integrated stress response; mROS, mitochondria-borne
reactive oxygen species; UPRmt, mitochondrial unfolded protein response.
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(Aldridge et al, 2007; Anderson and Haynes, 2020; Horibe
and Hoogenraad, 2007). Ultimately, ISR drives significant
changes in cellular transcriptome and attenuates cytosolic
translation (Klann et al, 2020; Quiros et al, 2017).

Concomitantly it promotes the expression of a gene set
including the canonical UPRmt genes encoding mitochon-
drial proteostasis-related factors. A recent quantitative pro-
teomic profiling of mitochondrial protein uptake in cells
under the ISR-inducing mitochondrial stress conditions de-
termined that protein uptake is drastically modulated by
concerted action of the import and translation machineries to
accommodate such changes (Schafer et al, 2022).

Metabolic Output and Mitochondrial Sculpturing
in Neurological Disease

Incidence of neurological disease significantly increases
with age, and since aging is accompanied by proteostatic
stress and diminished metabolic function, therapies that
protect the proteasome system and mitochondrial function
are highly sought. For example, a significant decline in NAD+

is observed with aging and is now a major focus of thera-
peutic approaches for mitochondrial health in age-related
diseases (Pirinen et al, 2020; Rajman et al, 2018). Supple-
ments containing NAD+ precursors such as nicotinamide ri-
boside are available with the intention of helping maintain
cellular energy metabolism and function by boosting NAD+

levels in the aging population (Rajman et al, 2018). Below we
highlight advances in understanding and treating pathologi-
cal mechanisms of mitochondrial decline in glaucoma, which
is a neurodegenerative disease of high global importance and
is predicted to impact *112 million people worldwide by
2040 (Tham et al, 2014).

Metabolic decline in glaucoma

Pathologies of the optic nerve such as glaucoma are age-
related disorders that share hallmarks of brain neurodegen-
erative diseases. Similar to the brain, the retina has a high
demand for oxygen and generates ATP via oxidative phos-
phorylation (Casson et al, 2021). In addition, a neurovascular
structure forms a blood–retinal barrier and supplies blood to
the optic nerve and retina. Retinal ganglion cells (RGCs) are
neurons with a three-part structure that comprised a soma,
dendrites, and axons from which the optic nerve is formed
(Casson et al, 2021). Glaucoma is associated with dysfunc-
tional RGCs with the primary pathology found in the axons at
the optic nerve head (Ito and Di Polo, 2017).

Metabolism is not the same across the three structural re-
gions of RGCs as nutrient conditions and energy needs can
fluctuate (Casson et al, 2021). Glucose, pyruvate, and lactate
have been shown to be substrates for energy metabolism in
RGCs (Casson et al, 2021). Glycolysis and oxidative phos-
phorylation are critical to meet the energy demands in RGCs,
with a higher rate of oxidative phosphorylation occurring in
dendrites and axons as indicated by increased oxygen con-
sumption and mitochondrial content (Casson et al, 2021).

Primary open-angle glaucoma (POAG) is the most com-
mon form of glaucoma and is associated with elevated in-
traocular pressure (IOP). Increased IOP that occurs with
aging is a significant risk factor for glaucoma that eventually
damages RGCs (Ito and Di Polo, 2017). Mechanisms by
which RGCs are impaired are complex and involve a multi-

tude of factors such as oxidative stress, ischemia–hypoxia,
glutamate excitotoxicity, inflammation, protein accumula-
tion, and diminished mitochondrial function (Ito and Di Polo,
2017; Leruez et al, 2018; Weinreb and Khaw, 2004). Defi-
ciencies in mitochondrial metabolism and mitochondrial
quality control are associated with Leber’s hereditary optic
neuropathy (LHON) and autosomal dominant optic atrophy
(ADOA), respectively.

The importance of mitochondrial metabolism in RGCs is
evident in LHON (Brown et al, 2002; Ito and Di Polo, 2017).
LHON is caused by maternal inheritance of missense muta-
tions in mitochondria DNA that result in partial deficiency of
complex I function (Brown et al, 2002; Ito and Di Polo,
2017). The disease is characterized by RGC dysfunction and
optic nerve atrophy with symptoms of blurred vision by ad-
olescence or early adulthood, and eventual blindness (Brown
et al, 2002).

In POAG, evidence for lower complex I-dependent ATP
synthesis has been reported (Lee et al, 2012; Van Bergen
et al, 2015). In patients with clinical POAG (average age of
80 – 7 years), decreased complex I activity and mitochondrial
ATP synthesis were observed in patient lymphocytes relative
to age-matched controls (Van Bergen et al, 2015). A mito-
chondrial genome sequencing study of POAG patients found
that one-third of the patients had mtDNA mutations in
complex I (Sundaresan et al, 2015). These studies provide
evidence that complex I dysfunction contributes to the pa-
thology of glaucoma paralleling what is found frequently in
neuromuscular disorders (Sundaresan et al, 2015). The pre-
dominant role of mitochondrial dysfunction in glaucoma is
the basis for discovery of mtDNA biomarkers of POAG
disease (Singh et al, 2018).

Deficits in mitochondrial energy metabolism have also
been evidenced by finding lower NAD+ levels in RGCs of
aging mice (Williams et al, 2017). The ability of nicotin-
amide (vitamin B3) supplementation to protect against
glaucoma in mice further suggests that available NAD+ is
severely lacking in RGCs (Williams et al, 2017). In glaucoma
rodent models of RGC degeneration, nicotinamide was also
shown to increase oxidative phosphorylation (Tribble et al,
2021). A recent phase 2 clinical trial examining nicotinamide
and pyruvate supplementation was observed to improve vi-
sion in patients consistent with lower NAD+ limiting energy
metabolism in RGCs (De Moraes et al, 2022). Metabolic
profiles of plasma from glaucoma patients have also uncov-
ered defective mitochondrial oxidative metabolism, and in-
terestingly, lower levels of spermidine and spermine, which
are known neuroprotective molecules (Leruez et al, 2018).

Administration of CoQ10 and vitamin E drops has shown
improved retinal function in a study of glaucoma patients
(Parisi et al, 2014). CoQ10 also delays apoptosis in RGCs
exposed to ocular pressure (Nebbioso et al, 2013; Nucci et al,
2007).

In an effort to gain new insights into the pathology of
glaucoma, an interesting large-scale proteomic study was
performed on the eye from glaucoma and nonglaucoma hu-
man postmortem samples. Thirty-two retinal proteins related
to mitochondrial function and oxidative phosphorylation
were identified in their data set, of which 24 were signifi-
cantly downregulated in the glaucoma group (Mirzaei et al,
2017). The proteins found to be lower in abundance are part
of respiratory complexes I–IV and ATP synthase, indicating
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that glaucoma subjects had a lower capacity for mitochon-
drial energy metabolism in the retina. Glutathione-S-
transferases (GSTs) were also observed to be less abundant in
the retina of glaucoma patients suggesting that antioxidant
defense systems have a lower capacity as well. GSTs have a
critical role in helping eliminate reactive free radical species,
and electrophilic and xenobiotic compounds.

Disruption of GST and glutathione metabolism in general
would weaken cellular defenses against oxidative stress and
possibly contribute to the disease pathology of glaucoma.

Mitochondrial dynamics and proteostatic stress
in glaucoma

ADOA or Kjer’s optic neuropathy is caused by mutations
in the OPA1 (Optic Atrophy Gene 1) gene, the loss of which
impairs mitochondrial dynamics (Van Bergen et al, 2011). As
noted already, OPA1 has a critical role in regulating mito-
chondrial fusion and networks, and promotes oxidative
phosphorylation and ATP production. IOP induces oxidative
stress in RGCs and disrupts the mitochondrial dynamics of
fusion/fission leading to the eventual loss of mitochondrial
integrity and function. In mouse models of glaucoma, IOP
triggers mitochondrial fission via expression changes in
OPA1 and complex IV subunit 1 (cytochrome c oxidase
[COX]), and also causes the release of cytochrome c leading
to apoptosis ( Ju et al, 2008). A protective role for OPA1 was
demonstrated in mice by showing that overexpression of
OPA1 increased RGC survival ( Ju et al, 2010).

Thus, loss of functional OPA1 in ADOA significantly
impairs mitochondria function and energy metabolism in
RGCs (Ito and Di Polo, 2017).

Genetic evidence for mitochondrial fission and degrada-
tion contributing to glaucoma is from a mutation in the au-
tophagy adaptor protein optineurin (OPTN), which has roles
in regulating nuclear factor kappa B (NF-jB) signaling and
autophagy (Rezaie et al, 2002). The OPTN variant E50K
found in normal-tension glaucoma patients was shown to
increase oxidative stress and mitochondrial fission when
overexpressed in RGCs. Consistent with these observations,
inhibition of DRP1, which drives mitochondrial fission, has
been shown to promote RGC survival in mouse models of
glaucoma (Kim et al, 2015). As a result, DRP1 has been
proposed to be a therapeutic target for protecting RGCs
against unwanted mitochondrial fission in optic neuropathies,
including glaucoma (Kim et al, 2015). Inefficient clearing of
damaged mitochondria is also thought to be an important
factor in RGC degeneration.

A recent study showed that RGCs rely on the en-
dolysosomal pathway rather than the proteasome pathway for
clearing damaged mitochondria and preventing apoptosis
(Das et al, 2020). Another study reported that knockout of the
uncoupling protein 2 (Ucp2) in the retina diminished RGC
death in a mouse glaucoma model by increasing mitophagy
and thereby enhancing overall mitochondrial quality control
(Hass and Barnstable, 2019).

Besides mitochondrial and metabolic issues, proteostatic
stress in general also contributes to disease progression in
glaucoma. Elevated levels of the heat shock protein 27 (Hsp27)
was observed in retinal sections from glaucoma patients rela-
tive to the age-matched control group (Tezel et al, 2000).
Cytidine-5¢-diphosphocholine (CDP-choline), also known as

citicoline, is known for its several neuroprotective properties,
which include enhancing 20S proteasome activity and sup-
porting protein homeostasis (Sbardella et al, 2020). Treatment
of glaucoma patients with citicoline has resulted in improved
retinal function and vision (Parisi et al, 2008), presumably by
diminishing proteostatic stress. Chemical chaperones such as
4-phenylbutyric acid (4-PBA) have been explored as potential
therapies for decreasing protein aggregation in retinal cells
(Athanasiou et al, 2013; Zode et al, 2015).

Conclusion

Mitochondrial dysfunction, metabolic decline, and protein
stress have been implicated in the etiology of multiple late-
onset diseases, including parkinsonism, various ataxias,
glaucoma, muscle function decline, and diabetes. Mechan-
isms of neuron and muscle cell death involve apoptosis, ne-
crosis, and autophagy with the importance of the various
forms depending on the pathophysiologic condition (e.g.,
aging, denervation, inflammation, and cancer) (Higuchi-
Sanabria et al, 2018). Although abnormal mitochondrial
function is well documented in the death of neurons and
muscle cells, it is not clear whether mitochondrial dysfunc-
tion precedes the accumulation of misfolded proteins, or if
unfolded protein stress leads to impaired mitochondrial
function. In addition, the inability of a cell to remove dam-
aged mitochondria accentuates oxidative stress conditions.

Therefore, the impact of oxidative stress in aging post-
mitotic cells is likely twofold: by disrupting mitochondrial
respiratory function and by impeding clearance of damaged
cell material by the unfolded protein response (UPR) and
autophagy. Interestingly, mitochondria and the ER have
distinct UPR mechanisms, suggesting that the ability to
handle proteotoxic stress is vital for the cell. Understanding
how redox homeostasis can be maintained to increase the
longevity of neuronal and muscle cells is a strategic area of
research that needs to continue, being high priority.

The type of mitochondrial dysfunction that occurs with age
and the degree to which it impacts protein clearance mech-
anisms, however, vary greatly, resulting in wide ranging ef-
fects on cellular fidelity. A problem in the field is the lack of a
system-wide understanding of how communication between
mitochondria and the proteostasis network breaks down
during aging and in age-related diseases. The mitochondria
and the proteostasis network involve multiple dynamic pro-
cesses and pathways that adapt to environmental stress and
change over time. Current knowledge is mainly from ap-
proaches that artificially impair mitochondrial function
leading to acute and quite severe consequences that are not
necessarily relevant to a neurological disease. In addition,
because of the complexity of the proteostasis network, con-
clusions from studies are often limited to select pathways.
Thus, new approaches for exploring the entirety of the pro-
teostatis network need to be developed.

Understanding the role of mitochondrial dysfunction in
postmitotic cells during disease progression and other age-
related problems is of central importance. Besides oxidative
phosphorylation and energy metabolism, mitochondria can
provide multiple benefits to other organelles and serve as a
communication hub for preserving cellular health during
aging. Therapeutic advances for glaucoma that target mito-
chondrial include a recent phase 2 clinical trial that involves
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supplementing with nicotinamide and pyruvate. Results thus
far show promising improvement of vision in patients (De
Moraes et al, 2022) and provide motivation to continue these
trials.
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Abbreviations Used

AAA¼ATPases associated with diverse cellular
activities

ACD¼ acyl-CoA dehydrogenase
ACON¼ aconitase
ADOA¼ autosomal dominant optic atrophy

ATP¼ adenosine triphosphate
CHOP¼C/EBP homologous protein transcription factor

CLPXP¼ chaperone subcomplex attachment
CoQ¼ coenzyme Q
COX¼ cytochrome c oxidase
Cyt c¼ cytochrome c

Doa¼ dominant optic atrophy mitofusins
DRP1¼ dynamin-related protein 1
DUBs¼ deubiquitylases

ER¼ endoplasmic reticulum
ETC¼ electron transport chain
ETF¼ electron transfer flavoprotein

ETFQO¼ETF ubiquinone oxidoreductase
GSALDH¼ l-glutamate-c-semialdehyde

dehydrogenase
GST¼ glutathione-S-transferase
HNE¼ 4-hydroxyl-2-nonenal

i-AAA¼ intermembrane space-facing AAA+ protease
IBM¼ inner boundary membrane

IM¼ inner mitochondrial membrane
IMS¼mitochondrial intermembrane space
IOP¼ intraocular pressure
ISR¼ integrated stress response

KGDH¼ a-ketoglutarate dehydrogenase
LHON¼Leber’s hereditary optic neuropathy

LONP1¼Lon peptidase 1
L-OPA1¼ long, IMM-anchored form of OPA1
m-AAA¼matrix-facing AAA+ protease

MAD¼mitochondria-associated degradation
MDCs¼mitochondria-derived compartments
MDVs¼mitochondria-derived vesicles

Metallo¼metallopeptidase
MFN1¼mitofusin 1
MFN2¼ itofusin 2

MICOS¼mitochondrial contact site and cristae
organizing system

mitoRQC¼ ribosomal quality control of mitochondrial
polypeptides

mROS¼mitochondria-borne reactive oxygen
species

mtDNA¼mitochondrial DNA
NAD+¼ nicotinamide adenine dinucleotide

NADH¼ reduced nicotinamide adenine
dinucleotide

OM¼ outer mitochondrial membrane
OPA1¼ optic atrophy gene 1
OPTN¼ optineurin

P5C¼D1-pyrroline-5-carboxylate
PDH¼ pyruvate dehydrogenase

POAG¼ primary open-angle glaucoma
PQC¼ protein quality control
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Abbreviations Used (Cont.)

PRODH¼ proline dehydrogenase
PYCR¼D1-pyrroline-5-carboxylate reductase

Q¼ ubiquinone
QH2¼ reduced ubiquinone
RCS¼ respiratory chain supercomplexes
RGC¼ retinal ganglion cell
ROS¼ reactive oxygen species
SDH¼ succinate dehydrogenase

SIMH¼ stress-induced mitochondrial hyperfusion

S-OPA1¼ short, soluble variant of OPA1
TCA¼ tricarboxylic acid
TIM¼ translocase of the inner mitochondrial

membrane
TOM¼ translocase of the outer mitochondrial

membrane
UPR¼ unfolded protein response

UPRmt¼mitochondrial unfolded protein
response

UPS¼ ubiquitin–proteasomal system
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