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Abstract
Motivation: Advances in omics technologies have revolutionized cancer research by producing massive datasets. Common approaches to
deciphering these complex data are by embedding algorithms of molecular interaction networks. These algorithms find a low-dimensional space
in which similarities between the network nodes are best preserved. Currently available embedding approaches mine the gene embeddings di-
rectly to uncover new cancer-related knowledge. However, these gene-centric approaches produce incomplete knowledge, since they do not ac-
count for the functional implications of genomic alterations. We propose a new, function-centric perspective and approach, to complement the
knowledge obtained from omic data.

Results: We introduce our Functional Mapping Matrix (FMM) to explore the functional organization of different tissue-specific and species-
specific embedding spaces generated by a Non-negative Matrix Tri-Factorization algorithm. Also, we use our FMM to define the optimal
dimensionality of these molecular interaction network embedding spaces. For this optimal dimensionality, we compare the FMMs of the most
prevalent cancers in human to FMMs of their corresponding control tissues. We find that cancer alters the positions in the embedding space of
cancer-related functions, while it keeps the positions of the noncancer-related ones. We exploit this spacial ‘movement’ to predict novel cancer-
related functions. Finally, we predict novel cancer-related genes that the currently available methods for gene-centric analyses cannot identify;
we validate these predictions by literature curation and retrospective analyses of patient survival data.

Availability and implementation: Data and source code can be accessed at https://github.com/gaiac/FMM.

1 Introduction
1.1 Network embeddings in cancer research

Cancer is a major public health problem and one of the lead-
ing causes of death in the world (Sung et al. 2021). Despite
exceptional research efforts, our knowledge about this disease
remains incomplete. Meanwhile, the increasing availability of
omic biomedical data has yielded an unprecedented opportu-
nity to understand the fundamental mechanisms of cancer.
These data are often represented as networks in which nodes
are molecular entities, and edges define their relationships,
e.g. in protein–protein interaction networks, edges indicate
physical interactions between proteins, as measured by bio-
logical experiments. To interpret these high-dimensional data,
various network-based approaches have been developed
(Lotfi Shahreza et al. 2018). In particular, network embed-
ding techniques are considered to be one of the best
approaches to decipher these complex biomedical data
(Nelson et al. 2019).

Network embedding techniques aim to find a low-
dimensional space in which the node closeness in the original
network is preserved in the embedding space (Nelson et al.
2019). Defining an optimal number of dimensions of the

embedding space is key to properly representing the closeness
between the nodes in the space. However, there is no gold-
standard approach to find the optimal dimensionality of the
embedding space. Thus, researchers have to rely on grid
search, domain knowledge, or heuristics (Luo et al. 2021),
e.g. the cophenetic correlation coefficient (Brunet et al. 2004)
and rule of thumb (Kodinariya and Makwana 2013).

In cancer research, different network embedding algorithms
have been used to identify cancer-related genes (Chen et al.
2019), to subtype cancers (Xu et al. 2021), to stratify patients
(Gligorijevi�c et al. 2016) and to repurpose drugs (Ceddia
et al. 2020). These algorithms include Nature Language
Processing-inspired methods, e.g. DeepWalk (Perozzi et al.
2014), and node2vec (Grover and Leskovec 2016), and ma-
trix factorization-based approaches. In particular, Non-
negative Matrix Tri-Factorization (NMTF) is an extension of
Non-negative Matrix Factorization (NMF) and a well-known
machine learning (ML) technique introduced for coclustering
and dimensionality reduction (Ding et al. 2006). Unlike
NMF, which factorizes the matrix representation of a net-
work into two low-dimensional non-negative matrices,
NMTF generates the embedding space by decomposing it into
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the product of three non-negative matrices, providing more
degrees of freedom in the data modeling and analysis than
NMF does (Ding et al. 2006). One of the advantages of
NMTF over deep neural network-based ML approaches is
that it requires way fewer parameters to tune, thanks to the
careful modeling of the relationships between the data points
that it takes as input. As shown by Xenos et al. (2021), the
molecular network embedding space produced by NMTF can
have valuable properties, e.g. orthonormality, that may lead
to an easier interpretation and deeper scientific insight
(Isokääntä et al. 2020).

1.2 Problem

Current approaches for mining embedded biological net-
works use the genes’ embedding vectors as input to machine
learning algorithms to perform downstream tasks. These
gene-centric approaches have demonstrated their potential in
identifying new gene mutations in cancer cells involved in the
initiation and progression of the disease (Jin et al. 2019).
However, they offer incomplete analyses of cancer data, since
they do not take as input the functional implications of such
genomic variations. Thus, changing the gene-centric paradigm
to a functional-based one could be key to revealing additional
functional information about cancer.

1.3 Contributions

To improve our understanding of cancer, we generate cancer
and control (healthy) gene embedding spaces by applying the
NMTF algorithm to the corresponding tissue-specific pro-
tein–protein interaction (PPI) networks (detailed below).
Then, to explore these gene embedding spaces from a func-
tional perspective, we propose to embed biological functions,
represented by Gene Ontology Biological Processes annota-
tions (Bateman et al. 2019), into these gene embedding spaces.
Finally, we capture the functional organization of a given
gene embedding space with our new Functional Mapping
Matrix (FMM), which encodes the mutual positions of the bi-
ological function embedding vectors in the space. First, we
use our FMM-based method to identify the optimal dimen-
sionality of cancer and control gene embedding spaces. Then,
we apply the FMM to explore the functional changes in the
most prevalent cancers (breast, prostate, lung, and colorectal)
compared with their corresponding control tissues. We find
that the changes in the distances between the embedding vec-
tors of biological functions in cancer compared with the con-
trol embedding space are related to cancer. Indeed, we
observe that cancer changes the distances between embedding
vectors of cancer-related biological functions, while it pre-
serves the positions of other biological functions. We exploit
this observation to predict novel cancer-related functions, e.g.
alternative translational mechanisms, or the response to un-
folded protein accumulation. Moreover, we find a set of eight
annotations that are altered in all four cancer types. These
annotations describe important cellular functions that may be
commonly altered in different cancers, e.g. stress-activated
MAPK cascade. Also, we demonstrate that our approach is
not only restricted to functionally-based analyses of cancer
but also can be used to mine for new genomic knowledge
from the embedding space. For instance, we use it to identify
novel cancer-related genes, i.e. PRDM11, C9orf72,
MINDY3, and H4C6, that could have an important role in
the studied cancer types. Finally, our method is generic and
can easily be applied to any network data with annotated

nodes and any embedding space. The application of our
FMM goes beyond cancer and can be used to offer a novel
perspective on other important open questions in many
domains, e.g. finding the optimal dimensionality of an embed-
ding space. Our methodology can be used as a base for devel-
oping new data mining algorithms to complement the classic
data embedding approaches.

2 Materials and methods
2.1 Biological datasets
2.1.1 Tissue-specific networks

We analyze cancer and control tissue-specific PPI networks
that we generate by using the same methodology as Malod-
Dognin et al. (2019). To this end, we collect the experimen-
tally validated PPIs of Homo sapiens (human) from BioGRID
v.4.2.191 (Oughtred et al. 2019). We model this human PPI
data as a PPI network, in which nodes represent genes (or
equivalently in this study, their protein products) and edges
connect the nodes (genes) whose corresponding proteins
physically bind. We use this generic human PPI network to
generate our tissue-specific PPI networks. Following Malod-
Dognin et al. (2019), we collect the tissue-specific gene expres-
sion data for breast, prostate, lung, and colorectal cancer
tissues, as well as their corresponding control tissues of ori-
gins (breast glandular cells, prostate glandular cells, lung
pneumocytes, and colorectal glandular cells, respectively)
from the Human Protein Atlas (HPA) database v.20.0 (Pontén
et al. 2008). For each tissue, we only consider the genes whose
expression value is available in the HPA and that have at least
one PPI in the generic human PPI network. We generate our
eight tissue-specific PPI networks, in which nodes are genes that
are expressed in the corresponding tissue, and two nodes are
connected by an edge if they interact in the generic human PPI
network. The network statistics of the tissue-specific networks
are presented in Supplementary Table S2. In Supplementary
Section S2, we also consider species-specific PPI networks whose
data collection is described in Supplementary Section S2.1.1.

2.1.2 Network representation

We represent the tissue-specific PPI networks with their posi-
tive point-wise mutual information (PPMI) matrices, X, where
each entry in the matrix contains information about how fre-
quently two nodes co-occur in a random walk in the corre-
sponding PPI network. Following Xenos et al. (2021), we use
the DeepWalk closed formula by Perozzi et al. (2014) with its
default settings, which uses 10 iterations, to compute the
PPMI matrix. This formula can be interpreted as a diffusion
process that captures high-order proximities between the
nodes in the network; hence, PPMI is a richer representation
than the adjacency matrix (Xenos et al. 2021). As a result of
the extra information encoded in the PPMI, its corresponding
embedding spaces better capture the functional organization
of the cell than the ones generated by using the adjacency ma-
trix (the details of this comparison are presented in
Supplementary Section S1.2.1).

2.1.3 Biological annotations

We use the Gene Ontology Biological Process (GO BP) anno-
tations of genes’ biological functions in a cell (Bateman et al.
2019). We collected the experimentally validated GO BP
annotations of genes from NCBI’s web server (collected on 28
September 2021).
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2.2 Definition of cancer-related biological

annotations

Computational cancer research is usually based on computa-
tionally processing information about genes and not their
annotations. Although a standard definition of a cancer driver
(oncogene) exists (Lee and Muller 2010), there does not exist
a standard definition of a cancer-related GO BP term.
Oncogenes are a functionally heterogeneous group of genes
whose products regulate multiple cellular processes (Pappou
and Ahuja 2010). Despite this heterogeneity, oncogenes also
participate in common molecular mechanisms that are known
to be cancer-related, e.g. cell proliferation (Vicente-Due~nas
et al. 2013). Thus, we propose to consider as cancer-related
the most representative biological functions in which the
oncogenes participate (detailed below).

We download the set of all 725 genes considered to be
oncogenes in COSMIC (Forbes et al. 2017) (collected on 01
December 2021). We find the most representative biological
functions of these oncogenes by performing an enrichment
analysis of our oncogenes set in GO BP functions (based on
the hypergeometric test; Rice 2006). A GO BP annotation is
considered to be significantly enriched in our set of onco-
genes, compared with all other genes, if its enrichment P-value
is �5% after correction for multiple hypothesis testing
(Brown 2008). We find 104 significantly enriched GO BP
annotations in our set of oncogenes: these are our ‘cancer-re-
lated annotations’. To validate our set of cancer-related anno-
tations, we calculate the Lin’s semantic similarity (Lin 1998)
between our set of cancer-related functions and the set of 135
‘cancer hallmark’ annotations defined by Chen et al. (2021).
With an average Lin’s semantic similarity between the sets of
0.67, (see Supplementary Fig. S1) we conclude that the two
sets are highly functionally related, i.e. our set of cancer-
related annotations is related to the cancer hallmarks.

2.3 Embedding the protein–protein interaction

networks

To embed genes according to the PPMI matrix representation
of a molecular network, X, we use NMTF to decompose X as
the product of three non-negative factors, X � P � S �GT ,
where the set of the rows of the matrix P � S defines the set of
embedding vectors of the genes, E, and the set of the columns
of G defines the basis, B, of the space in which the genes are
embedded (Hu et al. 2019) (Fig. 1a illustrates the NMTF fac-
torization on two different PPMI matrices, cancer, and con-
trol). Importantly, we apply the orthonormality constraint to
the basis-defining matrix (GTG ¼ I), since it leads to minimal
colinearities (hence, minimizing the dependencies) between
the vectors of the basis, B, of the embedding space (Strang
2006). The decomposition is done by minimizing the
function:

minP;S;G�0jjX � PSGT jj2F;GTG ¼ I;

where F denotes the Frobenius norm. This optimization prob-
lem is NP-hard (Ding et al. 2006); thus, we heuristically solve
it by using a fixed point method that starts from an initial so-
lution and iteratively uses multiplicative update rules (Ding
et al. 2006). Such rules guarantee convergence toward a lo-
cally optimal solution that verifies the Karush-Kuhn-Tucker
conditions (Ding et al. 2006) (detailed in Supplementary
Section S1.1.2). To generate initial P, S, and G matrices,

we use the Singular Value Decomposition based strategy
(Qiao 2015). This strategy makes the solver deterministic and
also reduces the number of iterations that are needed to
achieve convergence (Qiao 2015). To measure the quality of
the factorization, we compute the relative square error (RSE)
between the input matrix, X, and its corresponding decompo-

sition, PSGT, as RSE ¼ jjX�PSGT jj2F
X2

F

. We stop the iterative solver

when the value of the RSE is not decreasing anymore, or after
500 iterations.

2.4 Definition of the Functional Mapping Matrix

To explore the functional organization of the gene embedding
space, obtained as detailed above, we introduce the FMM.
This matrix captures the mutual positions of the functional
annotations that we embed in the gene embedding space. In
particular, we obtain an FMM by taking as input: the matrix
factor, G, which contains the basis, B, of the gene embedding
space, and the relation-matrix between the genes and their
functional annotations, A, in which entry A½ai; gj� is one if an-
notation ai annotates gene gj, and it is zero otherwise. First,
we generate the embedding vectors of the functional annota-
tions in the gene embedding space by decomposing the matrix
A as the product of two matrix factors, U and GT, as:
A � UGT , where rows of matrix U (that we call ui) are the
embedding vectors of the annotations, ai, in the gene embed-
ding space defined by the basis, B (illustrated in Fig. 1 for two
embedding spaces, cancer, and control). Note that, since ma-
trix A is known and matrix factor G is computed as explained
in Section 2.3, we can obtain U by: U � ðGTÞ�1A, where
ðGTÞ�1 is the Moore-Penrose pseudoinverse of GT (Barata
and Hussein 2012). Finally, the FMM is obtained by comput-
ing the pairwise cosine distances between all pairs of the em-
bedding vectors ui of the annotations ai (the bottom panel of
Fig. 1a illustrates two examples of FMMs). In particular, each
entry FMM½i; j� ¼ cosðui;ujÞ corresponds to the cosine dis-
tance between the embedding vectors ui and uj of the annota-
tions ai and aj. Thus, the resulting FMM is a symmetric
distance matrix that captures the mutual positions, that
henceforth we call ‘distances’, between the annotation vectors
in the embedding space. We choose cosine distance over other
distance measures, e.g. the dot-product, since it is a well-
known normalized measure (Singhal et al. 2001), which per-
mits direct comparison between different FMMs, i.e. we do
not need any normalization step after computing the FMM.

2.5 Measuring the similarity of functional

organization of the embedding spaces by using

their Functional Mapping Matrices

For a pair of embedding spaces, we measure the similarity of
their functional organization by computing the RSE between
their FMMs. We use the following method to find the smallest
number of dimensions, that we call the ‘optimal dimensional-
ity’, after which the functional organization of the gene em-
bedding spaces, as measured by the RSE between the FMMs
with increasing numbers of dimensions, does not change any-
more. First, we produce the gene embedding space of each
cancer and control, tissue-specific PPI networks by using the
NMTF algorithm (detailed in Section 2.3) with different
dimensionalities (detailed in Supplementary Section S2.2.2).
Then, we obtain the embedding vectors of each of the GO BP
annotations in each of the cancer and the corresponding con-
trol gene embedding space and then capture the difference in
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the position of a GO BP annotation between cancer and con-
trol space, measured by our FMM (detailed in Section 2.4).
By tracking the RSEs of the FMMs across dimensions (from
50 to 300 dimensions with a step of 50), we find that the dis-
tances of the annotation embedding vectors converge to a sta-
ble, i.e. nonchanging functional organization, after 200
dimensions for all tissue-specific PPI network embedding
spaces (RSE between their FMMs plateaus, i.e. stops decreas-
ing, see Supplementary Fig. S2). In the analysis presented be-
low, we use the optimal dimension of the embedding space
that we obtained as described here (for all tissue-specific PPI
networks, their optimal dimensions are presented in
Supplementary Table S5). In addition, we use this method to
find the optimal dimensionality of six species-specific PPI net-
work embedding spaces (for human, baker’s yeast, fission
yeast, fruit fly, rat, and mouse), detailed in Supplementary
Section S2.2.2. We apply this method to explore the similarity
in the functional organization of these embedding spaces of
the PPI networks of six different species (see Supplementary
Section S2.2.1).

2.6 Evaluating the functional organization of an

embedding space with its Functional Mapping

Matrix

From a gene-centric perspective, an embedding space is con-
sidered to be functionally organized if genes that participate

in similar biological functions are located close in the space
(Gaudelet et al. 2021). This organization is commonly evalu-
ated by applying various types of clustering methods to the
embedding vectors of the genes in the space, followed by func-
tional enrichment analyses of the genes that the clustered vec-
tors correspond to (Malod-Dognin et al. 2019). Here, we
propose to examine the functional organization of the embed-
ding space from a function-centric perspective. Similar to the
gene-centric perspective, we consider an embedding space to
be functionally organized if semantically similar annotations,
i.e. annotations with high Lin’s semantic similarity are embed-
ded close in the space. To evaluate it, we apply our FMM to
capture the distances of all pairs of the embedding vectors of
the functional annotations in the embedding space (detailed in
Section 2.4).

Then, we analyze the link between the functional similarity
of the annotations, measured by their pairwiseLin’s semantic
similarity, and the distances of their embedding vectors in the
embedding space by performing two different experiments.
We compute the Pearson’s correlation coefficient (Benesty
et al. 2009) between the mutual positions of all pairs of anno-
tation vectors in the embedding space, i.e. the cosine distances
over all pairs of annotation embedding vectors, and the Lin’s
semantic similarities over all pairs of annotations. Hence, a
negative correlation coefficient indicates that those annota-
tions that are embedded close in the space (lower cosine

Figure 1. (a) Illustration of our new FMM-based method. For a pair of cancer and control tissues, we construct their tissue-specific PPI interaction

networks as explained in Section 2.1 (in green and blue for cancer and control, respectively). These networks, represented by their PPMI matrices, X and

X 0, are decomposed as the products of three factors: P, S, and GT for cancer, and P 0; S 0, and G0T for control, where the set of all rows of GT and G0T
defines the basis B and B0, respectively (illustrated in the second panel from the top). From these matrix factors, we use the bases matrix of the resulting

NMTF-based embedding spaces, GT and G0T , to generate the matrices U and U 0, whose ith row are the embedding vectors ui of annotation ai in the

cancer and control embedding spaces defined by the bases, B and B0, respectively (illustrated in the third panel from the top). We capture the distances

(cosine distances) between the embedding vectors of all pairs of annotations, in each cancer and control embedding space, by computing FMMs as

defined in Section 2.4 and illustrated at the ‘Pairwise Cosine distance’ line between the two panels at the bottom of the figure. Then, we subtract the

cancer and control FMM matrices, FMMControl—FMMCancer, to detect the changes in mutual positions of the embedding vectors ui of each annotation ai
between cancer and control embedding spaces. Finally, to have the score of ‘movement’ for ui (illustrated in Section 2.7), we apply the Euclidean norm to

the rows of the matrix identified as ‘Variation of the mutual positions of ui’ in the bottom panel of the figure. (b) Toy example of our new FMM-based

method: the first panel shows a toy example of cancer and control PPI networks. The second panel shows a 3D illustration of the embedding spaces of

the toy example of cancer and control networks generated by our NMTF framework. The third panel shows the embedding vectors of the biological

functions in the aforementioned cancer and control embedding spaces. Colors in the third panel represent the biological functions of the genes.
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distance) tend to be functionally similar (high Lin’s semantic
similarity). Also, we apply the k-medoid algorithm (Park and
Jun 2009) to cluster the annotations based on the distances of
their vectors in the embedding space, as captured by our
FMM. To define the number of clusters, we use the rule of
thumb (Kodinariya and Makwana 2013), k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðn=2Þ

p
, where

k corresponds to the number of clusters and n to the number
of annotations. Finally, we measure the intra and inter cluster
Lin’s semantic similarity for the obtained clusters to assess if
the annotations whose embedding vectors cluster in the em-
bedding space are similar in biological function.

2.7 Quantifying the ‘movement’ of the annotation

embedding vectors in cancer and control

embedding spaces

We propose to quantify the changes in the mutual positions
(distances), that we call ‘movement’, of the annotation embed-
ding vectors in two different gene embedding spaces defined
by bases, B and B0. In this study, we analyze the ‘movement’
of the annotation embedding vectors in cancer and control
embedding spaces. To this end, given the pairwise cosine dis-
tances of the annotations embedding vectors in the cancer and
control embedding spaces, FMMCancer and FMMControl, we
quantify the change in the distance between two embedding
vectors of annotations ui and uj as: FMMControl½i; j� �
FMMCancer½i; j�. This distance is negative if ui and uj are
farther in the cancer embedding space than in the control em-
bedding space, positive if they are closer, and zero if there is
no change between their positions in the embedding space of
cancer and control. By taking all the pairwise distances over
all i and j, FMMControl½i; j� � FMMCancer½i; j�, we define the dis-
tribution of pairwise ‘movements’ (see Supplementary Fig.
S3). We define that two annotation embedding vectors, ui and
uj, are ‘moving significantly apart’ in the embedding space of
cancer, if their distance is greater than or equal to the 95th

percentile of the aforementioned distribution. In contrast, we
define that they are ‘moving significantly closer’ in the embed-
ding space of cancer, if their distance is smaller than or equal
to the distance that corresponds to the 5th percentile of the
distribution.

To identify the annotations whose embedding vectors
change the most between the cancer and control embedding
spaces, first we calculate the distance between the embedding
vectors of each annotation ui in the control and the cancer
embedding spaces, that we call FMMControl½i� (which is the ith

row of matrix FMMControl) and FMMCancer½i� (which is the ith

row of matrix FMMCancer), respectively. So the coordinates of
vector FMMControl½i� contains the cosine distances of ui to all
other annotation embedding vectors in the control embedding
space. Then, for each annotation embedding vector, ui, we de-
fine the ‘movement vector’ as D½i� ¼FMMControl½i� �
FMMCancer½i�. Hence, the ‘movement vector’ contains the dif-
ferences of the mutual positions in cancer compared with con-
trol embedding space (cosine distances) between ui and all
other annotation embedding vectors. Next, we define the ‘to-
tal movement’ of annotation, ui, as the Euclidean norm of its
corresponding ‘movement vector’, D½i�. In this way, for each
annotation, ui, we define the score of its ‘total movement’ in
cancer over control, which is high when its distance to the
other annotations changes between the cancer and control
embedding spaces (that we call ‘shifted’) and it is close to zero
when it does not change (that we call ‘stable’). By considering
the ‘total movement’ of all annotations, we define the ‘total

movement distribution’ (see Supplementary Fig. S4). We con-
sider as ‘shifted biological functions’ those functional annota-
tions whose embedding vectors’ ‘total movement’ is two
standard deviations above the mean of the ‘total movement
distribution’. In contrast, we define as ‘stable biological func-
tions’ those functional annotations whose embedding vectors’
‘total movement’ is two standard deviations below the mean
of the ‘total movement’ distribution.

2.8 Distances between the embedded entities in the

embedding space

We use the cosine distance to determine the distance between
the embedding vectors of two entities (genes or functions in
this study) in the same gene embedding space defined by basis
B. We recall that in the embedding space defined by B, the
embedding vector of gene gi is the ith row of matrix P � S, and
that the embedding vector of annotation aj is the jth row of
matrix U (detailed in Section 2.4 and illustrated in Fig. 1b).
Before using the cosine distance, we confirm that the embed-
ding vectors of the biological functions (GO BP terms) are sig-
nificantly closer in space to the embedding vectors in the same
space of the genes that they annotate than to the embedding
vectors of other genes (Mann–Whitney U P-value �.05, see
Supplementary Table S12). This confirms that annotations
and genes are functionally organized in the embedding space.

3 Results and discussion

Inspired by Malod-Dognin et al. (2019) who, in a gene-
centric analysis, observed that cancer-related genes are the
most rewired between cancer and control embedding spaces
and used this property to predict novel cancer-related genes,
we use our FMM-based method to confirm that the embed-
ding spaces of both, cancer and control, are functionally orga-
nized and that this organization changes between cancer and
control (Section 3.1). Then, we find that the embedding vec-
tors of well-known cancer-related functions move the most
between cancer and control compared with embedding vec-
tors of other annotations (Section 3.1). We exploit this obser-
vation to predict new cancer-related functions, which we
validate by analysis of their enrichment in known cancer-
related functions (detailed below), automatic literature search,
and manual literature curation for the most promising predic-
tions (Section 3.2). Moreover, we go beyond and exploit the
‘movement’ of the annotation embedding vectors to predict
new cancer-related genes (Section 3.3), finding four new
cancer-related genes, which we validate by literature curation
and retrospective analyses of patient survival, but whose role
with cancer has yet to be experimentally validated.

3.1 Cancer alters the functional organization of the

healthy cell embedding space

Here, we focus on applying our FMM-based method to con-
firm that the embedding spaces of both, cancer and control,
are functionally organized (detailed in Section 2.6). To this
end, we generate the embedding spaces of the most prevalent
cancers (breast, prostate, lung, and colorectal cancer) and
their control tissues (breast glandular cells, prostate glandular
cells, lung pneumocytes, and colorectal glandular cells) by ap-
plying the NMTF algorithm on the corresponding tissue-
specific PPI networks (detailed in Sections 2.1 and 2.3). Then,
we use our FMM-based method to embed GO BP terms into
these gene embedding spaces and to capture their distances
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over the cancer and control embedding spaces (detailed in
Section 2.4). By analyzing the FMM of each embedding space,
we find that the annotation embedding vectors that cluster to-
gether based on their cosine distances in each space have, on
average, Lin’s semantic similarity 1.32 times larger than those
that do not cluster together in space (see column ‘Fold’ in
Table 1 for the corresponding results for each embedding).
Note that our FMM-based cluster analysis is needed, since
none of the standardly used techniques, including t-SNE,
UMAP, and MDS, gives good clustering results (see
Supplementary Figs. S5–S7). Hence, the GO BP terms corre-
sponding to the embedding vectors that cluster together in
space are more functionally related than those whose embed-
ding vectors do not cluster in space (see Table 1). Thus, both
cancer and control embedding spaces are functionally orga-
nized. We further confirm this conclusion by comparing these
results against a randomized experiment, i.e. when randomly
rewiring the PPI networks (detailed in Supplementary Section
S1.2.4). As expected, we find that annotations whose embed-
ding vectors are close in these randomized spaces are not
more functionally similar (as measured by the Lin’s semantic
similarity) than those whose embedding vectors are far in the
space, i.e. they are not functionally organized in the random-
ized space (see Table 1 and Supplementary Table S6).

Having confirmed that both embedding spaces, cancer, and
control, for all four cancers, are functionally organized, we in-
vestigate if this organization changes between them. To do so,
we assess if there are pairs of annotation embedding vectors
whose distances in the embedding space are significantly al-
tered in cancers (detailed in Section 2.7). For the four studied
cancers, we find an average of 72,326 (5% of the total num-
ber) of pairs that move significantly closer in the cancer space
compared with control (see Supplementary Fig. S8 for an il-
lustration of this variation). We find that this set of pairs (that
are closer) are 1.3 times closer in the cancer space than in the
control one. Similarly, we find the same percentage of pairs

that move significantly apart in the cancer embedding space
compared with control. Here, we find that this set of pairs
(that move apart) are 1.4 times farther in the cancer space in
comparison to the control one. In conclusion, these results
demonstrate that cancer alters the functional organization of
the healthy (control) cell.

We have shown above that cancer alters the functional or-
ganization of the control PPI network embedding space by
changing the distances of the annotation embedding vectors
in the space. Now, we investigate how this change is related
to cancer (and if it can be used to predict novel cancer-related
functions). We use our FMM-based methodology to identify
the annotation embedding vectors that change their distances
(that we call ‘movement’) between cancer and control embed-
ding spaces. Then, we compare the ‘movement’ of our set of
cancer-related functions and the rest of the annotations.
Interestingly, we observe that the embedding vectors of
cancer-related functions move the most between cancer and
control embedding spaces compared with those of other
annotations. Indeed, these annotation vectors move on aver-
age 2.4 times more than the rest of the annotation embedding
vectors in all four cancers (Mann–Whitney U test with
P-value <.05). This suggests that the ‘movement’ of the anno-
tation vectors is related to cancer, i.e. it could be exploited to
find new cancer-related functions (presented in the next
section).

3.2 The ‘movement’ of the annotations in the

embedding space predicts cancer-related functions

Here, we exploit the ‘movement’ of the annotations’ vectors
to predict novel cancer-related functions. Following the ap-
proach detailed in Section 2.7, we find two groups of annota-
tions based on their ‘movement’: ‘shifted’ and ‘stable’ group
of annotations (the numbers of GO BP annotations in the two
sets for each of the four cancers are presented in
Supplementary Table S7). For these sets of annotations, we
perform the hypergeometric test (with alpha¼ .05, Rice
2006) to assess if they have significantly more, or significantly
less cancer-related functions than the background set of genes
(the background set of genes contains all genes that are in the
corresponding tissue-specific PPI network). We observe that
for three out of four cancers, the ‘shifted’ annotations are sig-
nificantly enriched in cancer-related functions (P-value of .85,
.02, .02, and .04 for breast, colorectal, prostate, and lung, re-
spectively). In contrast, the ‘stable’ annotations are signifi-
cantly depleted in these functions (P-value of .49, .88, .80,
and .68, for breast, colorectal, prostate, and lung, respec-
tively), i.e. they have a significantly lower percentage of
cancer-related functions than the background (see Fig. 2).
This observation does not hold only for the ‘shifted’ annota-
tions of breast cancer (P-value of .85). This discrepancy can
be attributed to the type of cancer samples used in this analy-
sis and to our definition of cancer-related annotations. While
the TCGA’s samples of colorectal, lung, and prostate are
mostly from adenocarcinomas, over 99% of the TCGA’s sam-
ples of breast cancer are from neoplasms (see Supplementary
Table S1). Indeed, as detailed in Section 2.2, we use the
COSMIC oncogenes to define our cancer-related GO BP
terms. These oncogenes are mainly defined from adenocarci-
nomas samples; in particular, for breast cancer, only 8% of
the samples in COSMIC come from neoplasms, while in
TCGA, over 99% of the samples come from neoplasms. This
highlights the importance of improving the definition of

Table 1. The embedding spaces of the most prevalent cancers (breast,

prostate, lung, and colorectal cancer) and their control tissues (breast

glandular cells, prostate glandular cells, lung pneumocytes, and colorectal

glandular cells) are functionally organized.

Embedding Intra Inter Fold P-value

Control breast 0.22 0.17 1.29 2:12� 10�6

Cancer breast 0.23 0.16 1.43 2:68� 10�5

Control prostate 0.24 0.17 1.41 2:24� 10�6

Cancer prostate 0.21 0.15 1.40 1:04� 10�6

Control colon 0.19 0.16 1.18 4:04� 10�3

Cancer colon 0.21 0.16 1.31 1:68� 10�5

Control lung 0.19 0.17 1.11 2:17� 10�4

Cancer lung 0.22 0.15 1.46 5:32� 10�6

Random example 0.17 0.17 1.00 0.14

The first column, ‘Embedding’, lists the tissues. The second column, ‘Intra’,
shows the average Lin’s semantic similarity of those annotations whose
embedding vectors cluster together based on their cosine distances in the
embedding space. The third column, ‘Inter’, shows the average Lin’s
semantic similarity of those annotations whose embedding vectors do not
cluster together based on their cosine distances in the embedding space. The
fourth column, ‘Fold’, displays how many times the average Lin’s semantic
similarity of those annotations whose embedding vectors cluster together
based on their cosine distances in the embedding space is higher than of
those annotations whose embedding vectors do not cluster together. The
fifth column, ‘P-value’, shows the P-value from a one-sided Mann–Whitney
U test comparing the Lin’s semantic similarity between annotations whose
embedding vectors cluster together and those with non-clustered embedding
vectors. This table also includes an example of a randomly rewired PPI
network (Random Example). The complete information with all the random
tissue-specific PPI networks can be found in Supplementary Table 6.
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cancer-related functions to include different types of cancer of
the same organ.

Although the shifted set of annotations is significantly
enriched in our cancer-related annotations, we notice that
most of the annotations in this set are not cancer-related. In
particular, we find that only 2 (2%), 5 (12%), 5 (10%), and 6
(10%) of the annotations in the ‘shifted’ set are cancer-related
for breast, prostate, lung, and colorectal cancer, respectively
(see Supplementary Tables S8–11). Thus, to validate the
remaining unknown to be cancer-related annotations, we ex-
tend the systematic approach used in the study by Ceddia
et al. (2020) and conduct a systematic literature search in the
PubMed database (Geer et al. 2010). We automatically re-
trieve the number of scientific publications that associate each
GO BP term with a specific cancer type. To do so, we search
for co-occurrences between the GO BP term and the cancer
type in the abstracts of PubMed publications. We find that 33
(58%), 31 (65%), 29 (63%), and 36 (52%) of these annota-
tions have at least one publication demonstrating their role in
breast, lung, prostate, and colorectal cancer, respectively.
These high percentages of literature validation indicate that
the remaining annotations, which we could not validate in the
currently available literature, are candidates for novel cancer-
related functions.

Finally, we do manual literature curation for the most prom-
ising predictions identified above. In particular, we rank the
predictions by the magnitude of their ‘movement’ and we inves-
tigate the top 10 most ‘moved’ ones. We detect that, although
these functions are not reported in the literature to be directly
related to cancer, their link with cancer is clear: for instance,
we find ‘the positive regulation of activated T cell proliferation’
in breast cancer (see Supplementary Table S8). This is a well-
known regulation process in breast cancer development, and it
could be connected to the ‘cooperation’ of breast cancer cells
with the immune cells (Chang and Beatty 2020). Other exam-
ples include ‘cleavage furrow formation’ and ‘mitotic spindle
midzone assembly’ in prostate and colorectal cancers, respec-
tively (see Supplementary Tables S9 and 11). The failure of
these processes during cell division has been associated with
carcinogenesis (Sagona and Stenmark 2010; Ganem et al.
2007). Finally, we find ‘the positive regulation of endodeoxyri-
bonuclease activity’ in lung cancer. A deficiency in this process
is linked with most of the mutations and genomic alterations
that are relevant to cancer (Hoeijmakers 2009). An extended

discussion for the rest of the annotations in each cancer type
top 10 predictions can be found in Supplementary Section
S1.2.5. Finally, we also find eight common functions that are
‘shifted’ in all four cancers (detailed in Supplementary Section
S1.2.6). We observe that these functions describe general mech-
anisms of cancer, e.g. activation of the stress-activated MAPK
cascade, and are closely related to the cancer hallmarks
(Hanahan and Weinberg 2011). This suggests that our analysis
could be extended to more cancers to uncover new pan-cancer
functions.

3.3 The ‘movement’ of cancer-related annotations in

the embedding spaces predicts oncogenic genes

In this section, we investigate if the functions that are shifted
in cancer (compared with control) can be used to identify
novel cancer-related genes. To this aim, we first demonstrate
that the embedding space captures the functions of a given
gene by placing its embedding vector close (low cosine dis-
tance) to the embedding vectors of those GO BP terms that
describe the gene’s biological functions (detailed in Section
2.8). We hypothesize that the alteration in the cosine distance
between the gene embedding vector and the GO BP embed-
ding vector may indicate that the gene is losing a function (if
the distance increases), or that the gene is gaining a function
(if the distance decreases). Hence, we prioritize as cancer-
related those genes whose embedding vectors change their
distances to the vectorial representations of the ‘shifted’ func-
tions in the embedding space the most.

To evaluate this hypothesis, we first assess if ‘literature-vali-
dated’ genes (see the definition below) change significantly
more their distances to our ‘shifted’ functions than the back-
ground genes in the cancer space compared with control. To
this end, similar to the methods explained in Section 2.7, for
each gene, we compute a vector with n positions, where n cor-
responds to the number of the ‘shifted’ GO terms and in
which each entry corresponds to the ‘movement’ (change in
mutual positions) of the gene and the GO term. Since this
‘movement’ is bi-directional (getting closer or further), we use
the absolute value of the ‘movement’ at each coordinate of
this vector, to keep only the magnitude of this ‘movement’ in-
dependently of the direction of the ‘movement’. Then, since
all the values in the n-dimensional vector are now positive,
for each gene we assign as its cancer-related score the maxi-
mum value (maximum magnitude of movement) in its corre-
sponding vector. Hence, we define the maximum ‘movement
distribution’ of the gene embedding vectors as the set of all
aforementioned maximum values of ‘movement’. For each
cancer type, we consider as ‘literature-validated’ the genes
with at least one publication in PubMed indicating their role
in the corresponding cancer type. To do this evaluation, we
apply the same systematic approach as the one used to vali-
date the ‘shifted’ annotations in Section 3.2. In all four can-
cers, we find that ‘literature-validated’ genes ‘move’
significantly more toward or away (higher cancer-related
score) from our ‘shifted’ functions than the background genes
(we compare these two ‘movement’ distributions with Mann–
Whitney U test with P-value <.05). Thus, we use this prop-
erty to predict new cancer-related genes. We predict as
cancer-related those genes that are above or at the 95th per-
centile of the maximum ‘movement’ distribution (see
Supplementary Fig. S9). In this way, we predict as cancer-
related 346, 234, 325, and 379 genes in breast, lung, prostate,
and colorectal cancer, respectively, which we call ‘shifted

Figure 2. ‘Movement’ in the embedding space is related to cancer. The

panel contains the percentages of enriched cancer-related GO BP terms

out of all GO BP terms (vertical axis) in the ‘shifted’ annotations set (in

blue), ‘stable’ annotations set (in orange), and the expected by random (in

green), for each cancer type (on the horizontal axis).
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genes’. In the rest of this section, we validate these predicted
cancer-related genes in two ways: systematic literature cura-
tion and by retrospective analyses of patient survival curves
(detailed below).

We validate in the literature that 233 out of 346 (67%),
144 out of 234 (61%), 179 out of 325 (55%), and 187 out of
379 (49%) of our predictions are cancer-related in breast,
lung, prostate, and colorectal cancer, respectively. Indeed,
among our literature-validated predictions, we find well-
known cancer genes, i.e. BRAF in breast cancer (225 publica-
tions), CASP8 in lung cancer (123 publications), or MSH6 in
colorectal cancer (205 publications). Also, we assess if our
cancer gene predictions are prognostic markers of patient sur-
vival, which we measure with patient survival curves (we col-
lected the data from the HPA, Pontén et al. 2008). We find
that 16 (4.6%), 7 (2.9%), 4 (1.2%), and 17 (4.4%) of these
genes are registered in the HPA as breast, lung, prostate, and
colorectal cancer prognostic markers, respectively. Since these
survival curves are based on differential gene expression anal-
yses (Kim et al. 2020), we hypothesize that our method priori-
tizes genes that are not differentially expressed. Indeed, only
38 (11%), 85 (36%), 19 (6%), and 56 (15%) of our predicted
cancer-related genes are deferentially expressed in breast,
lung, prostate, and colorectal cancer tissues with respect to
their corresponding control tissues, respectively (using expres-
sion data from TCGA projects, as detailed in Supplementary
Table S1). These results align with Malod-Dognin et al.
(2019), who demonstrated that there exist important cancer-
related genes (validated by wet-lab experiments) that are not
differentially expressed in control and cancer. We hypothesize
that the role of these genes in cancer could be connected with
post-translational modifications of their expressed proteins.
These modifications modulate the functions and interactions
of the proteins after translation (Thygesen et al. 2018) and
have been reported in several cancer types, e.g. ovarian cancer
(Shetty et al. 2012) or skin cancer (Povlsen et al. 2012). In
conclusion, our method identifies genes whose transcriptional
patterns have not changed and thus is complementary to the
traditional differential expression analysis.

Finally, we go beyond the above validation and focus on
the top 10 ‘shifted’ genes (the most shifted ones) of each can-
cer type. We largely validate these top 10 shifted genes, either
as cancer biomarkers (of prognosis) or as cancer-related in the
literature (see Table 2 and Supplementary Tables S13–15).
Thus, we conjecture that the remaining four nonvalidated

genes (PRDM11 in lung cancer, C9orf72 and MINDY3 in
prostate cancer, and H4C6 in colorectal cancer) are also
cancer-related. Indeed, PRDM11 is part of a broad family of
transcriptional regulators, several of which are deregulated in
cancer (Fog et al. 2015). It is highly expressed in the lungs, as
well as in peripheral blood immune system cells. Although it
has been linked with the enhancement of lymphomagenesis
(Fog et al. 2015), our study is the first one to suggest its role
in lung cancer. Another example is MINDY3 in prostate
cancer; MINDY3 codes for a protein that contains a caspase-
associated recruitment domain and may be involved in apo-
ptosis (Safran et al. 2010). Even though it has been identified
as a tumor suppressor in lung and gastric cancers (Lu et al.
2014), our study is the first to link it with prostate cancer. For
the same cancer type, prostate cancer, we find C9orf72, a
gene that has been associated with several neurodegenerative
disorders (McCauley et al. 2020). Although its role in cancer
is unknown, its participation in important cancer-related pro-
cesses, such as autophagy (Fog et al. 2015) and inflammation
(The UniProt Consortium 2015), support our observation
that it may be cancer-related. Finally, we predict gene H4C6
as being involved in colorectal cancer, which is a member of
the histone H4 family that encodes a replication-dependent
histone. Although no publication relates this gene to cancer,
its involvement in cellular senescence and mitotic prophase
(Safran et al. 2010) suggests that this gene may have an im-
portant role in cancer progression. In conclusion, we intro-
duce a method to predict new cancer-related genes based on
their distance to the most ‘shifted’ functional annotations in
cancer over control molecular network embedding space. We
validate our predictions of new cancer-related genes through
literature curation and retrospective analyses of patient sur-
vival data. Importantly, these new predicted cancer-related
genes cannot be identified by using the traditional differential-
expression analysis.

4 Conclusion

By introducing our new FMM methodology, we initiate the
investigation of the embedding spaces of the tissue- and
disease-specific molecular networks from a functional point
of view. In Supplementary Section S1.2.2, we demonstrate
that our FMM methodology better captures the functional in-
teraction between GO BP terms than the traditional gene-
centric approach. We show that our FMM can efficiently be
applied to address different problems, i.e. to find the optimal
dimensionality of the embedding space, to analyze the similar-
ities between the functional organization of different embed-
ding spaces (in this study, those corresponding to cancer and
control), or to find the functional changes produced by can-
cer. Moreover, we use our method to predict four new
cancer-related genes for which we found some literature indi-
cating their involvement in cancer, but whose role in cancer
has yet to be experimentally validated. Furthermore, our
methodology could be easily applied to other bioinformatics
tasks, such as patient and tissue stratification, or to uncover
evolutionary similarities. In the context of evolutionary simi-
larities, we apply our FMM methodology to capture the func-
tional organization of six species-specific PPI network
embedding spaces and find that it correctly identifies the evo-
lutionary connections between the species (detailed in
Supplementary Section S2.2.1). Moreover, in Supplementary
Section S1.2.3, we demonstrate that our FMM captures the

Table 2. Top 10 shifted genes (the most shifted ones) in prostate cancer.

Gene name PubMed counts Pan-cancer prognostic marker

C9orf72 0 0
PIK3R2 2 0
TAF13 0 2
MINDY3 0 0
EIF5B 1 3
SSB 7 3
SGSM3 0 1
NKX3-1 314 0
RPS4X 0 2
FAM204A 0 1

The first column, ‘Gene name’, presents the gene names of the top 10
‘shifted’ genes. The second column, ‘PubMed Counts’, contains the number
of publications in PubMed that relate the gene to prostate cancer. The third
column, ‘Pan-Cancer Prognostic Marker’, indicates for how many cancer
types the gene is considered to be a prognostic marker based on survival
curves collected from the Human Protein Atlas (Pontén et al., 2008).
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hierarchical organizations of the GO BP terms in network em-
bedding spaces. However, extracting novel knowledge from
that higher-level organization is left for future study. Finally,
our new methodology is generic and can be applied to any
discipline that analyzes embedded network data in which the
embedded network nodes can be functionally annotated, e.g.
social, or economic networks, paving the road to new algo-
rithms for mining the data by utilizing the embedding space
from a functional perspective.

Supplementary data

Supplementary data is available at Bioinformatics online.
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