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High-speed three-dimensional (3D) intravitalimaging in animals is useful
for studying transient subcellular interactions and functions in health and
disease. Light-field microscopy (LFM) provides a computational solution

for snapshot 3D imaging with low phototoxicity but is restricted by low
resolution and reconstruction artifacts induced by optical aberrations,
motion and noise. Here, we propose virtual-scanning LFM (VSLFM),
aphysics-based deep learning framework to increase the resolution of
LFM up to the diffraction limit within a snapshot. By constructing a40 GB
high-resolution scanning LFM dataset across different species, we exploit
physical priors between phase-correlated angular views to address the
frequency aliasing problem. This enables us to bypass hardware scanning
and associated motion artifacts. Here, we show that VsLFM achieves
ultrafast 3D imaging of diverse processes such as the beating heartin
embryonic zebrafish, voltage activity in Drosophila brains and neutrophil
migration in the mouse liver at up to 500 volumes per second.

Understanding the interaction and function between multiple cells
and organelles in living organisms requires high-resolution robust
volumetric imaging at high speed. In the past decade, various efforts
in three-dimensional (3D) fluorescence imaging have been made to
promote the rapid development of cell biology' ¢, developmental biol-
ogy’'°and neuroscience'®. Of these, light-field microscopy (LFM) has
beenwidely used in neural recordings of diverse animals with cellular
resolution, due toits compact optical system and snapshot volumetric
imaging capability” . By simultaneously exciting and collecting all
fluorescence photons fromthe entire volume, LFM facilitates long-term
high-speed intravital imaging in mammals at low phototoxicity®.
Although numerousreconstructionalgorithms have beendeveloped to
enable the practical and versatile application of LFM in biology” %, LFM
isstillhindered by low spatial resolution and reconstructionartifacts,
especially in complicated intravital environments. By introducing

periodic beam drifting to increase the spatial sampling density, scan-
ning LFM (sLFM) increases the resolution up to the diffraction limit
and facilitates multi-site aberration correction in post-processing?,
but the physical scanning process reduces the 3D imaging speed and
may introduce motion artifacts for highly dynamic samples™.
Meanwhile, with the rapid development of deep learning, many
emerging learning-based algorithms have beenintroduced in LFM*
toimprove thereconstruction speed and resolution using light-sheet
microscopy*” or confocal microscopy”-** as the ground truth. However,
there are still three main bottlenecks for these end-to-end networks.
First, by mappingthe low-resolution multi-view data to high-resolution
3D volumes directly, the spatial resolution of current learning-based
LFMis far from sufficient for subcellular structures, due to the huge res-
olution gap between the raw light-field measurements and the diffrac-
tion limit of the objective. Second, end-to-end networks are susceptible
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tothemodel of theimaging process and face severe degradationin opti-
cally challenging environments, such as low signal-to-noise ratio and
strong optical aberrations induced by tissue heterogeneity or imper-
fectimagingsystems. Last, existing data-driven end-to-end approaches
show poor generalization across a wide variety of biological samples,
placing demanding requirements on the training dataset. Therefore,
robust snapshot 3D imaging of subcellular dynamics remains a chal-
lenge for the study of transient biological dynamics in animals.

Here, we propose a physics-based deep neural network toincrease
the resolution of LFM based on an sLFM dataset by exploring the fre-
quency aliasing between different angles, termed virtual-scanning
light-field microscopy (VSLFM). Given that the low-resolution
unscanned spatial-angular views could be extracted directly from the
high-resolution data obtained by sLFM, we generated an open-source
sLFM dataset, named Bio-LFSR, with well-matched high-resolution
and low-resolution pairs across a wide range of species, structures and
imaging conditions. With the physical constraint of frequency aliasing
inmultiple angular views induced by the diffraction of the small micro-
lens aperture, VsSLFM achieves better spatial resolution, robustness
to optically challenging environments and generalizability to diverse
sample structures than previous end-to-end methods. Working on the
same compact system as a traditional LFM without the requirement
of physical scanning, VsLFM achieved ~230 nm lateral resolution and
420 nm axial resolution across a large volume of 210 x 210 x 18 pm?
within a snapshot. Compared with sLFM, VSLFM eliminates motion
artifacts with better temporal resolution for highly dynamic samples
such as the beating heart, blood flow and voltage activities, while
maintaining the capability of multi-site digital adaptive optics (DAO)
and low phototoxicity. To demonstrate its unique advantages, we
quantitatively validated VSLFM on both synthetic and experimental
data. Asdemonstrations, we observed various transient 3D subcellular
dynamicsin cultured cells, a zebrafish embryo, zebrafish larvae, Dros-
ophila and mice during different physiological processes at a camera
frame rate of up to 500 volumes per second (vps).

Results

Principle of VSLFM

Our previous studies*** have shown that the microlens array inserted
attheimage plane can preserve the high-frequency spatialinformation
inthelow-frequency region during pupil segmentation for angular sam-
pling due to the diffraction effect of the small microlens aperture. Such
aprocessisakintothe structuredillumination microscopyinthe detec-
tion path, which ensures that the multiple angularimages obtained by
LFMare phase correlated, even forincoherent fluorescence light. How-
ever, the physical size of each microlens restricts the spatial sampling
density, further exacerbating the frequency aliasing problem (Fig. 1a).
Previous deconvolution algorithms?>* use cubic interpolation during
reconstruction, which ignores the effect of frequency aliasing and
resultsingrid-like artifacts and low resolution (Supplementary Fig. 1).
By shifting the light field periodically, SLFM uses physical scanning
to increase the spatial sampling density (Supplementary Fig. 1). Only
3 x 3 scanning number is sufficient to address the frequency aliasing
problem and recover the resolution up to the diffraction limit of the
whole-objective numerical aperture (NA) for the light-field system
with 13 x 13 angular views. However, such a physical scanning process
will reduce the temporal resolution and introduce motion artifacts if
there are strong morphological or intensity changes in the samples
during the scanning process of 9 camera frames.

We have therefore developed a virtual-scanning network (Vs-Net)
inthe spatial-angular domainto replace the physical scanning process
in sSLFM for highly dynamic samples (Fig. 1a). The Vs-Net is designed
to exploit the phase correlation between different angles introduced
by the microlens diffraction and extract the high-frequency informa-
tion from the complicated frequency aliasing by considering multi-
ple angular measurements during the upsampling process instead

of each angle separately (Fig. 1b). We use the proposed Vs-Net to
map the low-resolution spatial-angular views acquired by LFM to
high-resolution views, with 3 x 3 sSLFM acquisitions as ground truth.
Unlike end-to-end networks, which need two systems to acquire
light-field images and target volumes separately, data pairs required
for Vs-Net training can be simultaneously captured on the sSLFM sys-
tem, whereby all of the pairs are intrinsically wellmatched without the
requirement of extra pixel registration or processing. To leverage the
frequency aliasing in different spatial-angular views, we firstimpose
a feature extractor to yield three types of features, which are then
fully mixed, interacted and fused in elaborately designed modules,
and are finally upsampled by a pixel shuffle to predict high-resolution
spatial-angular views (Fig. 1b and Supplementary Fig. 2). With three
interaction modules working collaboratively, Vs-Net can be regarded
as an effective high-resolution module to replace hardware scanning
in sLFM for highly dynamic samples (Fig.1b and Supplementary Fig. 3).
More details on the network architecture and size parameters are given
in Methods and Supplementary Table 1. After being strengthened by
Vs-Net, the spatial-angular views are fed into iterative tomography with
DAO%, aproven and general framework independent of sample struc-
tures and imaging conditions. Point spread functions are thenimposed
as another physical prior to reconstruct 3D high-resolution volumes
up to thediffraction limit. Our two-step physics-based learning frame-
work can then fill the huge resolution gap, usually at a factor greater
than 10, correspondingto the ratio between the resolution of raw LFM
measurements and the diffraction limit of the objective, which hinders
traditional LFM™? or previous end-to-end learning-based LFM*"*in the
resolution of subcellular structures at the submicron level.

Resolution characterization of VSLFM
Vs-Net canbe regarded as a threefold super-resolution network for 4D
images (2D spatial domain and 2D angular domain). Although several
deep learning-based algorithms have been proposed for single-image
super-resolution (SISR) used in fluorescence microscopy®¥, they
do not consider the phase-correlated angular measurements in LFM.
Existing algorithms designed for the 4D spatial-angular domain are still
based onthe geometric optics usedin photography, in which the sam-
pling sizeis much larger than the diffraction limit®**, Therefore, they
aredifficult to apply in LFM, which needs to consider the wave-optics
diffraction effects for the high-NA objective lens. By contrast, Vs-Net
applies multiple designed features in network architecture and ade-
quate light-field datasets in microscopy, which accurately model the
large angular disparity and wave-optics diffraction originating from
thelarge collection angle of the objective lens. To show the advantage
of VsSLFM over state-of-the-art SISR microscopy approachesincluding
the content-aware imaging restoration network (CARE)*, deep Fourier
channel attention network (DFCAN)*, deep Fourier channel attention
network with generative adversarial strategy (DFGAN)* and light-field
super-resolution approachesincluding spatial-angular interactive net-
work (LF-InterNet)* and deformable convolution network (LF-DFnet)",
we imaged a fixed L929 cell with membrane labeling and compared
the high-resolution angularimages processed with these networksin
terms of signal-to-noise ratio and structural similarity (SSIM) indices
(Supplementary Fig. 4). The ground truth data were obtained using
sLFM. We then compared the 3D reconstruction results based on the
network output. SISR or light-field super-resolution approaches show
no additional resolution enhancement after reconstruction, given that
the output of different angles does not fulfill the point spread function
constraints required for incoherent synthetic aperture (Supplementary
Fig.5). Evenwhen SISR networks were trained on data after reconstruc-
tion, the performance was still inferior to that of VSLFM (Supplementary
Fig. 6). By contrast, VSLFM has better resolution without artifacts after
3D deconvolution, compared with sLFM.

After showing that VsLFM outperforms state-of-the-art super-
resolution methods in the spatial-angular domain, we then compared
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Fig.1|Principle of VSLFM. a, Principle of VsLFM using a physics-based deep
neural network (Vs-Net) to extract the high-frequency information from the
frequency aliasing in traditional LFM induced by diffraction of asmall microlens
aperture and low spatial sampling density. Such a process can be viewed as a
virtual-scanning process to increase the spatial sampling density. b, Schematic
diagram of the optical system and processing pipeline of VSLFM. In sLFM, a2D
scanning galvo shifts the image plane by 3 x 3 times physically to increase the
sampling rate of angular views, which is limited by the physical size of each
microlens in LFM. For a VSLFM system without a scanning galvo system, the
microlens array (MLA) is placed at the back focal plane of the tube lens, and the

| with DAO
J

length of the whole optical pathis shortened. VsLFM uses a supervised-learning
network (Vs-Net) including the extraction, interaction, fusion and upsampling of
multiple spatial-angular features to realize the scanning process virtually. High-
resolution angular measurements obtained by sLFM serve as the ground truth
during network training to learn the physical prior between the phase-correlated
low-resolution angular measurements. Finally, iterative tomography with DAO
isimplemented on multiple angular views obtained by Vs-Net to reconstruct 3D
high-resolution volumes. Scale bars, 10 um (spatial domain) and 1 pm™

(Fourier domain) (a).

VsLFM with other end-to-end light-field reconstruction networks by
evaluating the reconstructed 3D volume (Fig. 2). We chose two recent
representative end-to-end networks, VCD-Net* and HyLFM-Net*
with optimized parameters (Methods). Much better resolution and
contrast could be obtained by VsLFM in terms of the maximum inten-
sity projection (MIP) and single slice (Fig. 2a). We then quantitatively
characterized the resolution of VSLFM and other methods by imaging
subdiffraction-limit fluorescent beads and measuring the average full

width at half-maximum (FWHM) across different axial planes (Fig. 2b).
We found that the resolutionimprovementin VsLFMis at least fourfold
higher than that of LFM and twofold higher than that of VCD-Net and
HyLFM-Net (Fig. 2c and Supplementary Fig. 7). The stability of VsSLFM
isalso demonstrated by the small variance of FWHM across the whole
field of view (FOV) 0f 210 x 210 x 18 um?. To further verify the resolution
improvement of VsLFM, we summed up two images of the same bead
by alateral shift of 230 nm on a piezo stage to generate two virtually
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Fig.2|Resolution enhancement of VSLFM. a, MIPs and enlarged regions
fromxyslices at z=1pm of a fixed L929 cell with membrane labeling (TSPAN4-
mCherry), obtained by LFM, VCD-Net, HyLFM-Net, VsLFM and sLFM,
respectively. b, Boxplots of averaged lateral resolution and axial resolution of
LFM, VCD-Net, HyLFM-Net, VsLFM and sLFM at different axial positions (n =10
beads per plane). The resolution was estimated by imaging 100-nm-diameter
fluorescent beads that were uniformly distributed in low-melt agarose with a
x63/1.4 NA oil-immersion objective, and measuring the FWHM with a Gaussian
fit. Lateral and axial diffraction-limited resolutions at a center wavelength of
525 nm are shown with the dashed lines for comparison. Data are presented
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VSLFM, sLFM, VCD-Net and HyLFM-Net, respectively. The normalized profiles
along the marked dashed lines are shown in the insets. All of the learning-based
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added the images together to create the two virtually separated beads. Scale
bars,10 pm (a), 1 um(c), 200 nm (d).
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asground truth. b, VsSLFM, VCD-Net and HyLFM-Net results after the input
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maximum intensity to 30. The signal-to-noise ratio (SNR), after reconstruction
by different methods, is also given. ¢, Pearson correlations of results obtained
by VsLFM, VCD-Net and HyLFM-Net, compared with ground truth. The center
line represents the median, the box limits represent the lower and upper
quartiles, and the whiskers represent 1.5-fold the interquartile range. P values
were calculated using the two-sided paired ¢-test: P=9.40 x 10 for VCD-Net
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the number of noisy images. d, Reconstructed MIPs with aninduced aberration
wavefront, the root mean square (RMS) of which was set to1wavelength,
obtained by VsLFM without DAO, VsLFM with DAO, VCD-Net and HyLFM-Net.
The estimated wavefront by DAO is shown in the inset. The Fourier transforms
corresponding to the whole FOVs by the four methods are shown in the right
panel. e, Normalized intensity profiles along the blue dashed line marked by the
arrows ind for four different methods. The arrows indicate the positions of the
signal peak. f, The curves of reconstructed SSIM versus aberration levels applied
for different methods. Note that Vs-Net, VCD-Net and HyLFM-Net used here were
alltrained on the same tubulin datainideal imaging conditions without noise and
aberration. Scale bars, 10 pm (a,b), 10 pm (left) and 2 um™™ (right) (d).

separated beads. While LFM with VCD-Net and HyLFM-Net trained
on the beads dataset cannot resolve the structures, VsSLFM and sLFM
can distinguish these two beads clearly (Fig. 2d). In addition, we
synthesized 3D distributed tubulins in a numerical simulation to
evaluate the resolution of VsLFM for complicated structures (Sup-
plementary Fig. 8a). VSLFM has better performance than LFM, with
more high-frequency componentsintheFourier spectrum, leadingto
an improvement in signal-to-noise ratio of ~15 dB and SSIM enhance-
ment of 0.12 in the spatial-angular domain, and an improvement
in signal-to-noise ratio of 2 dB and SSIM enhancement of 0.2 after
reconstruction (Supplementary Fig. 8b,c). Moreover, the improve-
ment of VsLFM is stable for different sample densities (Supplementary
Fig.8d,e).

To validate the subcellular resolution of VsLFM on biological
dynamicsinthelongterm, weimaged mitochondrial (cyan) and mem-
brane (magenta) dynamics in cultured L929 cells with sLFM data as
ground truth (Supplementary Fig. 9a and Supplementary Video 1).
Remarkable improvements by VSLFM over LFM can be observed via
the signal-to-noise ratio and SSIM metrics (Supplementary Fig. 9b-d).
Diverse subcellular dynamics canbe visualized with low phototoxicity
inthelongtermincluding mitochondrial behaviors during cell division,
fiber retraction, and migrasome formation (Supplementary Fig. 9¢,f).

Robustness in optically challenging environments
Different from in vitro imaging, intravital imaging usually has alarge
variety of noise and optical aberrations due to the tissue heterogeneity,
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which makes it challenging for computational microscopy based on
accurate imaging models. End-to-end networks are usually limited to
specific imaging conditions due to dataset limits, while VSLFM, with
its two-step strategy and physics-based priors, can maintain similar
performance in complicated scenarios.

To evaluate such robustness, we first compared the noise perfor-
mance of VsLFM, VCD-Net and HyLFM-Net, all of which were trained
in high signal-to-noise ratio conditions and tested in photon-limited
imaging conditions (Fig. 3a,b and Supplementary Fig.10). Pre-trained
end-to-end networks are very strict on imaging conditions and are
proneto overfitting, which confuses the signals with noise, and causes
severe artifacts and structural fragments (Fig. 3b). By contrast, Vs-Net
learned the physical constraint between angular views, and could effec-
tively distinguish signals from strong noise using the angular-mixed
feature to suppress the noise by averaging different angular views
(Supplementary Fig. 3). Inaddition, the iterative tomography using the
Richardson-Lucy deconvolution framework, has aninherent denoising
capability*’. As a consequence, VSLFM has better robustness to noise
than VCD-Net and HyLFM-Net, and has significantly improved fidelity
inlow-light conditions (Fig. 3c).

For the aberration problem, we used DAO during the second step
of VsSLFM. Numerical simulations were conducted to show that VSLFM
hassimilar aberration robustness tosLFM (Supplementary Fig. 11). We
trained Vs-Net, VCD-Net and HyLFM-Net on the same synthetic tubulins
datain an aberration-free condition, and tested them using different
aberration levels (Fig. 3d and Supplementary Fig. 12). Intense aberra-
tions would destroy the mappingrelationships learned by end-to-end
models, causing visible distortions and artifacts (Fig. 3d), while Vs-Net
isrobust to the aberrations and DAO can still be applied to the Vs-Net
outputs in the second step of iterative tomography for aberration
correction. Such a correction is difficult to model in the end-to-end
network due to its high-dimensional property. For aberrations with a
root mean square of 1 wavelength, VsLFM shows much better resolu-
tionand higher SSIM metrics than VCD-Net and HyLFM-Net (Fig. 3e,f).
Note that the subsequent in vivo experimental results of VSLFM and
sLFM were obtained with DAO, but for simplicity, DAO is no longer
specifiedinthe text.

We then imaged a membrane-labeled zebrafish embryo at 3 vps
to demonstrate the in vivo subcellular imaging capability of VSLFM
(Supplementary Fig. 13a-f and Supplementary Video 2). The spatial
heterogeneity in multicellular organisms and the sensitivity to pho-
todamage lead to severe shot noise and optical aberrations. Enlarged
views show the elaborate dynamics of fiber movements over 20 min-
utes, with narrower intensity profiles of VSLFM results than those of
LFM (Supplementary Fig.13g-i). These results further corroborate the
stableresolutionand contrastimprovement by VsLFM in complicated
environments.

Generalization over diverse structures and magnifications

The generalization ability is one of the most critical problems in the
biological applications of deep learning, especially in cross-sample
experiments withalarge datadiversity. Moreover, itis very difficult to

collect ahuge dataset to cover diverse biological phenomena, for exam-
ple, evenforaspecific type of cell during different physiopathological
states. VCD-Net and HyLFM-Net, which rely heavily on the data prior,
work well onasimilar type of databut cannot make accurate predictions
onunseen data. Vs-Net was designed to learn the physical prior between
phase-correlated angular components rather than texture data priors
only, leading to a better generalization ability for different sample
structuresthan previous end-to-end networks. To verify such a capabil-
ity, we compared VsLFM with VCD-Net and HyLFM-Net using different
datasets for training during simulation. All of them showed good recon-
struction performance when the test datasets and the training datasets
were both based on synthetic tubulins (Supplementary Fig. 14a,b).
However, if these network models were trained on bead data and
tested on tubulins data, the performance of VCD-Net and HyLFM-Net
dropped dramatically in terms of the Pearson correlations compared
withground truth. Structural artifacts with similar shapes to the train-
ing data could be observed in the results of the end-to-end networks
(Supplementary Fig.14c). By contrast, VsSLFM exhibited stable perfor-
mance without reconstruction artifacts (Supplementary Fig. 14c-e).

We then compared the generalization ability of VsLFM with that
of VCD-Net and HyLFM-Net in a cross-channel experiment. We made
predictions on the mitochondria channel of an L929 cell using two
network models pre-trained on the mitochondria channel and the
membrane channel, respectively (Fig.4a). The zoom-inregions and cor-
responding Fourier spectra show that VsLFM has stable performance
for different sample structures, while VCD-Net and HyLFM-Net show
resolution degradation and artifacts during the generalization process.
Theresults obtained by sSLFM were used as the ground truth to calculate
the Pearson correlation (Fig. 4b). The reconstruction fidelity decreased
quickly during generalization for previous end-to-end networks, but
remained stable for VSLFM (Fig. 4c).

The generalization capability is critical for highly dynamic sam-
ples, given that we cannot capture ground truth data for training. A
typical exampleis flowing cells in the blood circulation system. To show
theadvantage of VsSLFM, weimaged a zebrafish larvalabeled with blood
cells and vessels, which was anesthetized and embedded in agarose
gel during imaging with a x20/0.5 NA air-immersion objective at 50
dual-color vps (Fig. 4d and Supplementary Video 3). We trained the
Vs-Netonmouse liver datawith vessel and neutrophil labeling captured
by another objective with a x63 magnification and an NA of 1.4 to pre-
dictthe high-resolution structures of vessel membranes and blood cells
inzebrafish. Although the network was trained on different species and
differentimaging magnifications, VsLFM exhibited stable performance
withbetter resolution*’ than the other methods (Fig. 4¢). Two adjacent
flowing cells that are indistinguishable in one frame can be clearly
recognized using VSLFM even with a high motion speed (Fig. 4f,g).
Owing to the enhancement in both spatial resolution and temporal
resolution by VsLFM, 76 flowing blood cells with reduced crosstalk
canbeeasily tracked inthree dimensionsin the extremely shortimag-
ing duration of 0.40 s (Supplementary Fig. 15). Therefore, VsSLFM can
serve as a promising tool for high-fidelity downstream studies of the
circulatory system and hemodynamicsin diverse model organisms**.

Fig.4 | VSLFM has better generalization ability than end-to-end networks.
a, MIPs and enlarged views of a fixed L929 cell with mitochondria labeling
(TOM20-GFP), obtained by VCD-Net, HyLFM-Net and VsLFM trained on the
same type of sample (mitochondria, upper row) and a different type of sample
(membrane, lower row). The corresponding Fourier spectrum is shownin

the bottom-right corner of each panel. b, Corresponding sLFM results as
ground truth. ¢, Bar chart of Pearson correlations between the results of the
mitochondria channel obtained by sSLFM and the results obtained by VCD-Net,
HyLFM-Net and VsLFM trained on different datasets. d, MIPs acquired by LFM
(left) and VSLFM (right) of circulating blood cells (magenta) and vessels (cyan)
inazebrafishlarva. The data were captured with a x20/0.5 NA air objective

at 50 vps. Given that the ground truth data cannot be obtained in this highly

dynamic sample, the network models were trained on mouse liver data with
vessel and neutrophil labeling and captured by a x63/1.4 NA oil-immersion
objective. e, Enlarged MIPs of the vessel channel marked by the blue box ind at
t=0s,acquired by different methods. The corresponding Fourier transforms of
the MIPs with estimated resolutions by Fourier ring correlation (FRC) are shown
inthe bottom row to indicate the resolution enhancement by VsLFM. f, Enlarged
MIPs of the blood cell channel marked by the magentaboxindat¢=0.32s.

g, Normalized intensity profiles along the lines indicated by the arrowsinf,
showing that the two adjacent blood cells that could not be distinguished by
previous methods were resolved by VsLFM. Scale bars, 5 um (top, bottom left, a)
and 3 um™ (bottom right, a), 50 um (d,f), 50 pm (top) and 1 pm™ (bottom) (e).
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Robust high-resolution snapshot 3D imaging in mammals the heartor lung. Such strong motions in some frames would perturb
Giventhat VsLFM facilitates snapshot near-diffraction-limited3Dimag-  the physical scanning pattern of sSLFM during the 9-image acquisition
ing with broad generalization, it can analyze subcellular dynamicsin  and cause motion artifacts and reduction of temporal resolution in
complicated dynamic mammalian environments involving the beat-  sLFM for highly dynamic samples. To demonstrate this advantage of
ing heart, respiration and blood flow, especially for organs close to  VsLFM, weimaged endogenous neutrophils and vesselsin living mouse
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Fig. 5| Long-term high-speed imaging of subcellular dynamics in living
mouse livers. a, Whole-FOV and enlarged MIPs of neutrophils and vesselsina
living mouse liver with strong motions induced by respiration, obtained by LFM,
VsSLFM, sLFM and sLFM with the time-weighted algorithm, respectively. b, MIP
of aneutrophil washed away by the blood flow in vessels, which was captured

by VsLFM at 12 vps. The tracked trace obtained with Imaris 9.0.1 software was
overlaid with the temporal information coded in different colors. The overall flow
durationis1.33s, from¢=0.67 sto t=2.00 s. ¢, Center view of spatial-angular
components and corresponding reconstructed MIPs of marked regionsin b at
t=1.167 s, obtained by LFM, VsLFM and sLFM, respectively. The orange arrow
indicates the movement direction and the white arrows indicate the motion
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artifacts in sLFM. d, MIPs of neutrophils with high-speed migrationinaliving
mouse liver, obtained by LFM, VsLFM and sLFM, respectively. The neutrophil at
t=86.3 smoved slowly without motion artifacts, and the retraction fiber could be
observed with high resolution by both VsLFM and sLFM. However, at t = 488.8 s
the neutrophil migrated at high speed, leading to visible motion artifacts in the
sLFM results. The upper-right insets show the corresponding Fourier transform
of the MIPs, which also show the periodic frequency patterns caused by sample
motioninthe sLFM results. Meanwhile, VSLFM effectively eliminates motion
artifacts with high spatial resolution. Scale bars, 10 pm (a-c), 10 pm (main) and

3 pm™ (inset) (d).
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livers during their native physiological processes. The mice were anes-
thetized and dissected to expose the liver on the coverslip. To reduce
respiration-induced motions in sLFM, a region close to the tip of the
liver needs to be used, whichin turn limits the effective imaging area.
Although a time-weighted algorithm has been developed for sLFM
to compensate for the loss of temporal resolution, movements that
are too fast would still exceed the adjustable range of the algorithm
and degrade the imaging performance®>* (Fig. 5a). The LFM results
exhibited no artifacts at the expense of low spatial resolution, while
VsLFM improved the resolution without motion artifacts (Fig. 5a and
partlof Supplementary Video 4). To verify the fidelity, we compared
theresults of VSLFM and sLFM on the same frame without motion and
noted a similar subcellular resolution (Supplementary Fig. 16). The
whole process of a neutrophil gradually generating aretraction fiber,
accompanied by periodic 3D vibrations of the whole FOV, was clearly
observed at subcellular resolution by VsLFM, demonstrating its robust
performance in a complicated environment (Supplementary Fig. 16
and Supplementary Video 5).

Even in a stable environment, cellular dynamics in blood ves-
sels still involve a large variety of velocities during different states.
We captured another neutrophil that was washed away by the blood
flow in a vessel at 12 vps, which was extremely fast and lasted for only
approximately 1.33 sacross approximately 100 umin three dimensions
(Fig. 5b and part Il of Supplementary Video 4). VSLFM outperformed
LFMwith better resolution and contrast, and concurrently eliminated
severe motionartifactsin sLFM (Fig. 5c). Inaddition, VSLFM can simul-
taneously retainintact cell shape and maintain subcellular resolution
during fast neutrophil migration, enabling fine structures such as
retraction fibers to be resolved distinctly without being influenced
by the motion artifacts (Fig. 5d and part 1l of Supplementary Video 4).
By using asingle LFM image for high-resolution structures, the photo-
toxicity of VSLFM can be further reduced by ninefold for even longer
imaging durations than sLFM.

Ultrafast high-resolution 3D voltage imaging in Drosophila
Intravital imaging of voltage activities are important for the study of
learning units with feedback interconnections and complex interac-
tions betweenshort-termand long-term memory in Drosophila brains*®.
However, it has long been a challenge to capture the voltage dynam-
icsin vivo at subcellular resolution across a large volume due to the
extremely fast transients, which occur usually over 200 Hz, and the
low signal-to-noise ratio of the voltage indicators with short exposure
time. VsLFM could address this problem withits capability of snapshot
high-resolution 3D imaging and low phototoxicity.

To demonstrate its advantages over traditional LFM and sLFM, we
constructed an upright sLFM system with a high-speed scientific cam-
eratoobserve the 3D voltage transients of sparsely labeled dopamine
neurons across the whole brain of awake behaving Drosophila (MB0O6
SB-GAL4>20%UAS-pAce)***” at 500 vps. We imaged the same sample by
LFM and sLFM sequentially for comparison. The VSLFM results were
obtained from the LFM data. Both VsLFM and sLFM have comparable
resolution and clearly resolve neural axons at a depth of 15 um with

more elaborate detail than LFM (Fig. 6a—c). In addition, many action
potentials can be visualized by averaging a large local region in the
raw LFM measurements while the temporal trace of another region
shows no apparent fluctuations, indicating the fidelity of the voltage
signals (Fig. 6d). However, sLFM lacked sufficient temporal resolution
to detect the action potentials due to the 9-image sliding window for
physical scanning, which stretched the spike widths and reduced the
response amplitudes (Fig. 6e). Some low-amplitude spikes may also
be neglected. By contrast, VsSLFM harnessed the advantages of both
LFM and sLFM. With the snapshot property, VsLFM maintained high
temporal resolution to resolve the action potentials at subcellular
resolution across a large volume of ~260 x 260 x 100 um? at 500 vps,
enabling concurrent neural recording of multiple brainregionsinthe
Drosophila (Fig. 6e and partlof Supplementary Video 6). Quantitative
analysis showed that VsLFM distinguished the voltage spikes accurately
withasignificantly smaller temporal FWHM of approximately 5 ms (Fig.
6f) and obtained an at least twofold improvement in spike amplitude
relative to sLFM (Fig. 6g).

We then used VsLFM to record the 3D voltage activities in PPL1
dopamine neurons at 500 vps in Drosophila using 3% benzaldehyde
asarepulsive odor stimulus. The observed region was located around
100 pm below the optical window in the cuticle of an adult Drosophila
(MBO65B-GAL4>20%UAS-pAce). With the ultrahigh spatiotemporal
resolution of VsLFM, the 3D propagation of action potentials in axon
branches and dendritic tree of the PPL1-a2a2 neuron can be detected
(Fig. 6h,iand part Il of Supplementary Video 6). We also observed an
increase in firing rates during the stimulus, which accords well with
a previous study*® (Fig. 6j). With the ultrahigh 3D imaging speed and
low phototoxicity, VsSLFM facilitates broad study of neural activity with
the help of advanced voltage indicators, which would be difficult for
previous imaging methods.

Discussion

Here, we have developed a physics-based virtual-scanning framework
for LFM to enhance the spatial resolution by fourfold with broad gener-
alization, enabling snapshotintravital volumetricimaging with subcel-
lular resolution and a low phototoxicity of only severalmW mm™ata
cameraframe rate up to 500 vps. VsLFM and sLFM are not conflicting
but are complementary. The main problem with sLFM is the motion
artifacts and the reduction of temporal resolution due to physical scan-
ning in highly dynamic conditions such asthe beating heart, blood flow
and neural activities. By using the ground truth data captured by sSLFM
without motion artifacts for the training of VsLFM, VSLFM provides
the ultrafast high-resolution 3D imaging for highly dynamic samples
or LFM without the scanning module.

Physics-based VsLFM addresses three major problems in previ-
ous end-to-end networks in LFM, including the huge resolution gap
between the raw LF measurements and the diffraction limit of the
objective, sensitivity inoptically challenging conditions, and low gener-
alization ability across diverse structures, species and imaging systems.
Using the physical priors of frequency aliasing and point spread func-
tionmodelsratherthantexture priors only, VSLFM enhances the spatial

Fig. 6 | Invivo high-resolution volumetric voltage imaging of sparsely
labeled neurons in Drosophila at 500 vps.a-c,3D rendering volumes and
enlarged MIPs of PPL1 dopamine neurons at adepth of 15 pm in Drosophila
brain (MBO65B-GAL4 > 20xUAS-pAce), obtained by LFM (a), VSLFM (b) and
sLFM (c).d, Average temporal traces extracted from two different regions in
theraw light-field images. e, Left, temporal traces extracted from the manually
selected regioninb and c for VsSLFM and sLFM, with the black circles marking the
identified spikes. Right, corresponding average waveforms for the spikes. The
dataof sSLFM and VsLFM were collected sequentially on the same Drosophila,
therefore the spontaneous voltage activities occurred at different time stamps.
f,g, Comparisons of the temporal FWHM s (f) and amplitudes (g) of the spikes
between VsLFM and sLFM in the same selected region as e. The center line
represents the median, the box limits represent the lower and upper quartiles,

and the whiskers represent 1.5-fold the interquartile range. P values were
calculated using the two-sided paired t-test. P=1.77 x 10 () and P=8.14 x 10"
(g).n=>5forthe sLFMresults and n =26 for the VsSLFM results, where n represents
the number of identified spikes. h, 3D rendering volume of PPL1dopamine
neurons atadepth of 100 pmin another Drosophila (MBO65B-GAL4>20xUAS-
pAce) obtained by VsLFM, with the enlarged time-coded MIPs. Different colors
represent the peak instants of the voltage signal for every pixel during 2.4 ms.

i, Voltage spikes extracted from two regions in the PPL1-0:2a2 neuron, showing
a2 msdelayinaction potentials.j, Upper row, odor-evoked voltage traces
extracted from the region marked by the white dashed circle in h. Bottom row,
corresponding time-dependent firing rates. The gray rectangles indicate the
time window when we applied the 3% benzaldehyde (BEN) stimulus. Scale bars,
30 um (a-d, h).
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resolution up to the diffraction limit and improves the generalization
ability for a wide range of applications (Figs. 3, 4 and Supplementary
Fig.14). The output of Vs-Net is robust to optical aberrations and com-
patible withthe DAO technique to correct optical aberrations during 3D
reconstruction, whichis difficult tomodelin the end-to-end networks.
By focusing onthe upsampling process to address the frequency alias-
ing problem, VsLFM is also compatible with other 3D reconstruction
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environments given that all of these end-to-end networks do not con-
sider the influence of optical aberrations. Better neural networks for
reconstruction, such as self-supervised methods, can be designed in
the future withmore physical priors. Moreover, given that the confocal
or light-sheet set-ups can physically address the missing-cone problem,
training the 3D reconstruction network for VSLFM with paired confocal
or light-sheet data can increase the optical sectioning at the cost of
data generalization. Structured illumination may be another choice
toimprove the optical sectioning and depth penetration for VSLFM*.

VsLFM could also work for LFM equipped with different microlens
arrays through parameter adjustment and retraining with a detailed
guide (Methods and Fig. 6). When the microlens array parameters
do not change much, the Vs-Net can be used with simple preproc-
essing of angular interpolation (Supplementary Fig. 18). Therefore,
the virtual-scanning framework with our pre-trained model could be
applied to the data captured by different types of unfocused LFM in
previous studies. Transfer learning can be applied to further increase
the performance on specific dataand accomplish afaster convergence
with only asmallamount of additional datarequired (Supplementary
Fig.19). In the meantime, better neural networks can be designed in
the future based on our open-source 40 GB sLFM dataset of more than
1,300 pairs of low-resolution and high-resolution light-field images
from multiple species, structures and imaging conditions. This VSLFM
adoptstheunfocused formto obtainalarge axial range with extended
depthoffield, butitisstill imited by the objective numerical aperture®.
The use of objective lenses with a lower numerical aperture would
improve axial range at the cost of spatial resolution. Improvement of
the angular resolution?® or phase modulation at the pupil plane® is
also anticipated to increase the axial coverage. As a one-photon fluo-
rescence microscopy technique, theimaging penetration capability of
VsLFM is fundamentally limited by tissue scattering and background
fluorescence, which can be enhanced with other scattering removal
methods?”. Nevertheless, with superior resolution enhancement and
broad generalization, this physics-based virtual-scanning mechanism
in LFM fulfills the requirement for extremely high-speed intravital
imaging of subcellular structures across a large FOV with minimized
phototoxicity, further broadening the versatility and practical applica-
tions of LFM in challenging complicated environments.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
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Methods

VsLFM set-up and data collection

The inverted sLFM optical system was built in accordance with our
previous research®. A standard inverted fluorescence microscope
(Zeiss, Observer Z1) was used as a basic imaging module, configured
with a x63/1.4 NA oil-immersion objective (Zeiss Plan-Apochromat
x63/1.4 NA Oil M27) and a x20/0.5 NA air-immersion objective (Zeiss
EC Plan-Neofluar x20/0.5 NA M27) for different experiment require-
ments. Amicrolens array with the pitch size of 100 pum and focal length
0f 2,100 pm modulated the emission light into a 4D light field, with a
2D galvo system to shift the image plane periodically at high speed.
Each microlens covered 13 x 13 sensor pixels for angular sampling.
Multi-channellasers (Coherent OBIS 405/488/561/640) and a scientific
camera (Andor Zyla4.2 Plus PCIE) were used for fluorescence excitation
and data collection. All hardware synchronization of the system was
carried outusinga National Instruments (NI) control box (NI USB-6363)
and LabVIEW software (2019 version), which were integrated in an
acquisition graphical user interface named sLFdriver, as described in
the published protocol®. To construct the training dataset, scanning
light-field images with the scanning period of 3 x 3 (2,048 x 2,048 pix-
els each) were captured by sLFM. Then, the light-field image taken in
the middle of the series was extracted as the paired low-resolution
light-fieldimage. Next, a pixel-realignment algorithm was performed
onthesinglelight-fieldimage and scanning light-field images toyield
the paired low-resolution and high-resolution spatial-angular views,
which were regarded as the input and target for network training. For
example,intheinverted sLFM system, the low-resolution spatial-angu-
lar views consist of 153 x 153 spatial pixels and 13 x 13 angular pixels,
and the high-resolution spatial-angular views consist of 459 x 459
spatial pixels and 13 x 13 angular pixels, which are determined by the
parameters of the microlens array and camera. We also constructed an
upright sSLFM system forimaging voltage activitiesin Drosophilabrains,
configured with a x25/1.05 NA water-immersion objective (Olympus
XLPLN25XWMP2) and a high-speed scientific camera (Teledyne Pho-
tometrics Kinetix). In the implementation of the upright system, a
customized microlens array with a pitch size 0of 136.5 pm and a focal
length of 2,800 pm was used to cover 21 x 21 angular pixels for alarge
axial coverage. During the Drosophila experiment, the camera pixel
regionwassetto 2,000 x 2,000, with LFM data containing 91 x 91spa-
tial pixelsand 21 x 21 angular pixels, and sLFM data containing 273 x 273
spatial pixels and 21 x 21 angular pixels. When capturing test data for
VsLFM, the 2D galvo was set to its offset voltage and kept stable as in
traditional LFM. Then the system captured single-frame or time-lapse
light-field data, and further realigned them into low-resolution spa-
tial-angular views, of which spatial resolution would be improved by
the virtual-scanning framework. Each frame of VsLFM was collected
within asnapshot. Forintuitive comparisons between VsLFM and sLFM,
the unscanned light-field images were directly extracted from scan-
ning light-field images. The snapshot images were used to derive the
results of VSLFM, and the sLFM results were used as the paired ground
truth for performance comparison. The data used in testing were not
involvedin network training. Detailed imaging conditions for all of the
fluorescence experimentsin this study, including the fluorescent label,
exposure time, excitation power, volume rate and objective, are listed
inSupplementary Table 2.

Virtual-scanning network

Inour proposed Vs-Net, theinputisa3D tensor of low-resolution spa-
tial-angular views (rearranged into the form of height x width x angle),
while the output is a 3D tensor of high-resolution spatial-angular
views. For the preprocessing of data captured by the inverted system,
the training dataset was partitioned into small patches with the input
size 0f 25 x 25 x 169 pixels, and the output and target size of 75 x 75 x 169
pixels. The input and corresponding target data were normalized by
the average value of maximum intensities from different time-lapse

data. An overview of Vs-Net architecture is given in Supplementary
Fig. 2a and the detailed network parameters for each layer are listed
inSupplementary Table 1. In ourimplementation, Vs-Net emphasizes
the spatial-angular feature and angular-mixed feature on the basis
of a global residual network containing feature extraction, interac-
tion and fusion modules*°. The input spatial-angular views (size of
25 x 25 x 169 pixels, height x width x angle) are first fed into the feature
extractor to generate spatial-angular features (size 0of 169 x 25 x 25 x C
pixels, angle x height x width x channel), light-field features (size of
325 x 325 x C pixels, height x width x channel) and angular-mixed
features (size of 25 x 25 x C pixels, height x width x channel), where C
denotes the channel number of 2D convolution layers and is usually
set to 64. The spatial-angular feature is extracted to better consider
the phase correlation induced by the diffraction effect of the small
microlens aperture and the disparity between different angular views
in LFM, which is much larger than that used in macroscale light-field
photography due to the large collection angle of the objective lens.
The light-field feature is generated for comprehensive considera-
tion of the angular information at different local spatial regions. The
angular-mixed feature, weighted by multiple angular views, isused to
reinforce the fidelity of fine structures under strong noise conditions.
We use only linear operations to reshape and decouple the inputinto
features of these three domains, leaving non-linear activation and
deeper layersto the subsequentinteraction and fusion stage to obtain
more expressive features. Note that the linear operations such as
pixel alignment and dilated convolution should have the appropriate
parameters associated with the LFM configuration and datastructure.
The three features are then passed through the feature interaction
and fusion modules to enable multiple information interaction and
integration. The detailed structures of the interaction and fusion
modules are shown in Supplementary Fig. 2b. The light-field interac-
tion module plays the major role in enhancing the spatial resolution,
while the spatial-angular feature and the angular-mixed feature are
considered as complementary information and interact with the
light-field feature for spatial super-resolution, to provide sufficient
consideration of phase correlation between different angles and to
reinforce the fidelity of fine structures under strong noises. During
thelearning process, the light-field feature isinteractively fused with
the spatial-angular feature and the angular-mixed feature in the
spatial-angular interaction module and the angular-mixed interac-
tionmodule, respectively. We apply alocal residual connectionin the
output features of the aforementioned interaction modules to fully
extract the features. The ablation study demonstrates the effective col-
laboration of the interaction modules and verifies the functions of the
three features (Supplementary Fig. 3). The feature interaction mod-
ules are followed by aK cascade and concatenation module, where K
denotesthe cascaded number, usually set to 4. Next, the concatenated
interacted spatial-angular feature (size of 169 x 25 x 25 x K-C pixels,
angle x height x width x K-fold channels) and angular-mixed feature
(size of 25 x 25 x K-C pixels), are realigned into the light-field domain
and subsequently squeezed into C channels before concatenating with
K light-field features (size of 325 x 325 x K-C pixels), to yield the fully
concatenated interacted features (size of 325 x 325 x (K + 2)-C pixels).
The concatenated interacted features are fused by al x 1 convolution
layer and aleaky rectified linear unit (Leaky ReLU) layer to generate the
fused light-field feature (size of 325 x 325 x C pixels). Last, the fused
features are fed into the upsampling module with a pixel shuffle to be
scaled up by 3 to produce the high-resolution spatial-angular views
(size of 75 x 75 x 169 pixels, height x width x angle). In addition, aglobal
residual connectionis used by adding the output and the upsampled
input with bicubic interpolation, to fully recover the high-frequency
details and speed up the convergence.

For network training we typically used 5,000 paired spatial-angu-
lar patches of the same dataset, and it usually took approximately
40 epochsfornetwork convergence. Considering theinherent sparsity
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of fluorescent specimens®, the pixel-wise meanabsolute error (L1-norm
error) is adopted as the loss function, which could be expressed as:

loss = |X-Y;,

where X denotes the ground truth of spatial-angular views and Y
denotes the output spatial-angular views. The parameters of the Adam
optimizer were setto 8,=0.9, B, =0.999. The learning rate was initial-
izedto2 x10™*and then decreased by afactor of 0.5 for every 10 epochs
during the training process.

Vs-Net works well for different types of data and has the robust
flexibility of input size. After the network s trained, it can be applied
to specimens from different organism. For the inference process, the
input data with the size of 153 x 153 x 169 pixels are first partitioned
into nine partially overlapping patches with the size of 69 x 69 x 169
pixels, and then transformed to nine high-resolution outputs with
thesize of 207 x 207 x 169 pixels, using sigmoid-based image fusion®
to generate the final output with the size of 459 x 459 x 169 pixels.
Finally, the output spatial-angular views are used to obtain the
high-resolution volume by iterative tomography with DAO, which
has been described in the previous work®. The validity of Vs-Net
has been verified in extensive fluorescence specimens including
fluorescent beads, living cells with mitochondria and membrane
labeling, blood cellsin zebrafish larvae, immune cellsin mouse livers,
and voltage indicators in Drosophila. To validate the considerable
scalability and generalization capability of Vs-Net, both numerical
simulations and biological experiments were performed. First, we
performed ageneralization test on cross-channel tasks, inwhich the
mitochondria channel and membrane channel in L929 cells were
mutually trained and predicted (Fig. 4a-c). Second, a Vs-Net model
that was pre-trained on mouse liver data with vessel and neutrophil
labeling under a x63/1.4 NA oil-immersion objective, performed well
on highly dynamic membrane and blood cells in a living zebrafish
larva, which were captured by another air-immersion objective
(Fig. 4d-g and Supplementary Fig. 15). Third, synthetic specimens
of beads and tubulins, which have great morphological differences,
were selected for cross-sample and transfer learning experiments
(Supplementary Figs. 14 and 19).

The Vs-Net can work on data captured by LFM with different kinds
of microlens arrays through slight network modifications. To enable
Vs-Net to accommodate data with different angular pixels, we need
to modify the parameter of angular numbers of the network, while
the main architecture of the network remains the same as before. To
verifyit, we set up an upright system, in which another microlense array
with the pitch size 0f136.5 pm and focal length 0f 2,800 pm was used.
The data obtained by the upright system have 21 x 21 angular views,
whereby the input size of the training dataset patches is 25 x 25 x 441
pixels (height x width x angle) and the output and target sizes are
75 x 75 x 441 pixels. Correspondingly, the spatial-angular feature has
thesize 0f 441 x 25 x 25 x C pixels (angle x height x width x channel), the
light-field feature has the size of 525 x 525 x C pixels (height x width x
channel) and the angular-mixed feature has the size of 25 x 25 x C pixels
(height x width x channel), where Cis usually set to 64 or 32, dependent
onthe GPU (graphics processing unit) memory. After network training,
the test data can be enhanced by Vs-Net. The Drosophila datain Fig. 6
were processed by the Vs-Net with 21 x 21 angular views as input. The
VsLFM results have comparableresolution to those of sLFMwhenthere
were no motion artifacts.

The network was implemented on a PyTorch platform with two
NVIDIA RTX 2080 Ti GPUs. The whole training process for 40 epochs
on a typical training set (approximately 5,000 pairs) took approxi-
mately 16 h, and inference and post-processing on one whole-FOV
light-field image took approximately 5 s for a spatial-angular image
size 0f 459 x 459 x 169 pixels. Training and inference time can be further
reduced by using more powerful GPUs. To maximize its accessibility,

we have released Vs-Net codes and corresponding 3D reconstruction
scripts with demonstration data to promoteinterdisciplinary research.

Comparison with previous methods

We compared our method with the previous methods, such as tradi-
tional LFM, sLFM, CARE, DFCAN and DFGAN, LF-InterNet, LF-DFnet,
VCD-Net and HyLFM-Net. All traditional LFM results used in this work
were reconstructed using phase-space deconvolution with a simple
bicubic interpolation applied on the low-resolution spatial-angular
views?. All sLFM results were acquired as described in the original
study?’, and all in vivo biological results were obtained with DAO, but
for simplicity, DAO is no longer specified in the texts.

For comparison with CARE*, DFCAN*” and DFGAN*, we adopted
two training strategies for comprehensive evaluations. First, we trained
the networks on the same spatial-angular views used in Vs-Net, which
were split into two stacks of images consisting of low-resolution and
high-resolution pairs (Supplementary Figs. 4 and 5). For CARE, we
used the bicubicinterpolation to upsample the low-resolutionimages
by a factor of 3 and cropped them into patches with 128 x 128 pix-
els (height x width) as input, and the corresponding high-resolution
images were also cropped into patches with 128 x 128 pixels as targets.
For the training of DFCAN and DFGAN, the low-resolution data were
croppedinto patches with 64 x 64 pixelsasinput, and high-resolution
resolution data were cropped into patches with 192 x 192 pixels as
targets. The scale factor was adjusted to 3. The training process took
approximately 10 h for CARE, 12 h for DFCAN and 18 h for DFGAN on
a single NVIDIA RTX 2080 Ti GPU for convergence. After network
inference, the output images were re-stacked as spatial-angular
views according to their angular positions, and the final whole-FOV
results were obtained with the same sigmoid-based image fusion
used in Vs-Net. The results of the comparisons are shown in Supple-
mentary Figs. 4 and 5. Second, we also trained the networks based
on the reconstructed volumes of LFM and sLFM for comparison
(Supplementary Fig. 6). In this case, the data pairs consisted of the
low-resolution volumes of LFM (with the size 0f 1,989 x 1,989 x 101
pixels, height x width x depth) and the high-resolution volumes of
SLFM (with the size 0f 1,989 x 1,989 x 101 pixels). For CARE, the data
pairswere cropped into 3D patches with the size 0f 128 x 128 x 16 pixels
for training. For DFCAN and DFGAN, which are designed for SISR tasks,
the 3D volume pairs were segmented as a stack of images. The input
low-resolution data were downsampled by a factor of 3 and cropped
into patches with the size of 128 x 128 pixels, while high-resolution
targets were cropped into patches with the size of 384 x 384 pixels.
The training processes of CARE, DFCAN and DFGAN were performed
on asingle NVIDIA RTX 2080 Ti GPU, which took approximately 20 h
for CARE, 25 h for DFCAN and 40 h for DFGAN for convergence. After
network inference the outputs were stitched using sigmoid-based
image fusion workingin 3D or 2D space.

LF-InterNet* requires raw light-field images as input and
high-resolution spatial-angular images as targets, while LF-DFnet"
requires tiled low-resolution spatial-angular images as input and
tiled high-resolution spatial-angular images as targets. The train-
ing inputs used for Vs-Net with the size of 25 x 25 x 169 pixels
(height x width x angle) were transformed to light-field images with
the size of 325 x 325 pixels (height x width) for LF-InterNet as input,
and tiled to images with the size of 325 x 325 pixels (height x width)
for LF-DFnet as input. Correspondingly, the high-resolution spatial-
angular images from the Vs-Net dataset were tiled to images with the
size of 975 x 975 pixels (height x width) as targets for both LF-InterNet
and LF-DFnet. The tiling operation stitches images from different
anglesinto a2D image accordingto their angular positions in the way
of amontage. The whole training process of LF-InterNet and LF-DFnet
took approximately 14 hand 20 h, respectively, onasingle NVIDIARTX
2080 TiGPUfor convergence. After networkinference the outputs were
rearranged according to the spatial-angular domain, and stitched by
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the same sigmoid-based image fusion used in Vs-Net. The results are
compared in Supplementary Figs. 4 and 5.

VCD-Net* and HyLFM-Net* require light-field images asinput data
and corresponding confocal or light-sheet volumes as targets, to train
fully supervised models. However, the target volumes are difficult to
acquireifusingasimple LFM or sSLFM system. Tocompare VsLFM with
VCD-Net and HyLFM-Net, we first conducted numerical simulationsin
whichtherequired confocal or light-sheet volumes could bereplaced by
the original synthetic volumes, to quantitatively evaluate their perfor-
manceincomplicated environments (Fig. 3 and Supplementary Fig.14).
To mimic the practical situations for fair comparison between differ-
ent methods, we trained Vs-Net, VCD-Net and HyLFM-Net in the same
ideal imaging conditions, and performed network inferences in mul-
tiple complicated scenes. We also compared VsLFM with VCD-Net and
HyLFM-Net on experimental data (Figs. 2,4 and Supplementary Fig. 7).
Given that the confocal and light-sheet modules are difficult to inte-
grate into the sSLFM system, the high-resolution volumes acquired by
sLFMwith 3D reconstruction were used as training labels. The VCD-Net
and HyLFM-Netresultsin Figs. 2-4 and Supplementary Figs. 7,14 were
obtained using open-source codes in previous studies®*?, and the
corresponding parameter of angle number was adjusted to make it
suitable for our system implementations. Specifically, the number of
input channels of VCD-Net and HyLFM-Net was modified to 169, and
abicubicinterpolation layer was attached to the end of each network
to match the output volume size of the target. The input data are the
same as that used in Vs-Net, with the size of 153 x 153 x 169 pixels. For
network training we randomly cropped out small input patches with
the size of 40 x 40 x 169 pixels (for HyLFM-Net) and 64 x 64 x 169 pix-
els (for VCD-Net), as well as the corresponding volume regions, to
create data pairs. The networks required to be trained for around
200 epochs for convergence. For network inference, partially over-
lapped patches with the size of 80 x 80 x 169 pixels (for HyLFM-Net)
and 64 x 64 x 169 pixels (for VCD-Net) were cropped from input data.
The same sigmoid-based image fusion used in Vs-Net was adopted to
stitch the output sub-volumes into whole-FOV volumes. The whole
training process of VCD-Net and HyLFM-Net took approximately 32 h,
andtheinference time for one whole-FOV frame took approximately 3 s
for VCD-Netand 7 s for HyLFM-Net. The network training and inference
were done onasingle NVIDIARTX 2080 Ti GPU.

We also develop anew end-to-end network, termed HyLFM-A-Net,
whichimposes channel attention*® on the existing HyLFM-Net, to fur-
ther increase the computational efficiency of 3D reconstruction for
VsLFM. HyLFM-A-Net is designed to accommodate high-resolution
angular views with 3 x 3 scanning as input, with full-sampled
high-resolution volumes as labels. The detailed architecture of
HyLFM-A-Net is shown in Supplementary Fig. 17a,b. The output of
Vs-Net prediction was used directly for the input of HyLFM-A-Net, with
apatchsize of 120 x 120 x 169 pixels (height x width x angle), while the
target data consisted of the reconstruction results by iterative tomog-
raphy with the size of 520 x 520 x 101 pixels (height x width x depth).
2D convolutions with channel attention were followed to extract
features with a size of 120 x 120 x 64 pixels (height x width x chan-
nel), then two subpixel convolutions were used to recover the spatial
resolutioninto 480 x 480 x 64 pixels. Another two convolutions with
channel attention were used to adjust the feature channels into the
size of 808, which was eightfold the output depth. We rearranged the
2D features into 3D features with a size of 480 x 480 x 8 x 101 pixels
(height x width x channel x depth) and used 3D convolutionsto fuse the
featuresinto 480 x 480 x 101 pixels (height x width x depth). A bicubic
interpolation layer was attached to the end of the network to match
the volume size of 520 x 520 x 101 pixels for supervision. A detailed
comparison of HyLFM-Net and HyLFM-A-Net is givenin Supplementary
Fig. 17f. The channel size and feature size of HyLFM-Net and
HyLFM-A-Net had been adjusted to our LFM set-up. HyLFM-A-Net
follows the concept of HyLFM-Net, in which the depth dimension is

rearranged using 2D channels that are integer multiples of the depth,
and then the multiple is considered as the channel of 3D features.
Attention operators were applied on 2D layers before rearrangement.
For HyLFM-Net, the affine layer was used when it was trained with
light-sheet continuous supervision, but when trained with sLFM recon-
struction, the affine layer was removed.

We trained 400 epochs in 14 h on a single NVIDIA RTX 3090 GPU
for convergence. During inference, the Vs-Net output with the size
of 459 x 459 x 169 pixels was cropped into four overlapping patches
with a size of 237 x 237 x 169 pixels, and the same sigmoid-based
image fusion mentioned above was used for volume stitching. The
whole inference time of HyLFM-A-Net for a single volume with a size
0f 1,989 x 1,989 x 101 pixels is approximately 6 s, while 11 s in total is
required with Vs-Net inference involved, which is comparable to the
inference time of HyLFM-Net. HyLFM-A-Net achieves a similar per-
formance to that of 3D deconvolution in the imaging of living cells,
with reduced computation costs at the cost of aberration robustness
(Supplementary Fig.17c-e). All of the deep learning networks used for
comparison were trained on the same dataset as that used in VsLFM.

Beads preparation and resolution characterization

For the fluorescent beads preparation, 1 ml 100-nm-diameter fluo-
rescentbeads (Thermo Fisher TetraSpeck Microspheres, T7279) were
diluted with100 ml pure water at room temperature to produce diluted
fluorescent beads. Then 10 mg ml™ diluted agarose was produced by
mixing 1,000 mg pure agarose (Thermo Fisher UltraPure Low Melt-
ing Point Agarose, 16520100) with 100 ml pure water at 80 °C. When
diluted agarose cooled to 40 °C, 1 ml diluted agarose and 1 pl diluted
fluorescentbeads were mixed well. Next, a200 pl mixture of beads and
agarose was put into a 35 mmdish (Thermo Fisher Nunc glass bottom
dish,150682) and left for 30 min to solidify to produce a uniform 3D dis-
tribution of beads. A x63/1.4 NA oil-immersion objective was selected
to verify the high-resolution capability of VsLFM. The temperature of
theimaging environment was controlled ataround 27 °C. For quantita-
tive resolution analysis, the FWHM was calculated by measuring the
intensity distributions of the reconstructed cross-section planes of
thebeadslaterally and axially using a Gaussian fit. The calculation was
conducted with MATLAB software on the results of LFM, VsLFM and
sLFM, respectively. The FWHMs are presented as bar plots, in which
the mean values and the standard deviations indicate the distribution
of spatial resolution at different axial positions.

Living L929 cellimaging

L929 cells were cultured in DMEM (Gibco) medium supplemented
with 10% FBS (Biological Industries), 2 mM GlutaMAX and 100 U mI™*
penicillin-streptomycinin 5% CO, at 37 °C. The PiggyBac Transposon
Vector System and Vigofect were used for cell transfection to generate
1929 TSPAN4-mCherry and TOM20-GFP stable cell lines**. L929 cells
were cultured onafibronectin-coated confocal dish and in DMEM (no
phenol red) (Gibco) medium for imaging. During imaging, a micro-
scopeincubator system (Tokai Hit, INUF-IX3D-F1) was used to maintain
the environmental conditions of 37 °C and a CO, concentration of 5%.

Zebrafishimaging

Forimaging of zebrafishembryos, the cultured embryos were injected
with 300 pg Tspan4a-EGFP messenger RNA (synthesized in vitro with
mMessage mMachine T7 kit, Ambion, AM1344) in one cell at the 16-cell
stage. Then the embryos were mounted in 1% low-melting-point aga-
rose. Duringimaging, a x63/1.4 NA oil-immersion objective was used,
and the environment temperature was setataround 27 °C. Forimaging
of blood flow dynamics in zebrafish larvae, Tg(flk:EGFP; gatal:DsRed)
transgenic zebrafish embryos were collected and cultured in Holt-
freter’ssolution at 28.5 °C. At 3-4 days postfertilization the zebrafish
larvae were anesthetized using ethyl 3-aminobenzoate methane-
sulfonate salt (100 mg1™) and embedded in 1% low-melting-point
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agarose in 35 mm confocal dishes (Thermo Fisher Nunc glass bot-
tom dish, 150682) for in vivo imaging. During imaging, a x20/0.5 NA
air-immersion objective was selected to cover an FOV of 600 x 600 pm?,
and the environmental temperature was set at around 27 °C.

Mouse experiments

The miceusedinthis project were male and wild type (C57BL6/J, around
7-8 weeks). Mice were housed with food and water available ad libitum
underal2 hlight-dark cycleat22 °Cwith arelative air humidity of ~50%.
For the mice labeled with neutrophils and vessels, 1 pg Ly6G/Ly6C mono-
clonalantibody (PE-Cyanine7, eBioscience, 25-4317-82),3 ug AF647-WGA
(AlexaFluor 647 Conjugate, ThermoFisher, P21462) and 100 pl PBS were
injectedi.v. After 30 min, Avertin (350 mg kg™) was injected i.p. into the
mice for anesthetization. After 20 min, the deeply anesthetized mice
were dissected to expose the living liver on a home-made holder with a
170-um-thick coverslip for intravitalimaging. A x63/1.4 NA oil-immersion
objective was selected to capture subcellular dynamics. During the
intravital imaging, a 37 °C body temperature maintenance instrument
(ThermoStar Homeothermic Monitoring System, RWD) was launched
to maintain the mouse in the native physiological state.

Drosophila experiments

Drosophila strains (MBO65B-GAL4 > 20xUAS-pAce) were provided by the
Schnitzerlaboratory at Stanford University and the Zhong laboratory
at Tsinghua University. The Drosophila used in our experiments were
female at 3-7 days and raised on the standard cornmeal agar media
with a12 h light-dark cycle at 25 °C. Based on the protocol described
previously®, Drosophila were anesthetized on ice and mounted on
a 3D-printed plastic disk with free movement of the legs. Then, the
posterior head capsule was opened using sharp forceps (5SF, Dumont)
in carbonated (95% O,, 5% CO,) buffer solution with a pH of 7.3 and an
osmolarity of 275 mosM. Next, the air sacs, tracheas and M16 muscle
were removed to minimize brain movement*®. Ultraviolet glue was also
added around the proboscis. After the surgery, Drosophila were placed
under the objective lens for imaging of voltage transients in sparsely
labeled neurons. For neural recording of the response to odor stimulus,
3% benzaldehyde was fedina5son-5soffcycle.

Neural extraction and analysis

For neural analysis of Drosophila data, we manually selected several
regions of interest (ROIs) as shownin Fig. 6. The temporal traces of neu-
ralactivity were calculated as AF/F, = (F-F,)/F,, where Fis the averaged
intensity of the ROland F,is the baseline intensity. F,was calculated as
themean fluorescenceinthe ROl averaged over the entire time series.
The neural spikes were identified as the local peaks that rose above a
threshold value (2% for VsLFM results and 1.2% for sLFM results) after
the median-filtered (40 ms window) version was subtracted from
the AF/F, curve, and visualized as flashes of light in Supplementary
Video 6. Each identified spike was temporally aligned to the time at
which its peak value of AF/F, occurred, to generate the average spike
waveforms. The FWHM of each spike was calculated by measuring
theintensity distribution of the spike temporal trace using a Gaussian
fit. The amplitude of each spike was calculated as the absolute value
of the peak. The peak time map was extracted from a single peak in
the captured movie, in line with the previously reported method”".
Specifically, we first applied a spatial Gaussian filter with a standard
deviation of 9 voxels and a wavelet-based denoising method to each
voxelindependently. Then we fitted the filtered data with a quadratic
splineinterpolation. Finally, we used the threshold crossing time on the
rising edge as the peak time of a specific voxel to generate the whole
peak time map. The video of subframe propagation was made based
on the peak time map. The firing rate was calculated as the number of
spikes per second in theresting or stimulated state, and the curve was
obtained withalstemporal sliding window.

Ethics statement

This work complies with all relevant ethics regulations for animal
research and testing. All experimental procedures were performed
with ethics approval from the Animal Care and Use Committee (IACUC)
of Tsinghua University.

Data analysis

All data processing and analyses were performed with customized
MATLAB (MathWorks, MATLAB 2018b) scripts and Python (v3.7)
scripts. The data collection and hardware control were performed
with LABVIEW (2019 version) and our previously developed graphical
user interface (sLFdriver®, v2.0). The 3D volumes of Drosophila brain
inFig. 6 were rendered using Imaris (v9.0.1). The 3D rendering of the
volumes in the supplementary videos was carried out using Voltex
modules in Amira (Thermo Fisher Scientific, Amira 2019). The 3D
tracking of blood cells in the vessels of the zebrafish larvae and the
neutrophilinthe vessels of mouse liver was carried out automatically
using Imaris (v9.0.1).

Performance metrics

We chose signal-to-noiseratio, structural similarity (SSIM) and cut-off
frequency (k,)*® to quantitatively evaluate the capability of VSLFM.
Synthetic volumes or sLFM results were regarded as ground truth, as
describedinthe Figure legends. The signal-to-noise ratiois calculated

by the following formula:

X3
SNR =10log,, ———,
IX = Y13

where Xrepresents the ground truthand Yrepresents the correspond-
ingreconstructed results. SSIMis calculated by the following formula:
(2uxyy +(0.01-1)°) (2axy +(0.03-1))

(12 + 12 +(0.01- 1)) (03 + 0 +(0.03 - L)Z)’

SSIM =

where X and Y represent the signals, i, and u, represent the average
values of each signal, o,and o, represent the corresponding standard
deviations of each signal, and g, represents the cross-covariance for
Xand Y. Thedynamic-range value L in this work is 1after the datawere
normalized to single-precision floating-point numbers. The SSIM
indices were calculated on 2D images (Supplementary Figs. 3h, 4b,
8b, 8e,9d,18d) or 3D images (Fig. 3fand Supplementary Figs. 4a,19b),
according to different evaluation requirements. For SSIM calculation
on 2D images, we calculated the local SSIM maps with multiple (slid-
ing) 2D local Gaussian windows (with the size of 11 x 11 and standard
deviation of 1.5) and averaged them to produce the SSIM metric. For
SSIM calculation on3D images, we first reshaped the 4D angular views
(height x width x 13 x 13) into a 3D form (height x width x 169). The 169
angles were arranged based on their spatial proximity. Then local SSIM
maps were computed in multiple (sliding) 3D local Gaussian windows
(with the size of 11 x 11 x 11 and standard deviation of 1.5) of the 3D
image. Finally, the mean value of the local SSIM maps was returned as
the SSIM metric. In practice, the calculations were conducted using
the built-in ssim.m function in MATLAB R2018b. For decorrelation
analysis of images®, the cross-correlation coefficient is calculated by
the following formula:

SR{K) I (K) M (K; 1)} dkydk,

dr) =

N s ’

where /(k) denotes the Fourier transform of the input image, /,(k)
denotes the normalized form of I(k), k = (k,, k,) denotes the Fourier
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space coordinates and M(k;r) denotes the binary mask of radius r.
Thenthe cut-off frequency (k,) is calculated by the following formula:

ke = max{r;},

where r; denotes the radius of the binary mask, corresponding to the
frequency of the highest peak. We also used the Pearson correlation
coefficient (R) to evaluate the similarity between the ground truth
and the results by different methods. R is calculated by the following
formula:

R= E[X =) (Y= py)]
B Ox0y

B

where X and Y denote the signals, u, and p, represent mean values of
eachsignal, oyand g, denote the corresponding standard deviations of
eachsignal, and E[-] denotes the expectation. For quantitative analysis
on Fourier spectra (Fig. 4e), the Fourier ring correlation (FRC) were
applied as described in the original paper®. In the calculation of the
FRC curve, the threshold was set to1/7 = 0.143 for the cut-off frequency.

Statistics and reproducibility

Biological datashowninFigs. 2,4, 5, 6 and Supplementary Figs.4,5, 6,
15,16 are representative of n = 6 experiments. Biological data shown
in Supplementary Figs. 9 and 13 are representative of n =12 experi-
ments. Simulated data shown in Fig. 3 and Supplementary Figs. 10,
12 are representative of n =17 experiments. Simulated data shown in
Supplementary Figs. 1, 8,11, 14,17, 18, 19 are representative of n =20
experiments.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Bio-LFSR dataset includes more than 1,300 pairs of 4D
low-resolution and high-resolution images, covering four species,
six structures and multiple imaging conditions, and is made publicly
accessible onZenodo (https://doi.org/10.5281/zenodo.7233421)*’. Sup-
porting data for Vs-Net have been made publicly available on GitHub
(https://github.com/THU-IBCS/VsLFM-master/tree/main/Data).

Code availability

All relevant codes of VsLFM are readily accessible and available on
Github (https://github.com/THU-IBCS/VsLFM-master) and Zenodo
(https://doi.org/10.5281/zenodo.7436082)°,
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Data collection LFM and sLFM imaging data were acquired using LABVIEW (2019 version) and our previously published acquisition software, termed sLFdriver
(version 2.0, refer to Lu, Z. et al. Nat. Protoc. 2022. https://doi.org/10.1038/s41596-022-00703-9). All relevant codes of VsLFM are readily
accessible and available on Github (https://github.com/THU-IBCS/VsLFM-master) and Zenodo (https://doi.org/10.5281/zenodo.7436082)

Data analysis All data processing and analyses were performed with customized MATLAB (MathWorks, MATLAB 2018b) scripts and Python (3.7 version)
scripts. The 3D volumes of Drosophila brain in Fig. 6 were rendered using Imaris (Imaris 9.0.1 software). The 3D rendering of the volumes in
supplementary videos was carried out by Voltex modules in Amira (Thermo Fisher Scientific, Amira 2019). The 3D tracking of blood cells in the
vessels of the zebrafish larvae and one neutrophil in the vessels of mouse liver were carried out automatically using Imaris.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Bio-LFSR dataset includes more than 1300 pairs of 4D low-and-high resolution images, covering four species, six structures and multiple imaging conditions, and
are made publicly accessible on Zenodo (https://doi.org/10.5281/zenodo.7233421). Supporting data for Vs-Net has been made publicly available on GitHub
(https://github.com/THU-IBCS/VsLFM-master/tree/main/Data).
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Reporting on sex and gender No human research participants in this study.

Population characteristics Not involved in this study
Recruitment Not involved in this study
Ethics oversight Not involved in this study
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size is labeled in the figure legends. For the statistics of SBR and resolution characterization experiments, n is mainly determined
by the concentration of fluorescent beads. The experiment used a relatively suitable concentration, to prevent the beads from covering each
other. For resolution characterization in Fig. 2b, 10 beads with the highest fitting degrees (n =10) per plane and 8 plane in total were used. For
Pearson correlation analysis demonstrated in Fig. 3¢, n = 17 for each method, which represents by the number of randomly synthetic data.
For another Pearson correlation analysis in Supplementary Fig. 14, n = 20 for each method, which was determined by the number of
synthetic data. For 3D tracking of blood cells demonstrated in Supplementary Fig. 15, n (= 76) is determined by the specific number of
circulating cells at that time. For spike analysis in Figs. 6f and 6g, n = 26 for VsLFM and n =5 for sLFM, which represent the numbers of
identified spikes.

Data exclusions  No data were excluded for the analysis.

Replication Biological data shown in Figs. 2, 4, 5, 6 and Supplementary Figs. 4, 5, 6, 15, 16 are representative of n = 6 experiments. Biological data shown
in Supplementary Figs. 9, 13 are representative of n = 12 experiments. Simulated data shown in Fig. 3 and Supplementary Figs. 10, 12 are
representative of n = 17 experiments. Simulated data shown in Supplementary Fig. 1, 8, 11, 14, 17, 18, 19 are representative of n = 20
experiments.

Randomization  Randomization was not relevant to this study, since no experimental group was formed.

Blinding Blinding was not relevant to this study, since no group allocation was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Antibodies
Antibodies used Ly6G/Ly6C monoclonal antibody
Validation The Ly6G/Ly6C monoclonal antibody was validated from the website (https://www.thermofisher.cn/cn/en/antibody/product/Ly-6G-

Ly-6C-Antibody-clone-RB6-8C5-Monoclonal/A14748), and purchased to perform mouse experiments.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Mouse L929 (ATCC)
Authentication The cell lines were not authenticated.
Mycoplasma contamination The cell line were not tested for mycoplasma contamination.

Commonly misidentified lines No cell lines used in this study were found in the database of commonly misidentified cell lines that is maintained by ICLAC
(See ICLAC register) and NCBI Biosample.
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Reporting on sex The mice used in this project are male. The biological sex of zebrafish used in the study is unknown. The Drosophila used in this paper
are female.

Field-collected samples  Not involved in this study

Ethics oversight Animal protocol procedures were reviewed and approved by the Institutional Animal Care and Use Committee office of Tsinghua
University.
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