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Virtual-scanning light-field microscopy for 
robust snapshot high-resolution volumetric 
imaging

Zhi Lu    1,2,5, Yu Liu3,5, Manchang Jin3, Xin Luo3, Huanjing Yue3, Zian Wang1, 
Siqing Zuo1,2, Yunmin Zeng1,2, Jiaqi Fan2, Yanwei Pang3, Jiamin Wu    1,2,4  , 
Jingyu Yang    3   & Qionghai Dai    1,2,4 

High-speed three-dimensional (3D) intravital imaging in animals is useful 
for studying transient subcellular interactions and functions in health and 
disease. Light-field microscopy (LFM) provides a computational solution 
for snapshot 3D imaging with low phototoxicity but is restricted by low 
resolution and reconstruction artifacts induced by optical aberrations, 
motion and noise. Here, we propose virtual-scanning LFM (VsLFM),  
a physics-based deep learning framework to increase the resolution of 
LFM up to the diffraction limit within a snapshot. By constructing a 40 GB 
high-resolution scanning LFM dataset across different species, we exploit 
physical priors between phase-correlated angular views to address the 
frequency aliasing problem. This enables us to bypass hardware scanning 
and associated motion artifacts. Here, we show that VsLFM achieves 
ultrafast 3D imaging of diverse processes such as the beating heart in 
embryonic zebrafish, voltage activity in Drosophila brains and neutrophil 
migration in the mouse liver at up to 500 volumes per second.

Understanding the interaction and function between multiple cells 
and organelles in living organisms requires high-resolution robust 
volumetric imaging at high speed. In the past decade, various efforts 
in three-dimensional (3D) fluorescence imaging have been made to 
promote the rapid development of cell biology1–6, developmental biol-
ogy7–10 and neuroscience11–16. Of these, light-field microscopy (LFM) has 
been widely used in neural recordings of diverse animals with cellular 
resolution, due to its compact optical system and snapshot volumetric 
imaging capability15–19. By simultaneously exciting and collecting all 
fluorescence photons from the entire volume, LFM facilitates long-term 
high-speed intravital imaging in mammals at low phototoxicity20. 
Although numerous reconstruction algorithms have been developed to 
enable the practical and versatile application of LFM in biology21–27, LFM 
is still hindered by low spatial resolution and reconstruction artifacts, 
especially in complicated intravital environments. By introducing 

periodic beam drifting to increase the spatial sampling density, scan-
ning LFM (sLFM) increases the resolution up to the diffraction limit 
and facilitates multi-site aberration correction in post-processing28, 
but the physical scanning process reduces the 3D imaging speed and 
may introduce motion artifacts for highly dynamic samples20.

Meanwhile, with the rapid development of deep learning, many 
emerging learning-based algorithms have been introduced in LFM29–33 
to improve the reconstruction speed and resolution using light-sheet 
microscopy32 or confocal microscopy31,33 as the ground truth. However, 
there are still three main bottlenecks for these end-to-end networks. 
First, by mapping the low-resolution multi-view data to high-resolution 
3D volumes directly, the spatial resolution of current learning-based 
LFM is far from sufficient for subcellular structures, due to the huge res-
olution gap between the raw light-field measurements and the diffrac-
tion limit of the objective. Second, end-to-end networks are susceptible 
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of each angle separately (Fig. 1b). We use the proposed Vs-Net to 
map the low-resolution spatial–angular views acquired by LFM to 
high-resolution views, with 3 × 3 sLFM acquisitions as ground truth. 
Unlike end-to-end networks, which need two systems to acquire 
light-field images and target volumes separately, data pairs required 
for Vs-Net training can be simultaneously captured on the sLFM sys-
tem, whereby all of the pairs are intrinsically well matched without the 
requirement of extra pixel registration or processing. To leverage the 
frequency aliasing in different spatial–angular views, we first impose 
a feature extractor to yield three types of features, which are then 
fully mixed, interacted and fused in elaborately designed modules, 
and are finally upsampled by a pixel shuffle to predict high-resolution 
spatial–angular views (Fig. 1b and Supplementary Fig. 2). With three 
interaction modules working collaboratively, Vs-Net can be regarded 
as an effective high-resolution module to replace hardware scanning 
in sLFM for highly dynamic samples (Fig. 1b and Supplementary Fig. 3). 
More details on the network architecture and size parameters are given 
in Methods and Supplementary Table 1. After being strengthened by 
Vs-Net, the spatial–angular views are fed into iterative tomography with 
DAO20, a proven and general framework independent of sample struc-
tures and imaging conditions. Point spread functions are then imposed 
as another physical prior to reconstruct 3D high-resolution volumes 
up to the diffraction limit. Our two-step physics-based learning frame-
work can then fill the huge resolution gap, usually at a factor greater 
than 10, corresponding to the ratio between the resolution of raw LFM 
measurements and the diffraction limit of the objective, which hinders 
traditional LFM15,25 or previous end-to-end learning-based LFM31,32 in the 
resolution of subcellular structures at the submicron level.

Resolution characterization of VsLFM
Vs-Net can be regarded as a threefold super-resolution network for 4D 
images (2D spatial domain and 2D angular domain). Although several 
deep learning-based algorithms have been proposed for single-image 
super-resolution (SISR) used in fluorescence microscopy35–37, they 
do not consider the phase-correlated angular measurements in LFM. 
Existing algorithms designed for the 4D spatial–angular domain are still 
based on the geometric optics used in photography, in which the sam-
pling size is much larger than the diffraction limit38–41. Therefore, they 
are difficult to apply in LFM, which needs to consider the wave-optics 
diffraction effects for the high-NA objective lens. By contrast, Vs-Net 
applies multiple designed features in network architecture and ade-
quate light-field datasets in microscopy, which accurately model the 
large angular disparity and wave-optics diffraction originating from 
the large collection angle of the objective lens. To show the advantage 
of VsLFM over state-of-the-art SISR microscopy approaches including 
the content-aware imaging restoration network (CARE)35, deep Fourier 
channel attention network (DFCAN)37, deep Fourier channel attention 
network with generative adversarial strategy (DFGAN)37 and light-field 
super-resolution approaches including spatial–angular interactive net-
work (LF-InterNet)40 and deformable convolution network (LF-DFnet)41, 
we imaged a fixed L929 cell with membrane labeling and compared 
the high-resolution angular images processed with these networks in 
terms of signal-to-noise ratio and structural similarity (SSIM) indices 
(Supplementary Fig. 4). The ground truth data were obtained using 
sLFM. We then compared the 3D reconstruction results based on the 
network output. SISR or light-field super-resolution approaches show 
no additional resolution enhancement after reconstruction, given that 
the output of different angles does not fulfill the point spread function 
constraints required for incoherent synthetic aperture (Supplementary 
Fig. 5). Even when SISR networks were trained on data after reconstruc-
tion, the performance was still inferior to that of VsLFM (Supplementary 
Fig. 6). By contrast, VsLFM has better resolution without artifacts after 
3D deconvolution, compared with sLFM.

After showing that VsLFM outperforms state-of-the-art super- 
resolution methods in the spatial–angular domain, we then compared 

to the model of the imaging process and face severe degradation in opti-
cally challenging environments, such as low signal-to-noise ratio and 
strong optical aberrations induced by tissue heterogeneity or imper-
fect imaging systems. Last, existing data-driven end-to-end approaches 
show poor generalization across a wide variety of biological samples, 
placing demanding requirements on the training dataset. Therefore, 
robust snapshot 3D imaging of subcellular dynamics remains a chal-
lenge for the study of transient biological dynamics in animals.

Here, we propose a physics-based deep neural network to increase 
the resolution of LFM based on an sLFM dataset by exploring the fre-
quency aliasing between different angles, termed virtual-scanning 
light-field microscopy (VsLFM). Given that the low-resolution 
unscanned spatial–angular views could be extracted directly from the 
high-resolution data obtained by sLFM, we generated an open-source 
sLFM dataset, named Bio-LFSR, with well-matched high-resolution 
and low-resolution pairs across a wide range of species, structures and 
imaging conditions. With the physical constraint of frequency aliasing 
in multiple angular views induced by the diffraction of the small micro-
lens aperture, VsLFM achieves better spatial resolution, robustness 
to optically challenging environments and generalizability to diverse 
sample structures than previous end-to-end methods. Working on the 
same compact system as a traditional LFM without the requirement 
of physical scanning, VsLFM achieved ~230 nm lateral resolution and 
420 nm axial resolution across a large volume of 210 × 210 × 18 μm3 
within a snapshot. Compared with sLFM, VsLFM eliminates motion 
artifacts with better temporal resolution for highly dynamic samples 
such as the beating heart, blood flow and voltage activities, while 
maintaining the capability of multi-site digital adaptive optics (DAO) 
and low phototoxicity. To demonstrate its unique advantages, we 
quantitatively validated VsLFM on both synthetic and experimental 
data. As demonstrations, we observed various transient 3D subcellular 
dynamics in cultured cells, a zebrafish embryo, zebrafish larvae, Dros-
ophila and mice during different physiological processes at a camera 
frame rate of up to 500 volumes per second (vps).

Results
Principle of VsLFM
Our previous studies20,28 have shown that the microlens array inserted 
at the image plane can preserve the high-frequency spatial information 
in the low-frequency region during pupil segmentation for angular sam-
pling due to the diffraction effect of the small microlens aperture. Such 
a process is akin to the structured illumination microscopy in the detec-
tion path, which ensures that the multiple angular images obtained by 
LFM are phase correlated, even for incoherent fluorescence light. How-
ever, the physical size of each microlens restricts the spatial sampling 
density, further exacerbating the frequency aliasing problem (Fig. 1a). 
Previous deconvolution algorithms25,34 use cubic interpolation during 
reconstruction, which ignores the effect of frequency aliasing and 
results in grid-like artifacts and low resolution (Supplementary Fig. 1).  
By shifting the light field periodically, sLFM uses physical scanning 
to increase the spatial sampling density (Supplementary Fig. 1). Only 
3 × 3 scanning number is sufficient to address the frequency aliasing 
problem and recover the resolution up to the diffraction limit of the 
whole-objective numerical aperture (NA) for the light-field system 
with 13 × 13 angular views. However, such a physical scanning process 
will reduce the temporal resolution and introduce motion artifacts if 
there are strong morphological or intensity changes in the samples 
during the scanning process of 9 camera frames.

We have therefore developed a virtual-scanning network (Vs-Net) 
in the spatial–angular domain to replace the physical scanning process 
in sLFM for highly dynamic samples (Fig. 1a). The Vs-Net is designed 
to exploit the phase correlation between different angles introduced 
by the microlens diffraction and extract the high-frequency informa-
tion from the complicated frequency aliasing by considering multi-
ple angular measurements during the upsampling process instead 
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VsLFM with other end-to-end light-field reconstruction networks by 
evaluating the reconstructed 3D volume (Fig. 2). We chose two recent 
representative end-to-end networks, VCD-Net31 and HyLFM-Net32 
with optimized parameters (Methods). Much better resolution and 
contrast could be obtained by VsLFM in terms of the maximum inten-
sity projection (MIP) and single slice (Fig. 2a). We then quantitatively 
characterized the resolution of VsLFM and other methods by imaging 
subdiffraction-limit fluorescent beads and measuring the average full 

width at half-maximum (FWHM) across different axial planes (Fig. 2b). 
We found that the resolution improvement in VsLFM is at least fourfold 
higher than that of LFM and twofold higher than that of VCD-Net and 
HyLFM-Net (Fig. 2c and Supplementary Fig. 7). The stability of VsLFM 
is also demonstrated by the small variance of FWHM across the whole 
field of view (FOV) of 210 × 210 × 18 μm3. To further verify the resolution 
improvement of VsLFM, we summed up two images of the same bead 
by a lateral shift of 230 nm on a piezo stage to generate two virtually 
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Fig. 1 | Principle of VsLFM. a, Principle of VsLFM using a physics-based deep 
neural network (Vs-Net) to extract the high-frequency information from the 
frequency aliasing in traditional LFM induced by diffraction of a small microlens 
aperture and low spatial sampling density. Such a process can be viewed as a 
virtual-scanning process to increase the spatial sampling density. b, Schematic 
diagram of the optical system and processing pipeline of VsLFM. In sLFM, a 2D 
scanning galvo shifts the image plane by 3 × 3 times physically to increase the 
sampling rate of angular views, which is limited by the physical size of each 
microlens in LFM. For a VsLFM system without a scanning galvo system, the 
microlens array (MLA) is placed at the back focal plane of the tube lens, and the 

length of the whole optical path is shortened. VsLFM uses a supervised-learning 
network (Vs-Net) including the extraction, interaction, fusion and upsampling of 
multiple spatial–angular features to realize the scanning process virtually. High-
resolution angular measurements obtained by sLFM serve as the ground truth 
during network training to learn the physical prior between the phase-correlated 
low-resolution angular measurements. Finally, iterative tomography with DAO 
is implemented on multiple angular views obtained by Vs-Net to reconstruct 3D 
high-resolution volumes. Scale bars, 10 μm (spatial domain) and 1 μm−1  
(Fourier domain) (a).
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Fig. 2 | Resolution enhancement of VsLFM. a, MIPs and enlarged regions 
from xy slices at z = 1 μm of a fixed L929 cell with membrane labeling (TSPAN4-
mCherry), obtained by LFM, VCD-Net, HyLFM-Net, VsLFM and sLFM, 
respectively. b, Boxplots of averaged lateral resolution and axial resolution of 
LFM, VCD-Net, HyLFM-Net, VsLFM and sLFM at different axial positions (n = 10 
beads per plane). The resolution was estimated by imaging 100-nm-diameter 
fluorescent beads that were uniformly distributed in low-melt agarose with a 
×63/1.4 NA oil-immersion objective, and measuring the FWHM with a Gaussian 
fit. Lateral and axial diffraction-limited resolutions at a center wavelength of 
525 nm are shown with the dashed lines for comparison. Data are presented 

as mean ± s.d. c, Spatial–angular views and the corresponding reconstructed 
MIPs of a selected 100 nm fluorescent bead, obtained by traditional LFM, 
VsLFM, sLFM, VCD-Net and HyLFM-Net, respectively. The normalized profiles 
along the marked dashed lines are shown in the insets. All of the learning-based 
methods were trained on the bead dataset. d, MIPs of two virtually separated 
beads obtained by LFM, VCD-Net, HyLFM-Net, VsLFM and sLFM with cross-
section profiles along the dashed lines. We imaged the same 100 nm bead at 
two positions with an interval of 230 nm shifted by a piezo translation stage and 
added the images together to create the two virtually separated beads. Scale 
bars, 10 μm (a), 1 μm (c), 200 nm (d).
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separated beads. While LFM with VCD-Net and HyLFM-Net trained 
on the beads dataset cannot resolve the structures, VsLFM and sLFM  
can distinguish these two beads clearly (Fig. 2d). In addition, we 
synthesized 3D distributed tubulins in a numerical simulation to 
evaluate the resolution of VsLFM for complicated structures (Sup-
plementary Fig. 8a). VsLFM has better performance than LFM, with 
more high-frequency components in the Fourier spectrum, leading to  
an improvement in signal-to-noise ratio of ~15 dB and SSIM enhance-
ment of 0.12 in the spatial–angular domain, and an improvement  
in signal-to-noise ratio of 2 dB and SSIM enhancement of 0.2 after 
reconstruction (Supplementary Fig. 8b,c). Moreover, the improve-
ment of VsLFM is stable for different sample densities (Supplementary 
Fig. 8d,e).

To validate the subcellular resolution of VsLFM on biological 
dynamics in the long term, we imaged mitochondrial (cyan) and mem-
brane (magenta) dynamics in cultured L929 cells with sLFM data as 
ground truth (Supplementary Fig. 9a and Supplementary Video 1). 
Remarkable improvements by VsLFM over LFM can be observed via 
the signal-to-noise ratio and SSIM metrics (Supplementary Fig. 9b–d). 
Diverse subcellular dynamics can be visualized with low phototoxicity 
in the long term including mitochondrial behaviors during cell division, 
fiber retraction, and migrasome formation (Supplementary Fig. 9e,f).

Robustness in optically challenging environments
Different from in vitro imaging, intravital imaging usually has a large 
variety of noise and optical aberrations due to the tissue heterogeneity, 
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Fig. 3 | VsLFM shows robustness to noise and optical aberrations.  
a, Orthogonal MIPs of 1-μm-diameter synthetic tubulins, acquired by sLFM with 
a ×63/1.4 NA oil-immersion objective in ideal imaging conditions, regarded 
as ground truth. b, VsLFM, VCD-Net and HyLFM-Net results after the input 
contaminated by strong mixed Poisson–Gaussian noise. We set the image bit 
depth to 16, the variance of Gaussian noise to 5, and the photon number of the 
maximum intensity to 30. The signal-to-noise ratio (SNR), after reconstruction 
by different methods, is also given. c, Pearson correlations of results obtained 
by VsLFM, VCD-Net and HyLFM-Net, compared with ground truth. The center 
line represents the median, the box limits represent the lower and upper 
quartiles, and the whiskers represent 1.5-fold the interquartile range. P values 
were calculated using the two-sided paired t-test: P = 9.40 × 10−18 for VCD-Net 

and P = 8.77 × 10−17 for HyLFM-Net. n = 17 for each method, which represents 
the number of noisy images. d, Reconstructed MIPs with an induced aberration 
wavefront, the root mean square (RMS) of which was set to 1 wavelength, 
obtained by VsLFM without DAO, VsLFM with DAO, VCD-Net and HyLFM-Net. 
The estimated wavefront by DAO is shown in the inset. The Fourier transforms 
corresponding to the whole FOVs by the four methods are shown in the right 
panel. e, Normalized intensity profiles along the blue dashed line marked by the 
arrows in d for four different methods. The arrows indicate the positions of the 
signal peak. f, The curves of reconstructed SSIM versus aberration levels applied 
for different methods. Note that Vs-Net, VCD-Net and HyLFM-Net used here were 
all trained on the same tubulin data in ideal imaging conditions without noise and 
aberration. Scale bars, 10 μm (a,b), 10 μm (left) and 2 μm−1 (right) (d).
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which makes it challenging for computational microscopy based on 
accurate imaging models. End-to-end networks are usually limited to 
specific imaging conditions due to dataset limits, while VsLFM, with 
its two-step strategy and physics-based priors, can maintain similar 
performance in complicated scenarios.

To evaluate such robustness, we first compared the noise perfor-
mance of VsLFM, VCD-Net and HyLFM-Net, all of which were trained 
in high signal-to-noise ratio conditions and tested in photon-limited 
imaging conditions (Fig. 3a,b and Supplementary Fig. 10). Pre-trained 
end-to-end networks are very strict on imaging conditions and are 
prone to overfitting, which confuses the signals with noise, and causes 
severe artifacts and structural fragments (Fig. 3b). By contrast, Vs-Net 
learned the physical constraint between angular views, and could effec-
tively distinguish signals from strong noise using the angular–mixed 
feature to suppress the noise by averaging different angular views 
(Supplementary Fig. 3). In addition, the iterative tomography using the 
Richardson–Lucy deconvolution framework, has an inherent denoising 
capability42. As a consequence, VsLFM has better robustness to noise 
than VCD-Net and HyLFM-Net, and has significantly improved fidelity 
in low-light conditions (Fig. 3c).

For the aberration problem, we used DAO during the second step 
of VsLFM. Numerical simulations were conducted to show that VsLFM 
has similar aberration robustness to sLFM (Supplementary Fig. 11). We 
trained Vs-Net, VCD-Net and HyLFM-Net on the same synthetic tubulins 
data in an aberration-free condition, and tested them using different 
aberration levels (Fig. 3d and Supplementary Fig. 12). Intense aberra-
tions would destroy the mapping relationships learned by end-to-end 
models, causing visible distortions and artifacts (Fig. 3d), while Vs-Net 
is robust to the aberrations and DAO can still be applied to the Vs-Net 
outputs in the second step of iterative tomography for aberration 
correction. Such a correction is difficult to model in the end-to-end 
network due to its high-dimensional property. For aberrations with a 
root mean square of 1 wavelength, VsLFM shows much better resolu-
tion and higher SSIM metrics than VCD-Net and HyLFM-Net (Fig. 3e,f). 
Note that the subsequent in vivo experimental results of VsLFM and 
sLFM were obtained with DAO, but for simplicity, DAO is no longer 
specified in the text.

We then imaged a membrane-labeled zebrafish embryo at 3 vps 
to demonstrate the in vivo subcellular imaging capability of VsLFM 
(Supplementary Fig. 13a–f and Supplementary Video 2). The spatial 
heterogeneity in multicellular organisms and the sensitivity to pho-
todamage lead to severe shot noise and optical aberrations. Enlarged 
views show the elaborate dynamics of fiber movements over 20 min-
utes, with narrower intensity profiles of VsLFM results than those of 
LFM (Supplementary Fig. 13g–i). These results further corroborate the 
stable resolution and contrast improvement by VsLFM in complicated 
environments.

Generalization over diverse structures and magnifications
The generalization ability is one of the most critical problems in the 
biological applications of deep learning, especially in cross-sample 
experiments with a large data diversity. Moreover, it is very difficult to 

collect a huge dataset to cover diverse biological phenomena, for exam-
ple, even for a specific type of cell during different physiopathological 
states. VCD-Net and HyLFM-Net, which rely heavily on the data prior, 
work well on a similar type of data but cannot make accurate predictions 
on unseen data. Vs-Net was designed to learn the physical prior between 
phase-correlated angular components rather than texture data priors 
only, leading to a better generalization ability for different sample 
structures than previous end-to-end networks. To verify such a capabil-
ity, we compared VsLFM with VCD-Net and HyLFM-Net using different 
datasets for training during simulation. All of them showed good recon-
struction performance when the test datasets and the training datasets 
were both based on synthetic tubulins (Supplementary Fig. 14a,b).  
However, if these network models were trained on bead data and 
tested on tubulins data, the performance of VCD-Net and HyLFM-Net 
dropped dramatically in terms of the Pearson correlations compared 
with ground truth. Structural artifacts with similar shapes to the train-
ing data could be observed in the results of the end-to-end networks 
(Supplementary Fig. 14c). By contrast, VsLFM exhibited stable perfor-
mance without reconstruction artifacts (Supplementary Fig. 14c–e).

We then compared the generalization ability of VsLFM with that 
of VCD-Net and HyLFM-Net in a cross-channel experiment. We made 
predictions on the mitochondria channel of an L929 cell using two 
network models pre-trained on the mitochondria channel and the 
membrane channel, respectively (Fig. 4a). The zoom-in regions and cor-
responding Fourier spectra show that VsLFM has stable performance 
for different sample structures, while VCD-Net and HyLFM-Net show 
resolution degradation and artifacts during the generalization process. 
The results obtained by sLFM were used as the ground truth to calculate 
the Pearson correlation (Fig. 4b). The reconstruction fidelity decreased 
quickly during generalization for previous end-to-end networks, but 
remained stable for VsLFM (Fig. 4c).

The generalization capability is critical for highly dynamic sam-
ples, given that we cannot capture ground truth data for training. A 
typical example is flowing cells in the blood circulation system. To show 
the advantage of VsLFM, we imaged a zebrafish larva labeled with blood 
cells and vessels, which was anesthetized and embedded in agarose 
gel during imaging with a ×20/0.5 NA air-immersion objective at 50 
dual-color vps (Fig. 4d and Supplementary Video 3). We trained the 
Vs-Net on mouse liver data with vessel and neutrophil labeling captured 
by another objective with a ×63 magnification and an NA of 1.4 to pre-
dict the high-resolution structures of vessel membranes and blood cells 
in zebrafish. Although the network was trained on different species and 
different imaging magnifications, VsLFM exhibited stable performance 
with better resolution43 than the other methods (Fig. 4e). Two adjacent 
flowing cells that are indistinguishable in one frame can be clearly 
recognized using VsLFM even with a high motion speed (Fig. 4f,g).  
Owing to the enhancement in both spatial resolution and temporal 
resolution by VsLFM, 76 flowing blood cells with reduced crosstalk 
can be easily tracked in three dimensions in the extremely short imag-
ing duration of 0.40 s (Supplementary Fig. 15). Therefore, VsLFM can 
serve as a promising tool for high-fidelity downstream studies of the 
circulatory system and hemodynamics in diverse model organisms44.

Fig. 4 | VsLFM has better generalization ability than end-to-end networks.  
a, MIPs and enlarged views of a fixed L929 cell with mitochondria labeling 
(TOM20-GFP), obtained by VCD-Net, HyLFM-Net and VsLFM trained on the 
same type of sample (mitochondria, upper row) and a different type of sample 
(membrane, lower row). The corresponding Fourier spectrum is shown in 
the bottom-right corner of each panel. b, Corresponding sLFM results as 
ground truth. c, Bar chart of Pearson correlations between the results of the 
mitochondria channel obtained by sLFM and the results obtained by VCD-Net, 
HyLFM-Net and VsLFM trained on different datasets. d, MIPs acquired by LFM 
(left) and VsLFM (right) of circulating blood cells (magenta) and vessels (cyan) 
in a zebrafish larva. The data were captured with a ×20/0.5 NA air objective 
at 50 vps. Given that the ground truth data cannot be obtained in this highly 

dynamic sample, the network models were trained on mouse liver data with 
vessel and neutrophil labeling and captured by a ×63/1.4 NA oil-immersion 
objective. e, Enlarged MIPs of the vessel channel marked by the blue box in d at 
t = 0 s, acquired by different methods. The corresponding Fourier transforms of 
the MIPs with estimated resolutions by Fourier ring correlation (FRC) are shown 
in the bottom row to indicate the resolution enhancement by VsLFM. f, Enlarged 
MIPs of the blood cell channel marked by the magenta box in d at t = 0.32 s.  
g, Normalized intensity profiles along the lines indicated by the arrows in f, 
showing that the two adjacent blood cells that could not be distinguished by 
previous methods were resolved by VsLFM. Scale bars, 5 μm (top, bottom left, a) 
and 3 μm−1 (bottom right, a), 50 μm (d,f), 50 μm (top) and 1 μm−1 (bottom) (e).
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Robust high-resolution snapshot 3D imaging in mammals
Given that VsLFM facilitates snapshot near-diffraction-limited 3D imag-
ing with broad generalization, it can analyze subcellular dynamics in 
complicated dynamic mammalian environments involving the beat-
ing heart, respiration and blood flow, especially for organs close to 

the heart or lung. Such strong motions in some frames would perturb 
the physical scanning pattern of sLFM during the 9-image acquisition 
and cause motion artifacts and reduction of temporal resolution in 
sLFM for highly dynamic samples. To demonstrate this advantage of 
VsLFM, we imaged endogenous neutrophils and vessels in living mouse 
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Fig. 5 | Long-term high-speed imaging of subcellular dynamics in living 
mouse livers. a, Whole-FOV and enlarged MIPs of neutrophils and vessels in a 
living mouse liver with strong motions induced by respiration, obtained by LFM, 
VsLFM, sLFM and sLFM with the time-weighted algorithm, respectively. b, MIP 
of a neutrophil washed away by the blood flow in vessels, which was captured 
by VsLFM at 12 vps. The tracked trace obtained with Imaris 9.0.1 software was 
overlaid with the temporal information coded in different colors. The overall flow 
duration is 1.33 s, from t = 0.67 s to t = 2.00 s. c, Center view of spatial–angular 
components and corresponding reconstructed MIPs of marked regions in b at 
t = 1.167 s, obtained by LFM, VsLFM and sLFM, respectively. The orange arrow 
indicates the movement direction and the white arrows indicate the motion 

artifacts in sLFM. d, MIPs of neutrophils with high-speed migration in a living 
mouse liver, obtained by LFM, VsLFM and sLFM, respectively. The neutrophil at 
t = 86.3 s moved slowly without motion artifacts, and the retraction fiber could be 
observed with high resolution by both VsLFM and sLFM. However, at t = 488.8 s 
the neutrophil migrated at high speed, leading to visible motion artifacts in the 
sLFM results. The upper-right insets show the corresponding Fourier transform 
of the MIPs, which also show the periodic frequency patterns caused by sample 
motion in the sLFM results. Meanwhile, VsLFM effectively eliminates motion 
artifacts with high spatial resolution. Scale bars, 10 μm (a–c), 10 μm (main) and 
3 μm−1 (inset) (d).
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livers during their native physiological processes. The mice were anes-
thetized and dissected to expose the liver on the coverslip. To reduce 
respiration-induced motions in sLFM, a region close to the tip of the 
liver needs to be used, which in turn limits the effective imaging area. 
Although a time-weighted algorithm has been developed for sLFM 
to compensate for the loss of temporal resolution, movements that 
are too fast would still exceed the adjustable range of the algorithm 
and degrade the imaging performance20,45 (Fig. 5a). The LFM results 
exhibited no artifacts at the expense of low spatial resolution, while 
VsLFM improved the resolution without motion artifacts (Fig. 5a and 
part I of Supplementary Video 4). To verify the fidelity, we compared 
the results of VsLFM and sLFM on the same frame without motion and 
noted a similar subcellular resolution (Supplementary Fig. 16). The 
whole process of a neutrophil gradually generating a retraction fiber, 
accompanied by periodic 3D vibrations of the whole FOV, was clearly 
observed at subcellular resolution by VsLFM, demonstrating its robust 
performance in a complicated environment (Supplementary Fig. 16 
and Supplementary Video 5).

Even in a stable environment, cellular dynamics in blood ves-
sels still involve a large variety of velocities during different states. 
We captured another neutrophil that was washed away by the blood 
flow in a vessel at 12 vps, which was extremely fast and lasted for only 
approximately 1.33 s across approximately 100 μm in three dimensions 
(Fig. 5b and part II of Supplementary Video 4). VsLFM outperformed 
LFM with better resolution and contrast, and concurrently eliminated 
severe motion artifacts in sLFM (Fig. 5c). In addition, VsLFM can simul-
taneously retain intact cell shape and maintain subcellular resolution 
during fast neutrophil migration, enabling fine structures such as 
retraction fibers to be resolved distinctly without being influenced 
by the motion artifacts (Fig. 5d and part III of Supplementary Video 4).  
By using a single LFM image for high-resolution structures, the photo-
toxicity of VsLFM can be further reduced by ninefold for even longer 
imaging durations than sLFM.

Ultrafast high-resolution 3D voltage imaging in Drosophila
Intravital imaging of voltage activities are important for the study of 
learning units with feedback interconnections and complex interac-
tions between short-term and long-term memory in Drosophila brains46. 
However, it has long been a challenge to capture the voltage dynam-
ics in vivo at subcellular resolution across a large volume due to the 
extremely fast transients, which occur usually over 200 Hz, and the 
low signal-to-noise ratio of the voltage indicators with short exposure 
time. VsLFM could address this problem with its capability of snapshot 
high-resolution 3D imaging and low phototoxicity.

To demonstrate its advantages over traditional LFM and sLFM, we 
constructed an upright sLFM system with a high-speed scientific cam-
era to observe the 3D voltage transients of sparsely labeled dopamine 
neurons across the whole brain of awake behaving Drosophila (MB06
5B-GAL4>20×UAS-pAce)46,47 at 500 vps. We imaged the same sample by 
LFM and sLFM sequentially for comparison. The VsLFM results were 
obtained from the LFM data. Both VsLFM and sLFM have comparable 
resolution and clearly resolve neural axons at a depth of 15 μm with 

more elaborate detail than LFM (Fig. 6a–c). In addition, many action 
potentials can be visualized by averaging a large local region in the 
raw LFM measurements while the temporal trace of another region 
shows no apparent fluctuations, indicating the fidelity of the voltage 
signals (Fig. 6d). However, sLFM lacked sufficient temporal resolution 
to detect the action potentials due to the 9-image sliding window for 
physical scanning, which stretched the spike widths and reduced the 
response amplitudes (Fig. 6e). Some low-amplitude spikes may also 
be neglected. By contrast, VsLFM harnessed the advantages of both 
LFM and sLFM. With the snapshot property, VsLFM maintained high 
temporal resolution to resolve the action potentials at subcellular 
resolution across a large volume of ~260 × 260 × 100 μm3 at 500 vps, 
enabling concurrent neural recording of multiple brain regions in the 
Drosophila (Fig. 6e and part I of Supplementary Video 6). Quantitative 
analysis showed that VsLFM distinguished the voltage spikes accurately 
with a significantly smaller temporal FWHM of approximately 5 ms (Fig. 
6f) and obtained an at least twofold improvement in spike amplitude 
relative to sLFM (Fig. 6g).

We then used VsLFM to record the 3D voltage activities in PPL1 
dopamine neurons at 500 vps in Drosophila using 3% benzaldehyde 
as a repulsive odor stimulus. The observed region was located around 
100 μm below the optical window in the cuticle of an adult Drosophila 
(MB065B-GAL4>20×UAS-pAce). With the ultrahigh spatiotemporal 
resolution of VsLFM, the 3D propagation of action potentials in axon 
branches and dendritic tree of the PPL1-α‘2α2 neuron can be detected 
(Fig. 6h,i and part II of Supplementary Video 6). We also observed an 
increase in firing rates during the stimulus, which accords well with 
a previous study46 (Fig. 6j). With the ultrahigh 3D imaging speed and 
low phototoxicity, VsLFM facilitates broad study of neural activity with 
the help of advanced voltage indicators, which would be difficult for 
previous imaging methods.

Discussion
Here, we have developed a physics-based virtual-scanning framework 
for LFM to enhance the spatial resolution by fourfold with broad gener-
alization, enabling snapshot intravital volumetric imaging with subcel-
lular resolution and a low phototoxicity of only several mW mm−2 at a 
camera frame rate up to 500 vps. VsLFM and sLFM are not conflicting 
but are complementary. The main problem with sLFM is the motion 
artifacts and the reduction of temporal resolution due to physical scan-
ning in highly dynamic conditions such as the beating heart, blood flow 
and neural activities. By using the ground truth data captured by sLFM 
without motion artifacts for the training of VsLFM, VsLFM provides 
the ultrafast high-resolution 3D imaging for highly dynamic samples 
or LFM without the scanning module.

Physics-based VsLFM addresses three major problems in previ-
ous end-to-end networks in LFM, including the huge resolution gap 
between the raw LF measurements and the diffraction limit of the 
objective, sensitivity in optically challenging conditions, and low gener-
alization ability across diverse structures, species and imaging systems. 
Using the physical priors of frequency aliasing and point spread func-
tion models rather than texture priors only, VsLFM enhances the spatial 

Fig. 6 | In vivo high-resolution volumetric voltage imaging of sparsely 
labeled neurons in Drosophila at 500 vps. a–c, 3D rendering volumes and 
enlarged MIPs of PPL1 dopamine neurons at a depth of 15 μm in Drosophila 
brain (MB065B-GAL4 > 20×UAS-pAce), obtained by LFM (a), VsLFM (b) and 
sLFM (c). d, Average temporal traces extracted from two different regions in 
the raw light-field images. e, Left, temporal traces extracted from the manually 
selected region in b and c for VsLFM and sLFM, with the black circles marking the 
identified spikes. Right, corresponding average waveforms for the spikes. The 
data of sLFM and VsLFM were collected sequentially on the same Drosophila, 
therefore the spontaneous voltage activities occurred at different time stamps. 
f,g, Comparisons of the temporal FWHMs (f) and amplitudes (g) of the spikes 
between VsLFM and sLFM in the same selected region as e. The center line 
represents the median, the box limits represent the lower and upper quartiles, 

and the whiskers represent 1.5-fold the interquartile range. P values were 
calculated using the two-sided paired t-test. P = 1.77 × 10−15 (f) and P = 8.14 × 10−11 
(g). n = 5 for the sLFM results and n = 26 for the VsLFM results, where n represents 
the number of identified spikes. h, 3D rendering volume of PPL1 dopamine 
neurons at a depth of 100 μm in another Drosophila (MB065B-GAL4>20×UAS-
pAce) obtained by VsLFM, with the enlarged time-coded MIPs. Different colors 
represent the peak instants of the voltage signal for every pixel during 2.4 ms. 
i, Voltage spikes extracted from two regions in the PPL1-α‘2α2 neuron, showing 
a 2 ms delay in action potentials. j, Upper row, odor-evoked voltage traces 
extracted from the region marked by the white dashed circle in h. Bottom row, 
corresponding time-dependent firing rates. The gray rectangles indicate the 
time window when we applied the 3% benzaldehyde (BEN) stimulus. Scale bars, 
30 μm (a–d, h).
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resolution up to the diffraction limit and improves the generalization 
ability for a wide range of applications (Figs. 3, 4 and Supplementary 
Fig. 14). The output of Vs-Net is robust to optical aberrations and com-
patible with the DAO technique to correct optical aberrations during 3D 
reconstruction, which is difficult to model in the end-to-end networks. 
By focusing on the upsampling process to address the frequency alias-
ing problem, VsLFM is also compatible with other 3D reconstruction 

algorithms or neural networks. To reduce the computational costs of 
deconvolution, we developed a new end-to-end reconstruction net-
work named HyLFM-A-Net, extended from the existing HyLFM-Net32 for 
the output of Vs-Net. We introduced a channel attention mechanism48 
into the existing HyLFM-Net to replace iterative tomography for fast 
reconstruction (Supplementary Fig. 17 and Methods). However, the 
robustness to sample aberration will decrease for complicated imaging 
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environments given that all of these end-to-end networks do not con-
sider the influence of optical aberrations. Better neural networks for 
reconstruction, such as self-supervised methods, can be designed in 
the future with more physical priors. Moreover, given that the confocal 
or light-sheet set-ups can physically address the missing-cone problem, 
training the 3D reconstruction network for VsLFM with paired confocal 
or light-sheet data can increase the optical sectioning at the cost of 
data generalization. Structured illumination may be another choice 
to improve the optical sectioning and depth penetration for VsLFM49.

VsLFM could also work for LFM equipped with different microlens 
arrays through parameter adjustment and retraining with a detailed 
guide (Methods and Fig. 6). When the microlens array parameters 
do not change much, the Vs-Net can be used with simple preproc-
essing of angular interpolation (Supplementary Fig. 18). Therefore, 
the virtual-scanning framework with our pre-trained model could be 
applied to the data captured by different types of unfocused LFM in 
previous studies. Transfer learning can be applied to further increase 
the performance on specific data and accomplish a faster convergence 
with only a small amount of additional data required (Supplementary 
Fig. 19). In the meantime, better neural networks can be designed in 
the future based on our open-source 40 GB sLFM dataset of more than 
1,300 pairs of low-resolution and high-resolution light-field images 
from multiple species, structures and imaging conditions. This VsLFM 
adopts the unfocused form to obtain a large axial range with extended 
depth of field, but it is still limited by the objective numerical aperture50. 
The use of objective lenses with a lower numerical aperture would 
improve axial range at the cost of spatial resolution. Improvement of 
the angular resolution20 or phase modulation at the pupil plane51 is 
also anticipated to increase the axial coverage. As a one-photon fluo-
rescence microscopy technique, the imaging penetration capability of 
VsLFM is fundamentally limited by tissue scattering and background 
fluorescence, which can be enhanced with other scattering removal 
methods27. Nevertheless, with superior resolution enhancement and 
broad generalization, this physics-based virtual-scanning mechanism 
in LFM fulfills the requirement for extremely high-speed intravital 
imaging of subcellular structures across a large FOV with minimized 
phototoxicity, further broadening the versatility and practical applica-
tions of LFM in challenging complicated environments.
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Methods
VsLFM set-up and data collection
The inverted sLFM optical system was built in accordance with our 
previous research20. A standard inverted fluorescence microscope 
(Zeiss, Observer Z1) was used as a basic imaging module, configured 
with a ×63/1.4 NA oil-immersion objective (Zeiss Plan-Apochromat 
×63/1.4 NA Oil M27) and a ×20/0.5 NA air-immersion objective (Zeiss 
EC Plan-Neofluar ×20/0.5 NA M27) for different experiment require-
ments. A microlens array with the pitch size of 100 μm and focal length 
of 2,100 μm modulated the emission light into a 4D light field, with a 
2D galvo system to shift the image plane periodically at high speed. 
Each microlens covered 13 × 13 sensor pixels for angular sampling. 
Multi-channel lasers (Coherent OBIS 405/488/561/640) and a scientific 
camera (Andor Zyla 4.2 Plus PCIE) were used for fluorescence excitation 
and data collection. All hardware synchronization of the system was 
carried out using a National Instruments (NI) control box (NI USB-6363) 
and LabVIEW software (2019 version), which were integrated in an 
acquisition graphical user interface named sLFdriver, as described in 
the published protocol45. To construct the training dataset, scanning 
light-field images with the scanning period of 3 × 3 (2,048 × 2,048 pix-
els each) were captured by sLFM. Then, the light-field image taken in 
the middle of the series was extracted as the paired low-resolution 
light-field image. Next, a pixel-realignment algorithm was performed 
on the single light-field image and scanning light-field images to yield 
the paired low-resolution and high-resolution spatial–angular views, 
which were regarded as the input and target for network training. For 
example, in the inverted sLFM system, the low-resolution spatial–angu-
lar views consist of 153 × 153 spatial pixels and 13 × 13 angular pixels, 
and the high-resolution spatial–angular views consist of 459 × 459 
spatial pixels and 13 × 13 angular pixels, which are determined by the 
parameters of the microlens array and camera. We also constructed an 
upright sLFM system for imaging voltage activities in Drosophila brains, 
configured with a ×25/1.05 NA water-immersion objective (Olympus 
XLPLN25XWMP2) and a high-speed scientific camera (Teledyne Pho-
tometrics Kinetix). In the implementation of the upright system, a 
customized microlens array with a pitch size of 136.5 μm and a focal 
length of 2,800 μm was used to cover 21 × 21 angular pixels for a large 
axial coverage. During the Drosophila experiment, the camera pixel 
region was set to 2,000 × 2,000, with LFM data containing 91 × 91 spa-
tial pixels and 21 × 21 angular pixels, and sLFM data containing 273 × 273 
spatial pixels and 21 × 21 angular pixels. When capturing test data for 
VsLFM, the 2D galvo was set to its offset voltage and kept stable as in 
traditional LFM. Then the system captured single-frame or time-lapse 
light-field data, and further realigned them into low-resolution spa-
tial–angular views, of which spatial resolution would be improved by 
the virtual-scanning framework. Each frame of VsLFM was collected 
within a snapshot. For intuitive comparisons between VsLFM and sLFM, 
the unscanned light-field images were directly extracted from scan-
ning light-field images. The snapshot images were used to derive the 
results of VsLFM, and the sLFM results were used as the paired ground 
truth for performance comparison. The data used in testing were not 
involved in network training. Detailed imaging conditions for all of the 
fluorescence experiments in this study, including the fluorescent label, 
exposure time, excitation power, volume rate and objective, are listed 
in Supplementary Table 2.

Virtual-scanning network
In our proposed Vs-Net, the input is a 3D tensor of low-resolution spa-
tial–angular views (rearranged into the form of height × width × angle), 
while the output is a 3D tensor of high-resolution spatial–angular 
views. For the preprocessing of data captured by the inverted system, 
the training dataset was partitioned into small patches with the input 
size of 25 × 25 × 169 pixels, and the output and target size of 75 × 75 × 169 
pixels. The input and corresponding target data were normalized by 
the average value of maximum intensities from different time-lapse 

data. An overview of Vs-Net architecture is given in Supplementary 
Fig. 2a and the detailed network parameters for each layer are listed 
in Supplementary Table 1. In our implementation, Vs-Net emphasizes 
the spatial–angular feature and angular–mixed feature on the basis 
of a global residual network containing feature extraction, interac-
tion and fusion modules40. The input spatial–angular views (size of 
25 × 25 × 169 pixels, height × width × angle) are first fed into the feature 
extractor to generate spatial–angular features (size of 169 × 25 × 25 × C 
pixels, angle × height × width × channel), light-field features (size of 
325 × 325 × C pixels, height × width × channel) and angular–mixed 
features (size of 25 × 25 × C pixels, height × width × channel), where C 
denotes the channel number of 2D convolution layers and is usually 
set to 64. The spatial–angular feature is extracted to better consider 
the phase correlation induced by the diffraction effect of the small 
microlens aperture and the disparity between different angular views 
in LFM, which is much larger than that used in macroscale light-field 
photography due to the large collection angle of the objective lens. 
The light-field feature is generated for comprehensive considera-
tion of the angular information at different local spatial regions. The 
angular–mixed feature, weighted by multiple angular views, is used to 
reinforce the fidelity of fine structures under strong noise conditions. 
We use only linear operations to reshape and decouple the input into 
features of these three domains, leaving non-linear activation and 
deeper layers to the subsequent interaction and fusion stage to obtain 
more expressive features. Note that the linear operations such as 
pixel alignment and dilated convolution should have the appropriate 
parameters associated with the LFM configuration and data structure. 
The three features are then passed through the feature interaction 
and fusion modules to enable multiple information interaction and 
integration. The detailed structures of the interaction and fusion 
modules are shown in Supplementary Fig. 2b. The light-field interac-
tion module plays the major role in enhancing the spatial resolution, 
while the spatial–angular feature and the angular–mixed feature are 
considered as complementary information and interact with the 
light-field feature for spatial super-resolution, to provide sufficient 
consideration of phase correlation between different angles and to 
reinforce the fidelity of fine structures under strong noises. During 
the learning process, the light-field feature is interactively fused with 
the spatial–angular feature and the angular–mixed feature in the 
spatial–angular interaction module and the angular–mixed interac-
tion module, respectively. We apply a local residual connection in the 
output features of the aforementioned interaction modules to fully 
extract the features. The ablation study demonstrates the effective col-
laboration of the interaction modules and verifies the functions of the 
three features (Supplementary Fig. 3). The feature interaction mod-
ules are followed by a K cascade and concatenation module, where K 
denotes the cascaded number, usually set to 4. Next, the concatenated 
interacted spatial–angular feature (size of 169 × 25 × 25 × K·C pixels, 
angle × height × width × K-fold channels) and angular–mixed feature 
(size of 25 × 25 × K·C pixels), are realigned into the light-field domain 
and subsequently squeezed into C channels before concatenating with 
K light-field features (size of 325 × 325 × K·C pixels), to yield the fully 
concatenated interacted features (size of 325 × 325 × (K + 2)·C pixels). 
The concatenated interacted features are fused by a 1 × 1 convolution 
layer and a leaky rectified linear unit (Leaky ReLU) layer to generate the 
fused light-field feature (size of 325 × 325 × C pixels). Last, the fused 
features are fed into the upsampling module with a pixel shuffle to be 
scaled up by 3 to produce the high-resolution spatial–angular views 
(size of 75 × 75 × 169 pixels, height × width × angle). In addition, a global 
residual connection is used by adding the output and the upsampled 
input with bicubic interpolation, to fully recover the high-frequency 
details and speed up the convergence.

For network training we typically used 5,000 paired spatial–angu-
lar patches of the same dataset, and it usually took approximately  
40 epochs for network convergence. Considering the inherent sparsity 
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of fluorescent specimens52, the pixel-wise mean absolute error (L1-norm 
error) is adopted as the loss function, which could be expressed as:

loss = ‖X − Y‖1 ,

where X denotes the ground truth of spatial–angular views and Y 
denotes the output spatial–angular views. The parameters of the Adam 
optimizer were set to β1 = 0.9, β2 = 0.999. The learning rate was initial-
ized to 2 × 10−4 and then decreased by a factor of 0.5 for every 10 epochs 
during the training process.

Vs-Net works well for different types of data and has the robust 
flexibility of input size. After the network is trained, it can be applied 
to specimens from different organism. For the inference process, the 
input data with the size of 153 × 153 × 169 pixels are first partitioned 
into nine partially overlapping patches with the size of 69 × 69 × 169 
pixels, and then transformed to nine high-resolution outputs with 
the size of 207 × 207 × 169 pixels, using sigmoid-based image fusion53 
to generate the final output with the size of 459 × 459 × 169 pixels. 
Finally, the output spatial–angular views are used to obtain the 
high-resolution volume by iterative tomography with DAO, which 
has been described in the previous work20. The validity of Vs-Net 
has been verified in extensive fluorescence specimens including 
fluorescent beads, living cells with mitochondria and membrane 
labeling, blood cells in zebrafish larvae, immune cells in mouse livers, 
and voltage indicators in Drosophila. To validate the considerable 
scalability and generalization capability of Vs-Net, both numerical 
simulations and biological experiments were performed. First, we 
performed a generalization test on cross-channel tasks, in which the 
mitochondria channel and membrane channel in L929 cells were 
mutually trained and predicted (Fig. 4a–c). Second, a Vs-Net model 
that was pre-trained on mouse liver data with vessel and neutrophil 
labeling under a ×63/1.4 NA oil-immersion objective, performed well 
on highly dynamic membrane and blood cells in a living zebrafish 
larva, which were captured by another air-immersion objective  
(Fig. 4d–g and Supplementary Fig. 15). Third, synthetic specimens 
of beads and tubulins, which have great morphological differences, 
were selected for cross-sample and transfer learning experiments 
(Supplementary Figs. 14 and 19).

The Vs-Net can work on data captured by LFM with different kinds 
of microlens arrays through slight network modifications. To enable 
Vs-Net to accommodate data with different angular pixels, we need 
to modify the parameter of angular numbers of the network, while 
the main architecture of the network remains the same as before. To 
verify it, we set up an upright system, in which another microlense array 
with the pitch size of 136.5 μm and focal length of 2,800 μm was used. 
The data obtained by the upright system have 21 × 21 angular views, 
whereby the input size of the training dataset patches is 25 × 25 × 441 
pixels (height × width × angle) and the output and target sizes are 
75 × 75 × 441 pixels. Correspondingly, the spatial–angular feature has 
the size of 441 × 25 × 25 × C pixels (angle × height × width × channel), the 
light-field feature has the size of 525 × 525 × C pixels (height × width × 
channel) and the angular–mixed feature has the size of 25 × 25 × C pixels 
(height × width × channel), where C is usually set to 64 or 32, dependent 
on the GPU (graphics processing unit) memory. After network training, 
the test data can be enhanced by Vs-Net. The Drosophila data in Fig. 6 
were processed by the Vs-Net with 21 × 21 angular views as input. The 
VsLFM results have comparable resolution to those of sLFM when there 
were no motion artifacts.

The network was implemented on a PyTorch platform with two 
NVIDIA RTX 2080 Ti GPUs. The whole training process for 40 epochs 
on a typical training set (approximately 5,000 pairs) took approxi-
mately 16 h, and inference and post-processing on one whole-FOV 
light-field image took approximately 5 s for a spatial–angular image 
size of 459 × 459 × 169 pixels. Training and inference time can be further 
reduced by using more powerful GPUs. To maximize its accessibility, 

we have released Vs-Net codes and corresponding 3D reconstruction 
scripts with demonstration data to promote interdisciplinary research.

Comparison with previous methods
We compared our method with the previous methods, such as tradi-
tional LFM, sLFM, CARE, DFCAN and DFGAN, LF-InterNet, LF-DFnet, 
VCD-Net and HyLFM-Net. All traditional LFM results used in this work 
were reconstructed using phase-space deconvolution with a simple 
bicubic interpolation applied on the low-resolution spatial–angular 
views25. All sLFM results were acquired as described in the original 
study20, and all in vivo biological results were obtained with DAO, but 
for simplicity, DAO is no longer specified in the texts.

For comparison with CARE35, DFCAN37 and DFGAN37, we adopted 
two training strategies for comprehensive evaluations. First, we trained 
the networks on the same spatial–angular views used in Vs-Net, which 
were split into two stacks of images consisting of low-resolution and 
high-resolution pairs (Supplementary Figs. 4 and 5). For CARE, we 
used the bicubic interpolation to upsample the low-resolution images 
by a factor of 3 and cropped them into patches with 128 × 128 pix-
els (height × width) as input, and the corresponding high-resolution 
images were also cropped into patches with 128 × 128 pixels as targets. 
For the training of DFCAN and DFGAN, the low-resolution data were 
cropped into patches with 64 × 64 pixels as input, and high-resolution 
resolution data were cropped into patches with 192 × 192 pixels as 
targets. The scale factor was adjusted to 3. The training process took 
approximately 10 h for CARE, 12 h for DFCAN and 18 h for DFGAN on 
a single NVIDIA RTX 2080 Ti GPU for convergence. After network 
inference, the output images were re-stacked as spatial–angular 
views according to their angular positions, and the final whole-FOV 
results were obtained with the same sigmoid-based image fusion 
used in Vs-Net. The results of the comparisons are shown in Supple-
mentary Figs. 4 and 5. Second, we also trained the networks based 
on the reconstructed volumes of LFM and sLFM for comparison 
(Supplementary Fig. 6). In this case, the data pairs consisted of the 
low-resolution volumes of LFM (with the size of 1,989 × 1,989 × 101 
pixels, height × width × depth) and the high-resolution volumes of 
sLFM (with the size of 1,989 × 1,989 × 101 pixels). For CARE, the data 
pairs were cropped into 3D patches with the size of 128 × 128 × 16 pixels 
for training. For DFCAN and DFGAN, which are designed for SISR tasks, 
the 3D volume pairs were segmented as a stack of images. The input 
low-resolution data were downsampled by a factor of 3 and cropped 
into patches with the size of 128 × 128 pixels, while high-resolution 
targets were cropped into patches with the size of 384 × 384 pixels. 
The training processes of CARE, DFCAN and DFGAN were performed 
on a single NVIDIA RTX 2080 Ti GPU, which took approximately 20 h 
for CARE, 25 h for DFCAN and 40 h for DFGAN for convergence. After 
network inference the outputs were stitched using sigmoid-based 
image fusion working in 3D or 2D space.

LF-InterNet40 requires raw light-field images as input and 
high-resolution spatial–angular images as targets, while LF-DFnet41 
requires tiled low-resolution spatial–angular images as input and 
tiled high-resolution spatial–angular images as targets. The train-
ing inputs used for Vs-Net with the size of 25 × 25 × 169 pixels 
(height × width × angle) were transformed to light-field images with 
the size of 325 × 325 pixels (height × width) for LF-InterNet as input, 
and tiled to images with the size of 325 × 325 pixels (height × width) 
for LF-DFnet as input. Correspondingly, the high-resolution spatial–
angular images from the Vs-Net dataset were tiled to images with the 
size of 975 × 975 pixels (height × width) as targets for both LF-InterNet 
and LF-DFnet. The tiling operation stitches images from different 
angles into a 2D image according to their angular positions in the way 
of a montage. The whole training process of LF-InterNet and LF-DFnet 
took approximately 14 h and 20 h, respectively, on a single NVIDIA RTX 
2080 Ti GPU for convergence. After network inference the outputs were 
rearranged according to the spatial–angular domain, and stitched by 
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the same sigmoid-based image fusion used in Vs-Net. The results are 
compared in Supplementary Figs. 4 and 5.

VCD-Net31 and HyLFM-Net32 require light-field images as input data 
and corresponding confocal or light-sheet volumes as targets, to train 
fully supervised models. However, the target volumes are difficult to 
acquire if using a simple LFM or sLFM system. To compare VsLFM with 
VCD-Net and HyLFM-Net, we first conducted numerical simulations in 
which the required confocal or light-sheet volumes could be replaced by 
the original synthetic volumes, to quantitatively evaluate their perfor-
mance in complicated environments (Fig. 3 and Supplementary Fig. 14).  
To mimic the practical situations for fair comparison between differ-
ent methods, we trained Vs-Net, VCD-Net and HyLFM-Net in the same 
ideal imaging conditions, and performed network inferences in mul-
tiple complicated scenes. We also compared VsLFM with VCD-Net and 
HyLFM-Net on experimental data (Figs. 2, 4 and Supplementary Fig. 7).  
Given that the confocal and light-sheet modules are difficult to inte-
grate into the sLFM system, the high-resolution volumes acquired by 
sLFM with 3D reconstruction were used as training labels. The VCD-Net 
and HyLFM-Net results in Figs. 2–4 and Supplementary Figs. 7, 14 were 
obtained using open-source codes in previous studies31,32, and the 
corresponding parameter of angle number was adjusted to make it 
suitable for our system implementations. Specifically, the number of 
input channels of VCD-Net and HyLFM-Net was modified to 169, and 
a bicubic interpolation layer was attached to the end of each network 
to match the output volume size of the target. The input data are the 
same as that used in Vs-Net, with the size of 153 × 153 × 169 pixels. For 
network training we randomly cropped out small input patches with 
the size of 40 × 40 × 169 pixels (for HyLFM-Net) and 64 × 64 × 169 pix-
els (for VCD-Net), as well as the corresponding volume regions, to 
create data pairs. The networks required to be trained for around 
200 epochs for convergence. For network inference, partially over-
lapped patches with the size of 80 × 80 × 169 pixels (for HyLFM-Net) 
and 64 × 64 × 169 pixels (for VCD-Net) were cropped from input data. 
The same sigmoid-based image fusion used in Vs-Net was adopted to 
stitch the output sub-volumes into whole-FOV volumes. The whole 
training process of VCD-Net and HyLFM-Net took approximately 32 h, 
and the inference time for one whole-FOV frame took approximately 3 s 
for VCD-Net and 7 s for HyLFM-Net. The network training and inference 
were done on a single NVIDIA RTX 2080 Ti GPU.

We also develop a new end-to-end network, termed HyLFM-A-Net, 
which imposes channel attention48 on the existing HyLFM-Net, to fur-
ther increase the computational efficiency of 3D reconstruction for 
VsLFM. HyLFM-A-Net is designed to accommodate high-resolution 
angular views with 3 × 3 scanning as input, with full-sampled 
high-resolution volumes as labels. The detailed architecture of 
HyLFM-A-Net is shown in Supplementary Fig. 17a,b. The output of 
Vs-Net prediction was used directly for the input of HyLFM-A-Net, with 
a patch size of 120 × 120 × 169 pixels (height × width × angle), while the 
target data consisted of the reconstruction results by iterative tomog-
raphy with the size of 520 × 520 × 101 pixels (height × width × depth). 
2D convolutions with channel attention were followed to extract 
features with a size of 120 × 120 × 64 pixels (height × width × chan-
nel), then two subpixel convolutions were used to recover the spatial 
resolution into 480 × 480 × 64 pixels. Another two convolutions with 
channel attention were used to adjust the feature channels into the 
size of 808, which was eightfold the output depth. We rearranged the 
2D features into 3D features with a size of 480 × 480 × 8 × 101 pixels 
(height × width × channel × depth) and used 3D convolutions to fuse the 
features into 480 × 480 × 101 pixels (height × width × depth). A bicubic 
interpolation layer was attached to the end of the network to match 
the volume size of 520 × 520 × 101 pixels for supervision. A detailed 
comparison of HyLFM-Net and HyLFM-A-Net is given in Supplementary  
Fig. 17f. The channel size and feature size of HyLFM-Net and 
HyLFM-A-Net had been adjusted to our LFM set-up. HyLFM-A-Net 
follows the concept of HyLFM-Net, in which the depth dimension is 

rearranged using 2D channels that are integer multiples of the depth, 
and then the multiple is considered as the channel of 3D features. 
Attention operators were applied on 2D layers before rearrangement. 
For HyLFM-Net, the affine layer was used when it was trained with 
light-sheet continuous supervision, but when trained with sLFM recon-
struction, the affine layer was removed.

We trained 400 epochs in 14 h on a single NVIDIA RTX 3090 GPU 
for convergence. During inference, the Vs-Net output with the size 
of 459 × 459 × 169 pixels was cropped into four overlapping patches 
with a size of 237 × 237 × 169 pixels, and the same sigmoid-based 
image fusion mentioned above was used for volume stitching. The 
whole inference time of HyLFM-A-Net for a single volume with a size 
of 1,989 × 1,989 × 101 pixels is approximately 6 s, while 11 s in total is 
required with Vs-Net inference involved, which is comparable to the 
inference time of HyLFM-Net. HyLFM-A-Net achieves a similar per-
formance to that of 3D deconvolution in the imaging of living cells, 
with reduced computation costs at the cost of aberration robustness 
(Supplementary Fig. 17c–e). All of the deep learning networks used for 
comparison were trained on the same dataset as that used in VsLFM.

Beads preparation and resolution characterization
For the fluorescent beads preparation, 1 ml 100-nm-diameter fluo-
rescent beads (Thermo Fisher TetraSpeck Microspheres, T7279) were 
diluted with 100 ml pure water at room temperature to produce diluted 
fluorescent beads. Then 10 mg ml−1 diluted agarose was produced by 
mixing 1,000 mg pure agarose (Thermo Fisher UltraPure Low Melt-
ing Point Agarose, 16520100) with 100 ml pure water at 80 °C. When 
diluted agarose cooled to 40 °C, 1 ml diluted agarose and 1 μl diluted 
fluorescent beads were mixed well. Next, a 200 μl mixture of beads and 
agarose was put into a 35 mm dish (Thermo Fisher Nunc glass bottom 
dish, 150682) and left for 30 min to solidify to produce a uniform 3D dis-
tribution of beads. A ×63/1.4 NA oil-immersion objective was selected 
to verify the high-resolution capability of VsLFM. The temperature of 
the imaging environment was controlled at around 27 °C. For quantita-
tive resolution analysis, the FWHM was calculated by measuring the 
intensity distributions of the reconstructed cross-section planes of 
the beads laterally and axially using a Gaussian fit. The calculation was 
conducted with MATLAB software on the results of LFM, VsLFM and 
sLFM, respectively. The FWHMs are presented as bar plots, in which 
the mean values and the standard deviations indicate the distribution 
of spatial resolution at different axial positions.

Living L929 cell imaging
L929 cells were cultured in DMEM (Gibco) medium supplemented 
with 10% FBS (Biological Industries), 2 mM GlutaMAX and 100 U ml−1 
penicillin–streptomycin in 5% CO2 at 37 °C. The PiggyBac Transposon 
Vector System and Vigofect were used for cell transfection to generate 
L929 TSPAN4-mCherry and TOM20-GFP stable cell lines54. L929 cells 
were cultured on a fibronectin-coated confocal dish and in DMEM (no 
phenol red) (Gibco) medium for imaging. During imaging, a micro-
scope incubator system (Tokai Hit, INUF-IX3D-F1) was used to maintain 
the environmental conditions of 37 °C and a CO2 concentration of 5%.

Zebrafish imaging
For imaging of zebrafish embryos, the cultured embryos were injected 
with 300 pg Tspan4a-EGFP messenger RNA (synthesized in vitro with 
mMessage mMachine T7 kit, Ambion, AM1344) in one cell at the 16-cell 
stage. Then the embryos were mounted in 1% low-melting-point aga-
rose. During imaging, a ×63/1.4 NA oil-immersion objective was used, 
and the environment temperature was set at around 27 °C. For imaging 
of blood flow dynamics in zebrafish larvae, Tg(flk:EGFP; gata1:DsRed) 
transgenic zebrafish embryos were collected and cultured in Holt-
freter’s solution at 28.5 °C. At 3–4 days postfertilization the zebrafish 
larvae were anesthetized using ethyl 3-aminobenzoate methane-
sulfonate salt (100 mg l−1) and embedded in 1% low-melting-point 
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agarose in 35 mm confocal dishes (Thermo Fisher Nunc glass bot-
tom dish, 150682) for in vivo imaging. During imaging, a ×20/0.5 NA 
air-immersion objective was selected to cover an FOV of 600 × 600 μm2, 
and the environmental temperature was set at around 27 °C.

Mouse experiments
The mice used in this project were male and wild type (C57BL6/J, around 
7–8 weeks). Mice were housed with food and water available ad libitum 
under a 12 h light–dark cycle at 22 °C with a relative air humidity of ~50%. 
For the mice labeled with neutrophils and vessels, 1 μg Ly6G/Ly6C mono-
clonal antibody (PE-Cyanine7, eBioscience, 25-4317-82), 3 μg AF647-WGA 
(Alexa Fluor 647 Conjugate, Thermo Fisher, P21462) and 100 μl PBS were 
injected i.v. After 30 min, Avertin (350 mg kg−1) was injected i.p. into the 
mice for anesthetization. After 20 min, the deeply anesthetized mice 
were dissected to expose the living liver on a home-made holder with a 
170-μm-thick coverslip for intravital imaging. A ×63/1.4 NA oil-immersion 
objective was selected to capture subcellular dynamics. During the 
intravital imaging, a 37 °C body temperature maintenance instrument 
(ThermoStar Homeothermic Monitoring System, RWD) was launched 
to maintain the mouse in the native physiological state.

Drosophila experiments
Drosophila strains (MB065B-GAL4 > 20×UAS-pAce) were provided by the 
Schnitzer laboratory at Stanford University and the Zhong laboratory 
at Tsinghua University. The Drosophila used in our experiments were 
female at 3–7 days and raised on the standard cornmeal agar media 
with a 12 h light–dark cycle at 25 °C. Based on the protocol described 
previously55, Drosophila were anesthetized on ice and mounted on 
a 3D-printed plastic disk with free movement of the legs. Then, the 
posterior head capsule was opened using sharp forceps (5SF, Dumont) 
in carbonated (95% O2, 5% CO2) buffer solution with a pH of 7.3 and an 
osmolarity of 275 mosM. Next, the air sacs, tracheas and M16 muscle 
were removed to minimize brain movement56. Ultraviolet glue was also 
added around the proboscis. After the surgery, Drosophila were placed 
under the objective lens for imaging of voltage transients in sparsely 
labeled neurons. For neural recording of the response to odor stimulus, 
3% benzaldehyde was fed in a 5 s on–5 s off cycle.

Neural extraction and analysis
For neural analysis of Drosophila data, we manually selected several 
regions of interest (ROIs) as shown in Fig. 6. The temporal traces of neu-
ral activity were calculated as ΔF/F0 = (F–F0)/F0, where F is the averaged 
intensity of the ROI and F0 is the baseline intensity. F0 was calculated as 
the mean fluorescence in the ROI averaged over the entire time series. 
The neural spikes were identified as the local peaks that rose above a 
threshold value (2% for VsLFM results and 1.2% for sLFM results) after 
the median-filtered (40 ms window) version was subtracted from 
the ΔF/F0 curve, and visualized as flashes of light in Supplementary 
Video 6. Each identified spike was temporally aligned to the time at 
which its peak value of ΔF/F0 occurred, to generate the average spike 
waveforms. The FWHM of each spike was calculated by measuring 
the intensity distribution of the spike temporal trace using a Gaussian 
fit. The amplitude of each spike was calculated as the absolute value 
of the peak. The peak time map was extracted from a single peak in 
the captured movie, in line with the previously reported method57. 
Specifically, we first applied a spatial Gaussian filter with a standard 
deviation of 9 voxels and a wavelet-based denoising method to each 
voxel independently. Then we fitted the filtered data with a quadratic 
spline interpolation. Finally, we used the threshold crossing time on the 
rising edge as the peak time of a specific voxel to generate the whole 
peak time map. The video of subframe propagation was made based 
on the peak time map. The firing rate was calculated as the number of 
spikes per second in the resting or stimulated state, and the curve was 
obtained with a 1 s temporal sliding window.

Ethics statement
This work complies with all relevant ethics regulations for animal 
research and testing. All experimental procedures were performed 
with ethics approval from the Animal Care and Use Committee (IACUC) 
of Tsinghua University.

Data analysis
All data processing and analyses were performed with customized 
MATLAB (MathWorks, MATLAB 2018b) scripts and Python (v3.7) 
scripts. The data collection and hardware control were performed 
with LABVIEW (2019 version) and our previously developed graphical 
user interface (sLFdriver45, v2.0). The 3D volumes of Drosophila brain 
in Fig. 6 were rendered using Imaris (v9.0.1). The 3D rendering of the 
volumes in the supplementary videos was carried out using Voltex 
modules in Amira (Thermo Fisher Scientific, Amira 2019). The 3D 
tracking of blood cells in the vessels of the zebrafish larvae and the 
neutrophil in the vessels of mouse liver was carried out automatically 
using Imaris (v9.0.1).

Performance metrics
We chose signal-to-noise ratio, structural similarity (SSIM) and cut-off 
frequency (kc)58 to quantitatively evaluate the capability of VsLFM. 
Synthetic volumes or sLFM results were regarded as ground truth, as 
described in the Figure legends. The signal-to-noise ratio is calculated 
by the following formula:

SNR = 10 log10
‖X‖22

‖X − Y‖22
,

where X represents the ground truth and Y represents the correspond-
ing reconstructed results. SSIM is calculated by the following formula:

SSIM =
(2μXμY + (0.01 ⋅ L)2) (2σXY + (0.03 ⋅ L)2)

(μ2
X + μ2

Y + (0.01 ⋅ L)2) (σ2X + σ2Y + (0.03 ⋅ L)2)
,

where X and Y represent the signals, µX and µY represent the average 
values of each signal, σX and σY represent the corresponding standard 
deviations of each signal, and σXY represents the cross-covariance for 
X and Y. The dynamic-range value L in this work is 1 after the data were 
normalized to single-precision floating-point numbers. The SSIM 
indices were calculated on 2D images (Supplementary Figs. 3h, 4b, 
8b, 8e, 9d, 18d) or 3D images (Fig. 3f and Supplementary Figs. 4a, 19b), 
according to different evaluation requirements. For SSIM calculation 
on 2D images, we calculated the local SSIM maps with multiple (slid-
ing) 2D local Gaussian windows (with the size of 11 × 11 and standard 
deviation of 1.5) and averaged them to produce the SSIM metric. For 
SSIM calculation on 3D images, we first reshaped the 4D angular views 
(height × width × 13 × 13) into a 3D form (height × width × 169). The 169 
angles were arranged based on their spatial proximity. Then local SSIM 
maps were computed in multiple (sliding) 3D local Gaussian windows 
(with the size of 11 × 11 × 11 and standard deviation of 1.5) of the 3D 
image. Finally, the mean value of the local SSIM maps was returned as 
the SSIM metric. In practice, the calculations were conducted using 
the built-in ssim.m function in MATLAB R2018b. For decorrelation 
analysis of images58, the cross-correlation coefficient is calculated by 
the following formula:

d (r) =
∫ℜ {I (kkk) I∗n (kkk)M (kkk; r)}dkxdky

√∫||I (kkk)||2dkxdky∫||In (kkk)M (kkk; r)||2 dkxdky
,

where I(k) denotes the Fourier transform of the input image, In(k) 
denotes the normalized form of I(k), k = (kx, ky) denotes the Fourier 
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space coordinates and M(k;r) denotes the binary mask of radius r. 
Then the cut-off frequency (kc) is calculated by the following formula:

kc = max {ri} ,

where ri denotes the radius of the binary mask, corresponding to the 
frequency of the highest peak. We also used the Pearson correlation 
coefficient (R) to evaluate the similarity between the ground truth 
and the results by different methods. R is calculated by the following 
formula:

R = E [(X − μX) (Y − μY)]
σXσY

,

where X and Y denote the signals, µX and µY represent mean values of 
each signal, σX and σY denote the corresponding standard deviations of 
each signal, and E[·] denotes the expectation. For quantitative analysis 
on Fourier spectra (Fig. 4e), the Fourier ring correlation (FRC) were 
applied as described in the original paper43. In the calculation of the 
FRC curve, the threshold was set to 1/7 ≈ 0.143 for the cut-off frequency.

Statistics and reproducibility
Biological data shown in Figs. 2, 4, 5, 6 and Supplementary Figs. 4, 5, 6, 
15, 16 are representative of n = 6 experiments. Biological data shown 
in Supplementary Figs. 9 and 13 are representative of n = 12 experi-
ments. Simulated data shown in Fig. 3 and Supplementary Figs. 10, 
12 are representative of n = 17 experiments. Simulated data shown in 
Supplementary Figs. 1, 8, 11, 14, 17, 18, 19 are representative of n = 20 
experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Bio-LFSR dataset includes more than 1,300 pairs of 4D 
low-resolution and high-resolution images, covering four species, 
six structures and multiple imaging conditions, and is made publicly 
accessible on Zenodo (https://doi.org/10.5281/zenodo.7233421)59. Sup-
porting data for Vs-Net have been made publicly available on GitHub 
(https://github.com/THU-IBCS/VsLFM-master/tree/main/Data).

Code availability
All relevant codes of VsLFM are readily accessible and available on 
Github (https://github.com/THU-IBCS/VsLFM-master) and Zenodo 
(https://doi.org/10.5281/zenodo.7436082)60.
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