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Abstract
Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit 
the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as 
caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. 
These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-
associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involve-
ment of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, 
Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic 
or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature 
mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of 
endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP 
is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight 
the structure and functions of PLVAP in different endothelial types in health and disease.
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Introduction

The leading cause of death worldwide is represented by non-
communicable diseases (NCDs), comprising 73.4% of total 
death in 2017, which represents an increase of 22.5% since 
2007 (Cao et al. 2018, Collaborators 2018). Within this group, 
the four major NCDs (cardiovascular diseases (CVDs), can-
cer, chronic respiratory diseases, and diabetes) together caused 
12.4 million deaths according to the WHO in 2015, including 
CVDs with 6.2 million victims at the leading position.

During the course of CVDs endothelial cells (ECs) lining 
coronary arteries and blood vessels represent an important 

subject (Carmeliet and Jain 2000). Besides their ability to 
detect shear stress followed by molecular signaling to change 
diameter and thickness of the blood vessel wall, ECs also 
control passaging of immune cells or molecules into and out 
of the blood, which is dependent on vascular permeability 
(Yu et al. 2006). To fulfill the different requests across the 
entire vascular system and even within one vascular bed, a 
heterogeneous population of cells with different functions 
builds up the endothelium.

Vascular permeability is on the one hand regulated by the 
organization of the ECs themselves, e.g. by a loose or tight 
order combined with the presence of a basement membrane, 
and on the other hand by the abundance of EC specific micro-
domains (Aird 2007a; Augustin and Koh 2017; Auvinen et al. 
2019; Bosma et al. 2018; Tse and Stan 2010). The diffusion 
of substrates can be controlled by a thin proteinaceous dia-
phragm covering these microdomains, which functions as a 
physical sieve containing the plasmalemma vesicle associated 
protein (PLVAP), its only known component (Aird 2007a; 
Augustin and Koh 2017; Auvinen et al. 2019; Bosma et al. 
2018; Herrnberger et al. 2014, 2012; Stan et al. 2012; Tse and 
Stan 2010). It was demonstrated that the development of the 
cardiovascular system and postnatal physiological processes, 
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as maintaining blood composition and organ homeostasis, 
strongly rely on PLVAP, which is, therefore, thought to func-
tion in the process of vascular permeability (Bosma et al. 
2018; Herrnberger et al. 2014, 2012; Stan et al. 2012). In 
addition, PLVAP has also been described as leukocyte traf-
ficking molecule playing a crucial role in immune surveil-
lance and inflammation, as it is redistributed in cells after a 
pro-inflammatory stimulus (Keuschnigg et al. 2009).

Because of their strong heterogeneity, ECs can be classified 
by different strategies. For a recent review presenting classifi-
cations into organ-wide ECs (arterial, venous, capillary, and 
lymphatic ECs) and organ-specific ECs (blood–brain barrier, 
liver, heart, kidney, and lung ECs), please refer to Prysinda 
et al. or Hennigs et al. (Hennigs et al. 2021; Przysinda et al. 
2020). In addition, there are also enormous differences 
according to their role in health or disease, which often lead 
to distinct ECs properties, thus building another category of 
ECs e.g., tumor specific ECs.

This review will highlight morphological differences of 
ECs and the different roles of PLVAP expression and regula-
tion to form these different endothelia throughout the human 
organism, including its role during disease.

Morphological differences of endothelia

Due to the demands on ECs to react to the needs of the under-
lying tissue and the surrounding microenvironment, differ-
ent endothelial types emerged, which exhibit characteristic 
structural and functional differences that are specific for each 
organ (Aird 2007a, b; Rhodin 1955; Wisse 1970; Zhou et al. 
2014). Consequently, the endothelium may be continuous, 
fenestrated, or discontinuous (sinusoidal), to differentially 
control and regulate vascular permeability for water and sol-
utes (Auvinen et al. 2019; Bosma et al. 2018; Tse and Stan 
2010). As will be discussed later in this review, PLVAP plays 
important roles in the manifestation of the different types of 
endothelia, with its expression and functions strongly varying 
dependent on the endothelial type.

Endothelia that form a diffusion barrier between blood 
and tissue, thereby ensuring a high selectivity for nutrients, 
proteins, and immune cells, are organized as the so-called 
continuous endothelium (see Fig.  1). Only diffusion of 
water and small molecules to the extravascular compart-
ment is allowed, thereby preventing loss of plasma proteins 
and blood cells. It is the least permeable type of ECs that 
is especially pronounced in some organs, e.g. in the brain, 
where the blood–brain barrier (BBB) is formed (Aird 2007a; 
Augustin and Koh 2017; Auvinen et al. 2019; Bosma et al. 
2018; Tse and Stan 2010). The continuous endothelium is an 
uninterrupted endothelium with a continuous basal lamina 
and dense cell-to-cell contacts known as tight junctions, 

which is found in muscle tissues, heart, lung, brain, and 
other organs (Okada et al. 2017; Zhou et al. 2014).

Continuous ECs own structures called caveolae, flask-
shaped invaginations of the plasma membrane of about 
50–100 nm, that display distinct levels of organization in 
different cell types, clearly detectable by electron micros-
copy as grape‐like clusters, rosettes, membrane‐bound or 
detached vesicles, and tubule‐like structures (Filippini et al. 
2018; Gordon et al. 2019; Razani et al. 2002). Following these 
observations, caveolae were hypothesized to be involved in 
transcytosis (a form of transcellular trafficking of molecules 
across the endothelial layer), cholesterol transport, potocytosis, 
and endocytosis (Anderson et al. 1992; Fielding and Fielding 
1995; Rothberg et al. 1992; Schnitzer et al. 1996; Simionescu 
1983; Smart et al. 1996; Stan 2005). Furthermore, the caveo-
lin family of proteins was identified as molecular marker for 
caveolae-enriched membranes (Lisanti et al. 1994a, b, 1995; 
Sargiacomo et al. 1993; Scherer et al. 1997; Tang et al. 1996).

Continuous endothelia that exhibit another subcellular 
structure, the so-called fenestrae, are classified as fenestrated 
endothelia (see Fig. 1). Fenestrae are circular membranal open-
ings about 70 nm in diameter cutting through the full thickness 
of the cell body, which are often spanned across their opening 
by a thin 5 to 6 nm non-membranous diaphragm, the fenestral 
diaphragm (FD) (Aird 2007a; Gordon et al. 2019; Okada et al. 
2017; Rhodin 1955). Moreover, fenestrae appear to be arranged 
in clusters with equidistant spacing within one EC, often form-
ing linear or two-dimensional arrays indicated as “sieve plates” 
(Ioannidou et al. 2006; Rhodin 1962; Simionescu et al. 1976).

The presence of fenestrae allows higher permeability of ECs 
for small and medium sized molecules, making them important 
for regulation of endocrine dependent homeostasis (Gordon 
et al. 2019). Interestingly, caveolae within fenestrated endothe-
lium are also covered by a diaphragm, the stomatal diaphragm 
(SD). This type of endothelium is characteristic for vascular 
beds in organs with increased filtration, secretion or increased 
transendothelial transport as exocrine and endocrine glands, 
gastric and intestinal mucosa, choroid plexus, glomeruli, and 
a subpopulation of renal tubules in the kidney (Aird 2007a, 
2012; Okada et al. 2017; Takemura et al. 2017; Wisse 1970). 
Transendothelial channels (TECs) are other microdomains 
specific for the fenestrated endothelium (see Fig. 1), with two 
diaphragms that lack heparan sulfate proteoglycan tufts instead 
of one, as described for fenestrae and are suggested to arise by 
fusion of caveolae (Hamilton et al. 2019; Herrnberger et al. 

Fig. 1   Morphological properties of different endothelial subtypes and 
their occurrence within the organism. The figure compares the mor-
phology (top), the main characteristics (middle) and the occurrence 
inside the body (bottom) of the three endothelial types, which are the 
continuous endothelium, the fenestrated endothelium, and the sinu-
soidal endothelium
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2014, 2012; Rippe et al. 2002; Stan et al. 2012). In another 
hypothesis, TECs are considered as fenestrae precursors, as 
they intersperse with fenestrae in thinned regions within the 
ECs. Still, fenestrae and TECs are thought to enable rapid 
exchange of molecules between the circulation and the under-
lying tissue, as both represent pore-like structures (Bosma et al. 
2018; Tse and Stan 2010).

The sinusoidal endothelium or discontinuous endothelium 
also exhibits the microdomains mentioned above (see Fig. 1), 
but it owns larger openings with diameters of about 30–40 μm 
in the endothelium, resulting from inter-endothelial gaps and 
an incomplete basement membrane (Aird 2012; Okada et al. 
2017; Wisse 1970). This endothelial type is found in organs 
with the highest degree of vascular permeability as the liver 
and hematopoietic organs, e.g. the bone marrow and the spleen 
(Aird 2007a; Augustin and Koh 2017; Auvinen et al. 2019; 
Bosma et al. 2018; Okada et al. 2017; Tse and Stan 2010).

Endothelial microdomains 
in non‑fenestrated and fenestrated ECs

Although caveolae are present in non-fenestrated and fenes-
trated ECs, only the ones present in the latter contain SDs. In 
contrast, FDs are present in all fenestrated ECs (Aird 2007a; 
Augustin and Koh 2017; Auvinen et al. 2019; Bosma et al. 
2018; Tse and Stan 2010) (Fig. 1). Interestingly, SDs and 
FDs have differential biochemical properties, even though 
their composition and structure are supposed to be similar. 
Moreover, the permeability of the endothelium is not only 
defined by the molecular size of the molecules, but also 
by the molecular net charge interacting with the negatively 
charged surface of ECs (Pelikan et al. 1979; Sawyer and 
Srinivasan 1972; Simionescu et al. 1981b).

High numbers of anionic sites are characteristic for FDs, thus 
creating a difference in charge in FDs, whereas they are absent 
in SDs (Simionescu et al. 1981b). Interestingly, proteases and 
heparinases can remove the anionic sites on FDs giving rise to 
the idea of the glycocalyx covering the luminal side of these 
diaphragms (Simionescu et al. 1981a). Furthermore, primarily 
heparan sulfate and/or heparin contribute to the anionic sites of 
FDs, while the acidic sites on the remainder of the ECs are of a 
more divers chemical nature (Simionescu et al. 1981a).

It is fascinating that the content of anionic sites in FDs 
appears higher in comparison to the plasma membrane, which 
is traditionally proven as negatively charged (Sarin 2010). How-
ever, the difference in charge causes an impermeability for ani-
onic proteins at FDs. In contrast, SDs are believed to still enable 
the passage of these anionic proteins, as they miss the selective 
layer due to charge difference (Simionescu et al. 1981b).

So far, the only established molecular component of SDs and 
FDs is PLVAP, which is exclusively known to be present in dia-
phragms (Auvinen et al. 2019; Herrnberger et al. 2012; Stan et al. 

1999b, 2012). The highest PLVAP expression is found within 
organs that are known for the exhibition of fenestrated ECs, as in 
the lungs, kidneys, spleen, endocrine glands and digestive tract 
(Deharvengt et al. 2012; Guo et al. 2016). As vascular permeabil-
ity strongly relies on the presence of diaphragms in fenestrated 
endothelium, we further want to highlight the role of PLVAP in 
diaphragm formation and finally permeability regulation.

The basics of PLVAP

PLVAP is commonly considered to be endothelium‑specific. 
It represents an antigen for two classic endothelial antibodies, 
the Mouse endothelial cell antigen (MECA)- 32 (Hallmann 
et al. 1995) and pathologische anatomie Leiden- endothelium 
(PAL- E) (Schlingemann et al. 1985). Furthermore, the anti-
body 174–2, which recognizes a similar antigen distribution 
as PAL-E, was described during molecular identification 
of PLVAP (Niemela et al. 2005). MECA‑32 represents the 
murine variant of PAL‑E, which has been a widely used vas-
cular marker because of the ability of PAL‑E to discriminate 
between certain subsets of endothelial cells and its specificity 
for endothelium (Bosma et al. 2018).

PLVAP is essential for the development of FDs and SDs in 
fenestrated and sinusoidal endothelium (Ioannidou et al. 2006; 
Stan et al. 2004) but is absent in the non-fenestrated ECs of the 
BBB, BRB or other ECs with blood-tissue barrier properties, 
as PAL-E was unable to stain continuous endothelia, as those 
of the cerebral cortex and the cerebellum, but could stain the 
fenestrated endothelium of the choroid plexus (Bosma et al. 
2018; Schlingemann et al. 1985, 1997, 1998). Furthermore, 
regulation of basal permeability, leukocyte migration and angi-
ogenesis was reported to involve PLVAP (Carson-Walter et al. 
2005; Keuschnigg et al. 2009; Liu et al. 2010; Madden et al. 
2004; Minshall and Malik 2006). This is supported by observa-
tions under pathological conditions, where PLVAP is expressed 
also in the BBB and BRB leading to barrier disruption, such 
as brain ischemia, cancer, and diabetic retinopathy (Carson-
Walter et al. 2005; Hofman et al. 2001; Leenstra et al. 1993; 
Schlingemann et al. 1999; Shue et al. 2008). Considering its 
association with cancer, traumatic spinal cord injury, transplant 
glomerulopathy (TG), ischemic brain disease and ocular dis-
ease, PLVAP is also investigated as novel therapeutical target, 
e.g. during cancer therapy (Klaassen et al. 2009; Mozer et al. 
2010; Schafer et al. 2009; Wang et al. 2014; Wisniewska-Kruk 
et al. 2012, 2014; Yamamoto et al. 2007).

The molecular structure of PLVAP

PLVAP is a 55–65 kDA type II integral membrane N-glycosylated 
glycoprotein forming homodimers in situ and binds to heparin 
at physiological pH (Hnasko et al. 2002; Stan 2004; Stan et al. 
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2001, 1999a, b; Tse and Stan 2010) (see Fig. 2). The molecular 
structure of PLVAP is made up of a short intracellular domain (27 
amino acids), a single span transmembrane domain and a large 
extracellular domain (380 amino acids) (Stan 2005; Stan et al. 
2001, 1999a). There are two short identical stretches of approxi-
mately 7–8 amino acids within the non-conserved intracellular 
domain. One contains a putative caveolin-1 binding domain, 
counts 8 amino acids, and can be found adjacent to the trans-
membrane region, while the other counts 7 amino acids and is 
located at the extreme N-terminus (Couet et al. 1997; Stan 2005). 
The extracellular domain is highly conserved and consists of four 
N-glycosylation sites, two coiled-coil domains and a proline-rich 
region near the C-terminus (Stan 2004; Stan et al. 2001). An  
intermolecular superhelix dominates the whole extracellular 
domain, giving the protein a rod-like structure (Stan 2007; Stan 
et al. 2001). Furthermore, PLVAP is postulated to build dimers, 
which in turn form radial fibrils that are organized in an octagonal 
wheel-like symmetry to build up FDs or SDs (Bearer and Orci 
1985; Rothberg et al. 1992; Stan 2005). Thereby, the extracellular 
tail of the fibrils interweaves in a central mesh and the intracel-
lular tail anchors the fibrils within the cell membrane. It binds 
either directly to the cytoskeleton or is fixed to it via cytoskeletal 
linker molecules (Keuschnigg et al. 2009; Stan 2005). To prevent 
PLVAP to collapse on the extracellular side, it is glycosylated 
near the transmembrane domain (Stan et al. 1999b). Considering  
the wheel-like structure of PLVAP in diaphragms, it is assumed 
that the distance between adjacent fibrils at the rim is approxi-
mately 6 nm (Bearer and Orci 1985; Rantakari et al. 2015).

The diverse functions of PLVAP

Many endothelia first develop without a functional barrier, 
which starts to be established during embryogenesis, and then 
differentiate further to the mature endothelium forming bar-
riers as the BRB and the BBB (Gariano 2003; van der Wijk 
et al. 2019). These acquired adult phenotypes and properties 
are reversed under pathological conditions, thus inducing 
breakdown of the barrier, as it happens during diabetic macu-
lar edema (DME) that leads to blindness or in brain tumors 
(Klaassen et al. 2013; Leenstra et al. 1993). As consequence, 
there is a high interest in all factors that either build up the 
functional barrier or lead to its destruction. So far, genes that 
are involved in the regulation of paracellular transport, such 
as claudin-5 and occludin, or in the vesicular and transcel-
lular transport, such as caveolin-1 or PLVAP, were identi-
fied as most important for BRB or BBB integrity (Klaassen 
et al. 2009). Although PLVAP is not expressed in the mature 
functional BBB or BRB, PLVAP was shown to be a crucial 
regulator of vascular permeability during embryogenesis and 
postnatal physiological processes, as maintaining blood com-
position and organ homeostasis (Bosma et al. 2018; Hallmann 
et al. 1995; Herrnberger et al. 2014, 2012; Risau and Wolburg 

1990; Saunders et al. 2012; Schlingemann et al. 1997; Stan 
et al. 1999a, 2012).

PLVAP facilitates the selective passage of molecules

One function of PLVAP is to provide a structural barrier allow-
ing a selected passage of molecules through the endothelial 
layer. Indeed, in human or mouse cells, when PLVAP expres-
sion is knocked down, endothelial diaphragms disappeared 
(Ioannidou et al. 2006; Stan et al. 2004). Caveolin-1-knockout 
or cavin-1-knockout mice revealed reduced PLVAP protein 
levels in tissues, as they lack the necessary structures to form 
diaphragms. In addition, the reduced PLVAP levels were not 
due to altered transcription or concentration rates, but due to 
an increased internalization rate independent from clathrin 
and dynamin-dependent pathways and lysosomal degradation 
(Tkachenko et al. 2012). This led to the conclusion that the only 
structural function of PLVAP is the formation of diaphragms.

A calculation that considers the wheel-like structure of 
PLVAP, the rim distance between the fibrils, the physiologi-
cal upper limit pore size of fenestrated endothelium and the 
underlying lamina basalis revealed increased permeability 
for plasma proteins of 6 to 30 nm diameter in the absence of 
PLVAP (Bearer and Orci 1985; Rantakari et al. 2015; Sarin 
2010; Stan et al. 2012). Except for large protein complexes 
or lipoprotein particles, such as chylomicrons, all plasma 
proteins can, therefore, passage a fenestrated endothelial 
layer and diffuse into the underlying tissue when PLVAP is 
not present. Nevertheless, there are hints pointing towards 
additional factors that are required for diaphragm formation, 
as successful diaphragm restorage after PLVAP reconstitu-
tion in knockdown mice was only observed in ECs with vas-
cular beds that natively form diaphragms (Stan et al. 2012).

Structure and stability support

Besides their functions in mature endothelium, diaphragms 
are considered to structurally stabilize caveolae and fenestrae 
and to provide mechanical strength to vessels during embryo-
genesis and postnatal physiological processes (Herrnberger 
et al. 2012). Aberrant morphological fenestral phenotypes 
without FDs were detected in PLVAP knockout mice and in an 
in vitro assay, baring width of 50–120 and 20–400 nm, respec-
tively (Ioannidou et al. 2006; Stan et al. 2012). Transmis-
sion electron microscopy of samples obtained from PLVAP 
knockout mice demonstrated vessels with large openings cov-
ered by degranulated thrombocytes resulting from the lack 
of SDs. Consequently, these mice developed subcutaneous 
edema, hemorrhages, and cardiac and vascular defects, and 
died before birth (Herrnberger et al. 2012; Stan et al. 2012).

Additionally, it was shown that PLVAP knockout mice sur-
vived postnatally up to 4 weeks or survived up to 3–4 months, 
respectively, but suffered from growth retardation, anemia, and 
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selective leakage of plasma proteins into the interstitium with 
subsequent edema and dyslipidemia, eventually leading to a 
lethal, protein-losing enteropathy (Herrnberger et al. 2012; 
Rantakari et al. 2015; Stan et al. 2012). Moreover, humans that 
own a nonsense mutation in the PLVAP-gene develop similar 
disease profiles characterized by protein losing enteropathy, 
hypoproteinemia, hypoalbuminemia, and hypertriglyceri-
demia, which can lead to a kwashiorkor‐like wasting syndrome 
and death (Elkadri et al. 2015; Stan et al. 2012).

However, as there are also caveolae and fenestrae in mature 
endothelium that lack diaphragms (as present in the kidney 
glomeruli and liver sinusoids), chances are low that PLVAP 
gives structural stability as it does in the embryonic endothe-
lium (Stan et al. 2012). Instead, it is possible that controlled 
permeability is important during the embryogenic develop-
ment, as PLVAP is known to be expressed in these endothelia 
during embryogenesis and to have a mechanical stabilization 
function (Ioannidou et al. 2006; Rantakari et al. 2016).

Leukocyte trafficking

Within inflammation and immunity, one of the central con-
cepts is the migration of leukocytes from the bloodstream 
into tissues across the endothelium by a transcellular pathway 
(Keuschnigg et al. 2009; Liu et al. 2010). During this process, 
leucocytes were found to be surrounded by rings containing 
PLVAP and caveolin-1 (Keuschnigg et al. 2009). The pres-
ence of caveolin-1 and vimentin (part of the cytoskeleton) 
seems to redistribute PLVAP leading to a colocalization 
of all those proteins. In an acute peritonitis model, leuko-
cyte migration was decreased up to 85% when PLVAP was 
blocked with a MECA-32 antibody, leading to the conclu-
sion that PLVAP enables an increase of leukocyte trafficking 
possibly intensifying inflammation (Keuschnigg et al. 2009).

Furthermore, PLVAP is also expressed in lymphatic vessels  
that enable efficient interaction of peripheral antigens with  
lymphocytes (Germain et al. 2012; Girard et al. 2012; Rantakari  
et al. 2015). Here, PLVAP is localized in diaphragms of caveolae,  
TECs and vesiculo-vacuolar organelles (VVOs) within the  
subcapsular sinus lymphatic ECs (LECs) of lymph nodes, 
thereby regulating the entry of soluble antigens and lymphocytes 
into the parenchyma (Rantakari et al. 2015). Thus, an increase 
of leukocyte transmigration through the sinus floor and non- 
selective antigen entry into the lymph system could be detected in 
PLVAP-null mice. As consequence, PLVAP was hypothesized to  

be mandatory for regulation of a selective entry of lymphocytes 
and antigens into the lymphatic nodes (Rantakari et al. 2015).

Diverse functions of PLVAP in barrier and non‑barrier 
endothelium

The functions of PLVAP differ according to their expression 
in fenestrated or non-fenestrated endothelia. PLVAP is thought 
to prevent excessive protein leakage from the bloodstream into 
the tissue in non-barrier endothelium and is, therefore, consid-
ered as regulator for the fine tuning of vascular permeability 
(van der Wijk et al. 2019). In contrast, PLVAP has a reverse 
role in barrier endothelium, as in these endothelia it is respon-
sible for loss of barrier integrity, protein leakage and barrier 
breakdown (Wisniewska-Kruk et al. 2016), and is considered 
to be expressed in mature barrier endothelium only under path-
ological conditions (van der Wijk et al. 2019). The expression 
and functions of PLVAP in barrier and non-barrier endothelia 
are summarized in Fig. 3.

Functions in barrier endothelium  In barrier-forming endothe-
lium, PLVAP expression is only found during the embryogen-
esis or in postnatal development, but not in mature endothe-
lium (Daneman et al. 2010; Hallmann et al. 1995; Liebner and 
Plate 2010; Schlingemann et al. 1997; Umans et al. 2017; van 
der Wijk et al. 2019). In the BBB and BRB, PLVAP expres-
sion decreases with the progression of vasculature maturation 
and development of a functional barrier (Daneman et al. 2010; 
Hallmann et al. 1995; Liebner and Plate 2010; Umans et al. 
2017). Thus, its expression is only reinduced under pathologi-
cal conditions leading to vascular leakage, as found during 
diabetic retinopathy (Hofman et al. 2001; Schlingemann et al. 
1999; Witmer et al. 2002), brain ischemia (Carson-Walter et al. 
2005; Shue et al. 2008) and brain tumors (Schlingemann et al. 
1985; Shue et al. 2008). A trans-endothelial electrical resist-
ance assay revealed reduced loss of BRB integrity after vascu-
lar endothelial growth factor (VEGF) treatment, when PLVAP 
expression was inhibited using short hairpin RNAs (shRNA) 
(Wisniewska-Kruk et al. 2016). Another observation was the 
reduced permeability for 70 kDa tracers, but not for 766 Da 
tracers, in an in vitro model of retinal leakage and in a hypoxia-
induced retinopathy (OIR) mouse model after VEGF induction 
due to PLVAP inhibition (Wisniewska-Kruk et al. 2012, 2016).

These results imply a crucial role for PLVAP in VEGF-
induced leakage via the transcellular pathway, allowing 
increased passage of large molecules, while having a low 
effect on small molecules that are known to use the paracel-
lular transport. Furthermore, VEGF-induced caveolae forma-
tion was reduced back to basal levels by PLVAP knockdown 
in human retinal explants, leading to the conclusion that 
PLVAP enables the formation of caveolae, which probably 
possess SDs containing PLVAP and thereby induce leakage  

Fig. 2   The molecular structure of PLVAP and its arrangement within 
diaphragms. The figure provides an overview over the molecular 
structure of PLVAP from a its amino acid sequence to b its second-
ary and c tertiary structure, showing its integration into the cell mem-
brane. d Shows how the homodimers are organized in a wheel-like 
structure within caveolae, TECs and fenestrae and thus forming SDs 
(d’) or FDs (d’’), respectively

◂
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(Wisniewska-Kruk et al. 2016). In PLVAP-deficient mice, lack 
of PLVAP expression had no influence on the basal caveolae 
number, but resulted in a complete lack of all diaphragms indi-
cating that PLVAP enables the formation of caveolae, which are  
probably covered by SDs containing PLVAP, and thus facili-
tate permeability and leakage (Bosma et al. 2018; Herrnberger 
et al. 2012; Wisniewska-Kruk et al. 2016). One theory implies 
PLVAP to increase basal VEGFR2 availability in caveolae in 
a primary or secondary mechanism and, thereby, modulating 
vascular permeability and caveolae formation (Labrecque et al. 
2003; Tahir et al. 2009). As PLVAP interacts with NRP-1, an 
important co-receptor during VEGFR2 signaling that regulates 
the surface expression of VEGFR2, PLVAP could stabilize the 
VEGFR2/NRP-1 complex, thereby facilitating VEGFR2 sign-
aling, which in turn induces PLVAP expression completing a  
positive feedback loop (Gelfand et al. 2014; Keuschnigg et al. 
2009; Strickland et al. 2005). As interesting the possibility of 
a positive feedback loop resulting in breakdown of the BBB or 
the BRB is, this theory has still to be elucidated.

There may also be a possible functional role of PLVAP in the 
paracellular pathway in barrier endothelium (already discussed 
above), as it is involved in the regulation of the fenestrae and 
caveolae number within a cell (Herrnberger et al. 2014, 2012; 
Wisniewska-Kruk et al. 2016). This event is believed to include 
reorganization of the cytoskeletal framework, but more research 
in this area is needed, as the precise molecular mechanisms 
leading to the biogenesis of caveolae and fenestrae are still 
unknown (Ioannidou et al. 2006). However, PLVAP may regu-
late intercellular gap formation, as VEGF stimulation signifi-
cantly reduced stress fiber formation in bovine retinal endothe-
lial cells, when PLVAP was inhibited (Wisniewska-Kruk et al. 
2016). In unstimulated cells, stress fiber formation was only 
affected in a limited degree after PLVAP inhibition. Therefore, 
VEGF is believed to play a central role in this process, while 
PLVAP is indirectly participating, maybe via its suspected 
link to actin-binding proteins (Wisniewska-Kruk et al. 2016). 
Moreover, VEGF-A was shown to induce Rho-A, which owns 
functions during stress fiber formation and cellular contractility 

Fig. 3   The effect of PLVAP expression on vascular permeability and barrier integrity in barrier endothelium (a) and non-barrier endothelium (b) 
under physiological (a’, b’) and pathological (a’’, b’’) conditions
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(Bryan et al. 2010; Chrzanowska-Wodnicka and Burridge 
1996). Since PLVAP knockdown significantly blocked VEGF-
induced caveolae formation, PLVAP may induce VEGFR2 
dependent Rho GTPase signaling in cells to modulate stress 
fiber formation (Bosma et al. 2018; Wisniewska-Kruk et al. 
2016). The hypothesis of PLVAP affecting paracellular trans-
port is further supported by altered expression of tight junctions 
and adherens junctions in heterozygous PLVAP mice, even if it 
is still not known how these altered expression levels manifest 
into functional junction characteristics (Bosma et al. 2018; van 
der Wijk et al. 2019). As consequence, more research is needed 
on the field of transcellular and paracellular transport in barrier 
endothelium and the mechanisms how PLVAP modulates both 
in pathological conditions. Potentially, this research will finally 
give rise for new therapeutical targets to fight pathological con-
ditions favoring breakage of barriers as the BBB or BRB.

PLVAP in non‑barrier endothelium reduces vascular permea‑
bility  In contrast to barrier endothelium, PLVAP is expressed 
in non-barrier endothelium also in the mature endothelium. 
This type of endothelium includes fenestrated endothelia 
covered by FDs (except the kidney glomerulus and liver 
sinusoidal capillaries, which lack FDs), and the continuous 
endothelia of skin, muscle, and lung (Niemela et al. 2005; 
Schlingemann et al. 1998; Stan et al. 1999b, 2012).

Studies with PLVAP knockout mice revealed significantly 
reduced albumin and albumin/globulin ratios with minimal 
electrolyte imbalance compared to littermates (Stan et al. 
1999b). A following Evans Blue dye extravasation assay 
exposed significant leakage of plasma proteins in organs with 
fenestrated capillaries as intestine, kidney, and pancreas, sug-
gesting that the reduced albumin and albumin/globulin ratios 
were not due to decreased protein production, enhanced catab-
olism, or nephropathy. In organs with continuous endothelium  
as heart muscle and lung, only a minimal increase in the vas-
cular leakage was detected, while there was no effect in liver 
sinusoids and glomeruli (Stan et al. 1999b). Therefore, barrier  
integrity in the ECs of the kidney glomerulus lacking FDs is not 
altered due to PLVAP deletion. Thus, the observed hypopro-
teinemia and hypoalbuminemia in PLVAP-knockout mice are 
the consequence of increased vascular leakage in fenestrated 
endothelium (Stan et al. 1999b). Two case studies with infants 
owning a homozygous non-sense mutation in the PLVAP gene 
supported these results, as the infants died at 5 months and 
15 days of age, because PLVAP was targeted for degradation 
by non-sense mediated mRNA decay, leading to complete 
absence of SDs and FDs in endothelial cells (Broekaert et al. 
2018; Elkadri et al. 2015). As result, the patients suffered from 
similar phenotypes as observed in the PLVAP-knockout mice; 
severe protein-losing enteropathy, characterized by excessive 
loss of plasma proteins in the gastrointestinal tract, a severe 
pathological condition that can eventually lead to death 
(Broekaert et al. 2018; Elkadri et al. 2015). All observations  

taken together support the hypothesis that loss of PLVAP 
expression in fenestrated endothelium results in vascular leak-
age of proteins within the corresponding vessels. Considering 
PLVAP localization in diaphragms, it was concluded that it 
owns filter functions for fenestrae or caveolae to regulate vas-
cular permeability, as it provides size limitation for macromol-
ecules, but allows the passage of water and solutes.

VEC-PV1HA transgenic mice expressing PLVAP tagged 
with human influenza hemagglutinin (HA) (PV1HA) under 
the control of the vascular endothelial-cadherin promoter 
and a 5′-intronic enhancer element demonstrated ~ 30–50% 
reconstitution of native PLVAP expression levels in their tis-
sues (Hisatsune et al. 2005; Stan et al. 2012). Furthermore,  
PV1−/−(PV1ECRC​) knockout mice that expressed the VEC-
PV1HA+/tg construct also displayed ~ 30–50% reconstitution of 
PV1HA, which significantly increased the survival of PV1ECRC​ 
mice up to 60% of expected Mendelian frequency, on a mixed 
background. Additionally, FDs or SDs in the lungs, adrenal 
glands, kidneys, pancreas, thyroid and intestine were reestab-
lished, which led to improved survival, further indicating a  
crucial role for PLVAP in the regulation of vascular perme-
ability (Guo et al. 2016; Stan et al. 2012).

In different vessels, permeability of SDs and FDs are 
determined by biochemical and morphological properties

Considering the differential biochemical properties of the 
distinct types of diaphragms, it is hypothesized that PLVAP 
binds to several glycoproteins in various vascular beds, which 
could alter the chemical composition of the endothelial open-
ing and as consequence the selectivity towards molecules 
(Bosma et al. 2018). Contrarily, the possibility exists that 
the difference between SDs and FDs is a result of additional 
proteins, which might be present in the diaphragms besides 
PLVAP. However, Stan et al. reported no increased perme-
ability in continuous endothelium of the lung, which nor-
mally exhibits only caveolae with SDs, in PLVAP-knockout 
mice (Stan et al. 2012). Therefore, the authors concluded that 
the leakage of plasma proteins via caveolae was not directly 
induced by the absence of PLVAP. Indeed, heterozygous 
PLVAP mice showed similar basal vascular permeability for 
proteins in the continuous endothelium of the dorsal skin as 
their WT littermates (van der Wijk et al. 2019).

Thus, the impact of PLVAP loss in SDs and FDs in cave-
olae and fenestrae, respectively, might be due to their mor-
phological properties. Without diaphragms as permselective 
barrier, fenestrae would form pores connecting the capillary 
lumen with the underlying tissue enabling uncontrolled dif-
fusion of macromolecules. Lacking diaphragms at caveolae 
will facilitate the entry of macromolecules into vesicles, but it 
does not affect vesicular trafficking as this requires other pro-
teins as caveolin-1, dynamins and SNARE proteins regulating 
the formation, scission, and fusion of caveolae, respectively 
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(Chen and Scheller 2001; Fra et  al. 1995; Praefcke and 
McMahon 2004). Another explanation for the prominent 
leakage in fenestrated endothelium lacking FDs is the natural 
repellence against anionic proteins that is lost, when FDs are 
missing (Bosma et al. 2018).

In contrast, PLVAP knockdown resulted in a twofold 
increase in transendothelial electrical resistance and decreased 
permeability for both 70 kDa tracers and 766 Da tracers in 
HUVECs, which normally form a relatively permeable barrier 
without expression of fenestrae and TECS in situ (Stan 2004; 
Wisniewska-Kruk et al. 2016). Therefore, barrier-like proper-
ties seemed to be established in non-barrier endothelium due 
to missing PLVAP expression, including an exceptionally low 
rate of vesicular transcytosis. This is proposed to counteract the 
increased entry of macromolecules into caveolae lacking SDs 
in continuous endothelia (Bosma et al. 2018).

PLVAP expression in brain endothelium besides the BBB 
and BRB

Besides the already documented role of PLVAP in the BBB 
and BRB, new studies in zebrafish showed the dependency of 
accurate permeability acquisition in the fenestrated capillar-
ies of the hypophysis on PLVAP ortholog expression (Gordon 
et al. 2019). The neurohypophysis together with the median 
eminence form the hypothalamo-hypophyseal system, also 
known as circumventricular organs (CVO) that are located 
around the midlines of the brain ventricles (Anbalagan et al. 
2018; Ganong 2000; Gutnick et al. 2011; Miyata 2015). To 
regulate homeostasis by recognition of blood-borne proteins 
and release of neurohormones, the capillaries of the CVOs 
are fenestrated allowing this major neuroendocrine inter-
face a bidirectional communication between the CNS and 
the periphery without disrupting the BBB (Anbalagan et al. 
2018; Ciofi et al. 2009; Ganong 2000; Gutnick et al. 2011; 
Miyata 2015; Schaeffer et al. 2014). PLVAP was proven to 
regulate the rate of blood-borne protein transfer through 
fenestrated endothelia into the hypophysis, while establish-
ing a permeability boundary between the hypophysis and 
BBB-containing vasculature (Gordon et al. 2019). However, 
the regulatory mechanisms of PLVAP expression in the ECs 
of the choroid plexus, another non-barrier endothelium that 
is known to possess fenestrated ECs, are still not clear (Aird 
2007a, 2012; Okada et al. 2017; Wisse 1970).

Since the morphology and function of the choroid plexus 
endothelium, with its characteristically expressed gene pat-
tern, is different to other ECs, the ECs of the choroid plexus 
are clearly distinguishable from most other EC populations of 
the body. In a study with normal human and animal eyes, only 
weak PAL-E staining was observed in the retina and nerve 
fiber layer, mostly in the peripapillary area. Still, pronounced 
staining of capillaries and venules with PAL-E was observed 

in other structures of the eye (e.g. conjunctiva, episclera, 
sclera) and the optic nerve head (Schlingemann et al. 1997).

A promising insight into the function of PLVAP may be pro-
vided by studies using a novel cell line gained by immortaliza-
tion of human choroid plexus endothelial cells (iHCPEnC) via 
ectopic expression of the catalytic unit of the human telomerase 
(hTERT) (Muranyi et al. 2022). This cell line exhibits fenestra-
tions and FDs and could provide important information about 
the biologics of PLVAP expression in the human choroid plexus.

Regulation of PLVAP expression

Despite its importance, not much is known about PLVAP 
and diaphragm regulation (Hamilton et al. 2019). Recently, 
PLVAP expression and fenestration of primary liver sinusoi-
dal endothelial cells (LSECs) were shown to be regulated by 
Bone morphogenetic protein 9 (BMP9). It was proven that this 
circulating factor produced by hepatic stellate cells is a key 
paracrine regulator of liver homeostasis, as it protects against 
perivascular hepatic fibrosis and controls LSEC (Desroches-
Castan et al. 2019). Finally, PLVAP is considered to function 
downstream of multiple molecules that can induce permeabil-
ity (Bosma et al. 2018; Daneman et al. 2010; Hallmann et al. 
1995; Liebner and Plate 2010; Umans et al. 2017; van der Wijk 
et al. 2019). Besides angiotensin-2 (Bodor et al. 2012), PMA 
(Stan et al. 2004), Norrin/Wnt mediated β-catenin signaling 
(Chen et al. 2012; Liebner et al. 2008; Liebner and Plate 2010; 
Schafer et al. 2009), Notch-signaling, transforming growth 
factor-β (TGF-β) (Farber et al. 2018; Mintet et al. 2017), and 
inflammatory mediators, such as tumor necrosis factor-α 
(TNF-α) and shear stress (Wasserman et al. 2002), VEGF is 
reported to be the main regulator of PLVAP (Bodor et al. 2012; 
Hofman et al. 2001; Klaassen et al. 2009; Strickland et al. 
2005; Wisniewska-Kruk et al. 2014). For example, reduced 
PLVAP levels were able to protect continuous endothelium of 
the dorsal skin from vascular permeability that is induced by 
VEGF and histamine stimulation (van der Wijk et al. 2019). 
Here, we want to highlight the regulatory mechanisms facili-
tated by VEGF via mitogen activated protein kinase (MAPK) 
signaling and Norrin/Wnt mediated β-catenin signaling.

PLVAP expression regulation via VEGF

Originally, VEGF was described as vascular permeability 
factor, but it is nowadays also known as potent inducer of 
angiogenesis (Ferrara and Henzel 1989; Senger et al. 1983). 
Furthermore, injections of VEGF-induced PLVAP expression 
in retinal vessels in monkey eyes (Hofman et al. 2001). This 
corresponds with other studies describing increased PLVAP 
mRNA and protein levels in photoreceptors of transiently over-
expressing VEGF mice or VEGF-stimulated bovine retinal 
endothelial cells (Klaassen et al. 2009; Wisniewska-Kruk et al. 
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2014). Within the group of VEGFs, VEGF-A was reported 
to induce new vessels exhibiting fenestrae with diaphragms 
in a RAC1-dependent manner and was thus concluded to be 
essential for formation and maintenance of fenestrae and dia-
phragms (Cao et al. 2001, 2004; Eriksson et al. 2003; Nagy 
et al. 2006; Roberts et al. 1998; Roberts and Palade 1995).

There are three different tyrosine kinase receptors termed 
VEGF receptor 1–3 (VEGFR1–3) that bind VEGF and trans-
mit the incoming signals. Systemically delivered VEGFR2 
inhibitors or deletion of VEGF-A in the kidney podocytes, pan-
creas epithelial cells or hepatocytes, caused loss of fenestrae 
in mice (Carpenter et al. 2005; Eremina et al. 2003; Kamba 
et al. 2006; Lammert et al. 2003). In addition, selective recep-
tor-specific engineered variants of VEGF-exposed VEGFR2 
to be responsible for PLVAP upregulation (Strickland et al. 
2005). Thereby, the modulation of PLVAP expression as con-
sequence of VEGF‐A/VEGFR2 signaling seems to be context-
dependent, as PLVAP expression in HUVEC was up-regulated 
by VEGF-A/VEGFR2 signaling, while it was unchanged or 
decreased in immortalized mouse EC lines constitutively 
expressing PLVAP (Hnasko et al. 2006a; Ioannidou et al. 2006; 
Strickland et al. 2005). Moreover, culturing of primary ECs in 
the presence of VEGF-A resulted in no or poor expression of 
PLVAP, and inhibition of VEGFR2 signaling in vivo revealed 
no modification of PLVAP expression in lung tissue (Hnasko 
et al. 2006b; Stan 2004). It should be mentioned that instead 
of PAL-E or MECA-32, the authors used a goat-antimouse 
peptide serum against PLVAP. The use of inhibitors for phos-
phatidylinositol 3-kinase (PI3K) (LY294002) or p38 mitogen-
activated protein kinase (p38MAPK) (SB203580) revealed the 
involvement of P13K- or p38MAPK signaling in VEGFR2-
induced PLVAP expression, respectively (Strickland et al. 
2005). Interestingly, VEGF-A signaling through VEGFR2 is 
necessary, but not sufficient, to induce PLVAP upregulation, 
as pharmacological VEGFR2 inhibition or inhibition using 
antibodies and siRNA did only partly influence its expression 
(Hamilton et al. 2019). Thus, VEGF-A acts synergistically 
with other secreted proteins in an MEK1/Erk1/2-dependent 
manner to upregulate PLVAP.

There are hints that other proteins than VEGF would 
be able to affect VEGFR2-mediated PLVAP expression. 
Caveolin-1 may be such a protein, as PLVAP protein levels 
were increased in the lungs of caveolin-1-knockout mice 
after treatment with an VEGFR2 inhibitor. This effect was 
not visible in caveolin-2-null mice or WT mice indicating 
a VEGF-mediated negatively regulated PLVAP expression 
in the lungs of caveolin-1-null mice (Hnasko et al. 2006b).

However, the way increased VEGF expression affects 
PLVAP expression may also be dependent on the different 
organs and species (Hnasko et al. 2006b; Kim et al. 2020; 
Strickland et  al. 2005). Thus, specific combinations of 
VEGFs are required for selective fenestrated vessel formation 
in the zebrafish myelencephalic choroid plexus. Accordingly, 

the combined loss of VEGFAB, VEGFC, and VEGFD causes 
severely impaired vascularization, while having no effect on 
the formation of non-fenestrated neighboring vessels. There-
fore, the authors concluded specific angiogenic requirements 
for vascular fenestrated ECs (Parab et al. 2021).

Phorbol esters inducing PLVAP expression

Addition of Phorbol esters such as phorbol myristate acetate 
(PMA), an activator of protein kinase C and a known secre-
tagogue in human ECs, to primary ECs in culture can induce 
strong de novo formation of fenestrae and TECS, including 
appropriate diaphragm development (Loesberg et al. 1983; 
Lombardi et al. 1987; Stan 2004). Furthermore, induction 
of SDs and PLVAP expression after PMA stimulation was 
observed in a MEK1/Erk1/2 MAPK‐dependent, and JNK‐, 
p38‐, PI3K‐, Akt- and PKC‐independent manner (Hamilton 
et al. 2019; Stan et al. 2004). Since the observed PMA-induced 
upregulation of PLVAP happened in a dose-dependent and 
time-dependent manner, the Erk1/2 signaling pathway was 
postulated to activate PLVAP expression (Stan 2004).

The canonical Wnt signaling pathway as regulator of PLVAP 
expression

Especially in the brain, another important regulator of PLVAP 
expression is the canonical Wnt signaling pathway implicated 
in angiogenesis and differentiation (Cattelino et al. 2003; 
Daneman et al. 2009; Liebner et al. 2008; Stenman et al. 
2008). It is activated by ligand binding to a Frizzled recep-
tor at its cysteine-rich domain (CRD). This leads to complex 
formation with LDL-receptor related protein 5 or 6 (LRP5 or 
LRP6), and cytoplasmic β-catenin degradation is inhibited 
(Engelhardt and Liebner 2014; Liebner et al. 2008; Moon 
2005; Paes et al. 2011; Schafer et al. 2009). Following nuclear 
translocation of activated, dephosphorylated β-catenin, tran-
scription of genes involved in the regulation of cellular activi-
ties, as proliferation, migration, and differentiation, is acti-
vated by promotion of the TCF/LEF-1 transcription factor 
complex (Paes et al. 2011; van Amerongen and Nusse 2009). 
In addition, the secreted protein Norrin (NDP) was observed 
to activate Wnt/β-catenin signaling despite being no proto-
typical Wnt family member (Junge et al. 2009; Ye et al. 2009). 
Accordingly, it binds a receptor complex uniting Frizzled- 
4 (FZD4), LRP5, and Tetraspanin-12 (TSPAN12) during 
development, finally influencing retinal angiogenesis in both 
mice and humans (Ye et al. 2010). Besides the observation of 
PLVAP upregulation in developing retinal vascular networks 
after inhibition of FZD4, treatment with the antibody 1.99.25 
antagonizing Norrin- and WNT3A-induced β-catenin accu-
mulation, induced PLVAP expression in the deep capillary bed 
within the adult neural retina, increasing the permeability of 
the BRB (Paes et al. 2011).
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Interestingly, different sensitivities of the vasculature to 
perturbations in canonical Wnt signaling were observed, 
depending on the various CNS regions investigated, and 
revealed the requirement of Wnt signaling to maintain 
plasticity of barrier properties in the mature CNS vascu-
lature (Zhou et al. 2014). Thus, stabilization of β-catenin 
enhanced impaired Norrin/Frizzled4 signaling and the sub-
sequent vascular defects in brain and retina. Furthermore, 
vascular development and barrier defects occurring after 
a loss of receptor, coreceptor, or ligand were recapped by 
inhibition of β-catenin–dependent transcription (Zhou et al. 
2014). Taken together, these data support the role of the 
Wnt/β-catenin pathway as crucial regulator during brain 
angiogenesis and postnatal vascular maturation, and finally 
establishment of the BBB (Engelhardt and Liebner 2014; 
Liebner et al. 2008; Paes et al. 2011; Schafer et al. 2009). 
Moreover, Wnt/β-catenin signaling is also involved in main-
tenance of barrier properties in the adult brain (Moro et al. 
2012; Wang et al. 2012). Also, Wnt and Notch signaling 
pathways appear to control the downregulation of PLVAP in 
specialized vascular beds belonging to the BBB, developing 
arteries and glomeruli, or even in cell culture (Farber et al. 
2018; Hnasko et al. 2006b; Liebner et al. 2008; Mintet et al. 
2017; Paes et al. 2011; Schafer et al. 2009; Zhou et al. 2014). 
However, considering the impact of the different vascular 
beds and microenvironments, much research is required to 
completely understand the regulation of PLVAP expression 
and its influence on endothelial fenestrations, which in the 
future might contribute to discover therapeutic strategies to 
compete the different facets of cardiovascular diseases.

Role of endothelial cells and PLVAP 
expression in health and disease

Unfortunately, the heterogeneity of ECs triggers unspecific 
and unintended targets, especially in disease treatment, e.g. 
the intended effect of re-fenestration to counter liver disease 
causes also unintended fenestration and thus permeability in 
the BBB leading to severe edema (Aird 2007a, b). Hence, a  
protective effect in one vascular bed could simultaneously 
cause a deleterious effect in another. Therefore, it is challeng-
ing to find a drug or treatment with the required specificity 
to only affect the intended local vascular bed. In this context,  
the role of PLVAP should also be considered according to the 
vascular bed it is expressed in. PLVAP is considered impor-
tant for many diseases, as it controls the development of SDs 
and FDs, finally regulating a size-dependent exchange of 
soluble molecules between the blood plasma and interstitial 
fluid (see Table 1) (Germain et al. 2012; Girard et al. 2012; 
Rantakari et al. 2015). In this context, PLVAP upregulation 
was detected in several pathophysiological processes includ-
ing angiogenesis, tumorigenesis or the secondary injury of 

neurons following spinal cord injury (Madden et al. 2004; 
Mozer et al. 2010). These observations brought PLVAP into 
the focus as a new therapeutical target. In cancer therapy,  
the administration of PLVAP antibodies had minimal sys-
temic toxicity, while effectively suppressing tumor growth 
by induction of vascular thrombosis and extensive necrosis 
of hepatocellular carcinoma (Wang et al. 2014). In addition, 
the usage of small hairpin RNA for PLVAP downregulation 
prevented the development of pancreatic adenocarcinoma in  
xenografts (Deharvengt et al. 2012).

During inflammation, PLVAP was shown to be required 
for diapedesis of leukocytes into inflammation sites, to be 
important for the transcellular transmigration but not for adhe-
sion and rolling of lymphoblasts, while having no effect on 
neutrophils transmigration (Elgueta et al. 2016; Keuschnigg  
et al. 2009). Furthermore, PLVAP was identified to be a recep-
tor protein for the E-glycoprotein of Japanese Encephalitis  
Virus (JEV) in neurons. Accordingly, up- or downregulation 
of PLVAP led to an increase or a reduction of the viral load 
respectively (Mukherjee et al. 2018). Interestingly, in case of 
a SV40 infection, PLVAP is able to block low viral concen-
trations either by interfering at the level of the internalization 
pathway on the cell surface or afterwards (Tse et al. 2011). 
Thus, further investigations could reveal more possible inter-
actions between PLVAP and virulence factors and deliver fur-
ther insight in its role during inflammation and breakdown of 
the barrier endothelia.

Recently, a model was described, where the vascular barrier 
of the choroid plexus was closed by upregulation of Wnt/β-
catenin signaling pathway in reaction to intestinal inflamma-
tion caused by bacteria-derived lipopolysaccharide, implicating 
involvement of the gut-brain vascular axis (Carloni et al. 2021). 
In this context, an increase in PLVAP levels was observed, 
which seemed to trigger the opening of the gut vascular bar-
rier. Additionally, the authors observed a deficit in short-term 
memory and anxiety-like behavior, suggesting that PVB clo-
sure may correlate with mental deficits, mental symptoms like 
Inflammatory bowel disease, thus probably having its origin 
in a deregulated gut–brain vascular axis (Carloni et al. 2021). 
Besides this example, there might be other conditions, where 
there is a crosstalk between different vascular barriers that may 
also include a modulation of PLVAP expression. Moreover, 
other pathways than the Wnt/β-catenin signaling pathway could 
be involved in those progresses offering interesting new aspects 
for future research. To conclude, in both conditions, health and 
disease, PLVAP may maintain vascular integrity and homeosta-
sis, a property that provides great potential for further research.

In the case of DME, osmotherapy, surgery, laser photoco-
agulation and steroids are common therapeutic approaches, 
while VEGF inhibitors have been established as innovative 
therapeutic tools, as they significantly improve the vision in  
DME patients (Rabinstein 2006, Wells et al. 2016). Further-
more, the utility of VEGF inhibitors is well documented in 
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other ocular diseases as wet age-related macular degenera-
tion, retinopathy of prematurity (ROP), retinal vein occlu-
sion, and proliferative diabetic retinopathy (Braithwaite 
et al. 2014; Martinez-Zapata et al. 2014; Sankar et al. 2018; 
Solomon et al. 2019, Wells et al. 2016). But VEGF inhibi-
tors carry some negative aspects, as VEGF regulates several 
cellular functions ensuring neuronal survival and function 
(Amato et al. 2016; Saint-Geniez et al. 2008; Sun et al.  
2003). This appeared during systemic anti-VEGF therapies 
in cancer patients that displayed a higher risk of stroke and 
other arterial thromboembolic events (Scappaticci et al. 2007;  
Tolentino 2011). In this regard, increase of PLVAP mRNA 
levels in the retina is part of the pathological progression and 
neovascular leakage that could be improved by intravitreal 
injections of anti-PLVAP antibodies in cynomolgus monkeys 
(Nakagami et al. 2019). Therefore, PLVAP inhibition may be 
a promising new therapeutic approach to fight retinal diseases  
that deserves more attention in research.

Further perspectives and concluding remarks

PLVAP is a central regulator of vascular permeability during 
embryogenesis, after birth and in mature endothelium. The 
diaphragms build by PLVAP provide a regulatory sieving 
function that needs to be further investigated to understand 
its role under pathological conditions, e.g. the molecular 
mechanisms that lead to barrier breakdown of the BBB 
and the BRB. In this context, upregulation of PLVAP was 
documented to be involved in cancer, traumatic spinal cord 
injury, acute ischemic brain disease, transplant glomerulopa-
thy, Norrie disease and diabetic retinopathy. Additionally, an 
involvement of PLVAP during inflammatory challenge of 
the gut-brain vascular axis was suggested recently (Carloni 
et al. 2021). Furthermore, the potential of PLVAP as thera-
peutic target as a vehicle for targeted drug delivery needs 
to be further examined. The latter was observed in a study, 
where antibodies against PLVAP were conjugated to the 
therapeutic enzyme superoxide dismutase (SOD) to trans-
port SOD to caveolae of endothelial cells of pulmonary ves-
sels (Bosma et al. 2018; Shuvaev et al. 2018). This approach 
blocked lipopolysaccharide-induced pulmonary inflamma-
tion better than the conjugation of SOD to endothelial cells 
via CD31 and might thus offer interesting opportunities, e.g. 
the potential application at barrier endothelia as the BBB or 
BRB (Bosma et al. 2018; Shuvaev et al. 2018). Also, new 
techniques as single cell RNA sequencing might provide  
data with less contamination by other tissues and allow a 
deeper look into the biology of ECs with respect to their 
microenvironment and heterogeneity.

Finally, the role of different types of endothelia during 
organ function, and therefore also that of PLVAP, has to be 

considered and deserves more attention (Augustin and Koh 
2017). In this regard, organ-specific endothelial cell lines are 
desirable, which maintain their typical expression levels of 
PLVAP and characteristic presentation of PLVAP-containing 
structures, as exemplified by the recently developed human 
choroid plexus endothelial cell line iHCPEnC (Muranyi  
et al. 2022). Assembly of those endothelial cell lines with other 
organ-specific cells, e.g. provided by organoids, would lead 
to the generation of in vitro models, which allow the targeted 
analysis of PLVAP function beyond its impact on endothelia 
only, in the context of organ functions (Zhang et al. 2021). 
Those models would provide an important step further for the 
development of strategies to target PLVAP function during  
treatment of disease.
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