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plant pathogens; and (4) enlighten the significant aspects so 
far not or least explored in the current context.
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Introduction

Population explosion has caused global food insufficiency, 
which has become an open challenge for the global 
agricultural community and researchers (Cheeseman 2016; 
Fischer et al. 2017). Overpopulation is the ultimate dare 
also to the crop production sector. The farming community 
is under immense pressure to produce higher under 
limited arable land and other resources. Plant diseases, 
fast-growing weeds, pests, water and soil pollution, 
and conventional crop growing techniques leading to 
unfair crop nourishment are the foremost intimidation 
to agricultural production. Extreme climatic variations 
leading to ecological imbalance are another big factor 
to affect crop production globally (Fahad et  al. 2017; 
Zhao et al. 2017). Because of increasing temperatures 
and irregular rainfall distribution, the growth of crops is 
severely affected, resulting in a considerable reduction in 
crop yields (Ali et al. 2017; Malhotra 2017). Pests are 
usually responsible for the destruction and reduction 
of crops by 10–40% through competition for light, 
water, minerals, space, and sunlight (weeds) and tissue 
dilapidation (pathogens) (Fried et al. 2017). Owing to 
the dependence of modern agriculture on chemical-based 
pesticides and inorganic nutrients, this sector has become 
the major source of contamination in natural ecosystems 
(Weldeslassie et  al. 2018). Varied chemicals entering 
the ecosystems were rooted to speeding up the process 
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of succession, approaching the climax communities 
abnormally and disrupting the micro-flora and fauna, and 
eventually resulted in the severely disturbed ecological 
balance of agro-ecosystems (Walker and Del 2003; 
Akhosi-Setaka 2009). Additionally, the natural ecosystems 
are also rushing towards natural deaths (Balbus et  al. 
2013). To maintain the quality of the environment and to 
protect it from synthetic inputs, it is necessary to replace 
them with organic ones (Lamine 2011; Geng et al. 2019).

Fortunately, some crops/plants harbour chemicals 
(allelopathic chemicals) widely reported to act as essential 
alternatives to disastrous plant-protection chemical agents 
and thereby help in the sustainable management of noxious 
weeds and eventually abridged herbicide rates (Belz 
2007; Bhadoria 2011). The phenomenon of allelopathy 
provides ways to achieve sustainability in pesticide 
management. Allelopathy is a phenomenon in which one 
plant releases chemicals (allelochemicals) to affect the 
growth and survival of other plants in its vicinity. The use 
of allelopathic chemicals can help to discover the natural 
vigour of a plant species towards pest control (Cheng 
and Cheng 2015). Fortunately, most allelochemicals can 
be used as natural and green herbicides which can also 
substitute the disastrous chemical weedicides with organic 
allelopathic ones. Indeed, the allelopathic phenomenon 
may be used to embark upon these tribulations (Bhadoria 
2011). This topic is gaining interest because of the 
ongoing discussion about sustainability. The phenomenon 
of allelopathy has got multiple definitions throughout 
history. Recently, the International Allelopathy Society 
(IAS) has somewhat modified the term as, “any process 
involving secondary metabolites (allelochemicals) 
generated by plants, microbes, viruses, and fungi that 
affect the growth and development of agricultural and 
biological systems” (Aci et al. 2022). Even though the 
aforementioned definitions attempted to encompass 
all potential physiological and morphological changes 
brought by allelochemicals (secondary metabolites), 
the consequences of allelochemicals (beneficial or 
harmful) are not characterized. Also, agrochemicals are 
either preferred over allelochemicals or the latter is not 
much explored in the direction of their judicious use for 
achieving sustainable agriculture.

In the following sections, efforts have been made to 
(1) overview the concept of allelopathy; (2) outline 
plant breeding in allelopathy (3) gives an account of 
allelochemicals; (4) overview the major biochemistry of 
allelopathy; (5) critically discuss the role of allelopathy 
(and underlying major mechanisms) in management 
of noxious weeds, insect pests, and the major plant 
pathogens; and also to (6) enlighten the major aspects so 
far not or least explored in the current context.

Allelopathy: an overview

Allelopathy is a biological phenomenon in which living 
organisms release chemicals by various mechanisms to 
interrupt the growth of other living organisms in their 
vicinity (Freeman and Beattie 2008; Macías et al. 2014). 
It is a natural supremacy of plants to guard themselves and 
distress the growth, metabolism, and development of nearby 
plants by producing natural organic compounds. It is a branch 
of chemical ecology, dealing with the study of the effects of 
chemical compounds secreted by a plant or microorganism 
by different methods on germination, growth, metabolism, 
and allocation of nearby flora and micro-fauna in agricultural 
or natural ecosystems (Jabran 2017). Allelopathy has 
prevailed since ancient times when allelopathy was in use 
as a prominent ecological phenomenon in crop-growing 
techniques (Zeng 2014). The study of allelopathy has 
undergone speedy advancement since the mid-1990s and has 
become a trendy subject in ecology, botany, environmental 
botany, agriculture, horticulture, agronomy, edaphology, 
and other related areas of research in current years (Macías 
et al. 2014). Allelochemicals concerned in particular with 
plant-microorganism and plant-plant interactions may prove 
to be an essential possible source for different agrochemicals 
for solving many tribulations resulting from unsatisfactory 
traditional practices and ill-treatment of synthetic herbicides 
(López-Ráez et  al. 2012). Accordingly, through the 
comprehensive analysis of allelopathy, many policies for 
organizing ecological restoration and agricultural production 
concerning the use of allelopathy and allelochemicals are 
enhancing (Cheng and Cheng 2015). To this end, several 
methods have been developed to recognize and classify the 
efficient chemical compounds in stem, root, leaf, fruit and 
seed extracts, and volatile chemicals released by the plants 
(Li and Hu 2005; Chen et al. 2011; Macías et al. 2019).

Many conventional cover crops demonstrating 
allelopathic activity are important for weed management and 
thereby in getting rid of non-ecofriendly synthetic chemicals 
(herbicides) (Haramoto and Gallandt 2004; Büchi et al. 
2019). Moreover, these plants could eliminate the long-chain 
hazardous effects in the agroecosystems, produce green 
or organic herbicides, and prevent disastrous phenomena 
like bioaccumulation and biomagnification (McGuire 
2016; Liebman et al. 2018). Allelochemicals can be used 
as weedicides at higher concentrations and germination 
enhancers at lower concentrations ((Ebrahimi et al. 2016; 
Dhyani et al. 2017). Notably, some endemic plants in Asia 
are already notable by local farmers in the area as cover 
crops, used in agro-forestry, intercropping, hedgerow etc. 
(Altieri et al. 2015; Catacutan et al. 2017). These plants 
(typically the leguminous plants, offering protein-rich food) 
were found to acquire powerful allelopathic capabilities and 
need no synthetic pesticides and fertilizers. The use of these 
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allelopathic cover crops could help both in environmental 
protection and also in solving food scarcity in rural 
areas. Globally, researchers have acknowledged several 
plant varieties acquiring powerful allelopathic intrusion 
intervened by root exudation of allelochemicals. The cereals 
like Oryza sativa, Triticum aestivum, Hordeum vulgare, and 
Sorghum bicolor have grabbed a lot of scientific research. 
Previous research paid attention to germplasm selection for 
best allelopathic cultivars and the classification of the found 
allelochemicals. Allelopathic cultivars, possessing the good 
potential of reducing the introduction of non-biodegradable 
synthetic chemicals and efficiently controlling weeds, 
signify the most capable use of allelopathy (Cheng and 
Cheng 2015). Based on this assumption, many conventional 
propagating techniques were prompted in wheat and rice 
to produce agriculturally suitable weed-censoring species 
with advanced allelopathic intrusion. Strong oppressive 
generations are in exploration. The genetics of allelopathy 
is explained by a molecular approach with the help of 
QTL mapping that linked the characters in rice (Chung 
et al. 2020) and sorghum (Shehzad and Okuno 2020) with 
several chromosomes and recommended the contribution 
of numerous allelochemicals. Possibly the chief chemicals 
which are released as root exudates have been recognized 
in all the plant species under analysis (Badri et al. 2013; 
Aci et  al. 2022). These metabolites are biosynthesized 
and released through a discrete sequential pattern. Their 
exudation and biosynthesis might be provoked by several 
abiotic and biotic factors. Allelopathy has been suggested 
to engross the variable combination of allelochemicals 
and released secondary metabolites, controlled by the 
genome, growing period of an allelopathic plant, ecology, 
microclimatic conditions, cultivating effects, and revenue 
of chemical compounds in the plant rhizosphere. The 
classification of genetic material, concerned with the 
biosynthesis of some known allelochemicals, is performed 
by functional genomics, offering the prospect of improving 
the allelopathy by molecular breeding (Belz et al. 2007; Aci 
et al. 2022). The developmental of allelopathy of crops, plant 
signalling, and inductive mechanisms are also achieving 
attention. Future exploration must be heading for discovering 
techniques to conquer dormancy, amplify the decaying of 
weed seeds or restrain seed germination of weeds, and also 
to unveil the major mechanisms underlying the release of 
allelochemicals, differentiation and selectiveness, and mode 
of operation. The formation of genetically modified cultivars 
with the capability of weed suppression and enhanced 
allelopathic intervention is still a big challenge. However, 
conventional propagating practices or breeding methods 
and biotechnology must offer the techniques. Hence, despite 
the significant knowledge about allelopathy, built up in 
the scientific literature, its importance to weed science in 

agriculture is yet to be completely acknowledged and lacks 
its appliance in modern agriculture.

Plant breeding in allelopathy

Sustainability is the main aim of plant breeding on earth. 
The development of allelopathic crops is encompassed in 
sustainable agriculture. Various methods can be used to 
accomplish this objective depending on genetic diversity or 
modification. While genetic transformation creates variants 
with a large impact on phenotypic characteristics, natural 
genetic variability is employed to create many genotypic 
variants with little impact in the first scenario. Variability 
(among different species or within the same species) acts as 
a genetic pool from which we can choose crops with higher 
allelopathic potential (Mahé et al. 2022). With the joint 
investigation of marker genotype segregation in individuals 
or lines, QTL analysis (quantitative trait loci) enables the 
location and effect estimation of the genetic components 
regulating any trait (Wu et al. 2003; Asins et al. 2009). 
In a population resulting from a hybrid between a weed-
suppressing indica rice line and a non-weed-suppressing 
japonica cultivar, Zhang et  al. (2005) examined the 
genetic regulation of early vigour parameters such as seed 
germination, plumule length and dry weight. Each of the 
thirteen QTLs was shown to regulate about 5 to 10% of the 
variation in the early vigour constituents. Jensen et al. (2008) 
cited some cases in rice, carried out thorough research and 
developed some recombinant inbred lines (RILs) for the 
identification of QTLs, controlling allelopathy. Moreover, 
Chung et al. (2020) used high-throughput SNP genotyping 
to find QTLs related to allelopathic properties of rice. A 
species with a high allelopathic potential (Sathi) and a non-
allelopathic species (Nong-an) were crossed to create 98 F8 
RILs (recombinant inbred lines) for such a purpose. Plumule 
and radicle length inhibition was caused by two QTLs on 
chromosome 8 (q1TL-8 and q1SL-8) which accounted for 
20 and 15% of the phenotypic variance, respectively. It is 
intriguing to consider that 31 genes were identified among 
these QTLs. At a mercantile organic rice production line 
in Texas, Rondo, a rice cultivar with a promising yield 
potential, rice blast resistance and weed-suppressing ability 
has been cultivated. It has got a superior weed-suppressive 
ability than other several commercial species (Yan and 
McClung 2010; Gealy and Yan 2012). In wheat, potential 
genes on chromosomes 1A, 2B, and 5D were identified 
by QTL analysis that may be useful for the breeding of 
allelopathic wheat. These findings might be useful for 
breeding wheat cultivars with allelopathic potentiality (Zuo 
et al. 2012). The research results indicate that it is possible 
to improve the allelopathic potential using marker-assisted 
selection (Bertholdsson and Tuvesson 2005). Improving 
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allelopathy in association with plant breeding could result 
in crop cultivars with better weed suppressive potentiality.

Allelochemicals

Allelochemicals are non-nutritious vital elements mainly 
produced as secondary metabolites by living organisms 
exerting a detrimental morphological and physiological 
effect on other species in their vicinity (Jabran 2017). In 
plants, allelochemicals are mostly released as byproducts in 
various physiological and biochemical processes (Bhadoria 
2011; Ashraf et al. 2017; Dahiya et al. 2017). The list of chief 
secondary metabolites acknowledged as allelochemicals 
include terpenoids, alkaloids, phenolics, f lavonoids, 
jasmonates, momilactone, glucosinolates, hydroxamic acids, 
salicylates, brassinosteroids, amino acids, carbohydrates 
(Lotina-Hennsen et al. 2006; Lalremsang 2020). Most of 
these chemicals are known to mediate the phenomenon 
of allelopathy (Hussain and Reigosa 2014; Jabran 2017). 
Allelochemicals are an appropriate substitute for synthetic 
chemical herbicides, as they rarely possess toxic or residual 
consequences, even though the specificity and efficiency of 
several allelochemicals are restricted (Bhadoria 2011). They 
can boost or suppress seed germination, aid development, 
and allow the growth of crop plants with little phytotoxic 
remains in soil and water, easing the process of recycling 
and wastewater treatment (Zeng et al. 2008; Abouziena 
and Haggiag 2016). Allelochemicals act in a different 
way to put across the growth behaviour of test species, i.e. 
retardatory effect at a higher concentration of some species 
may aggravate the growth in similar or dissimilar varieties at 
lesser concentrations (Singh et al. 2005a; Belz et al. 2007). 
The concentration of these chemicals determines their 
activity (performance depends on concentration) (Kobayashi 
2004; Farooq et al. 2020). Allelochemicals restrain seed 
germination and development at higher concentrations and 
enhance the same at their lower concentrations (Subtain 
et al. 2014). Thus, at higher concentrations, allelochemicals 
can be utilized as organic weedicides (Farooq et  al. 
2020), and at lower concentrations, allelochemicals may 
be used as growth promoters. The inhibitory function of 
allelochemicals was the only prior discovered dimension of 
allelopathy and has been well-explored for their utilization 
in weed management, directly or indirectly. It is a practical 
alternative to synthetic chemical herbicides as organic 
allelochemicals interdict toxic or lingering effects (Bhadoria 
2011). The suppressive role is accredited to the obstruction 
or extermination of essential metabolic and physiological 
mechanisms of plants. A great deal of investigation efforts 
has been made to further explore the suppressive role of 
so many allelopathic plants for weed execution (Jamil et al. 
2009; Lambers et al. 2009; Amb and Ahluwalia 2016). 
The allelochemicals at lower concentrations, also enhance 

growth and develop resistance to many abiotic and biotic 
stresses (Farooq et al. 2013). Application of aqueous extracts 
of allelopathic plants at lesser concentrations improves 
growth and boosts germination of many crop varieties 
(Cheema et  al. 2012; Abbas et  al. 2017; Rehman et  al. 
2019). Thus allelochemicals, when applied to the crops 
in lower amounts, can result in an economical, efficient, 
and professional method to improve crop productivity and 
to endorse the growth and development of crop species. 
There is variability in the concentration and activity of 
allelochemicals in the varied parts of the same plant, and 
the activity also varies along the growing seasons (Qasem 
and Foy 2001; Kato-Noguchi 2002; Jilani et al. 2008; Uniyal 
and Chhetri 2010; Gatti et al. 2010).

The allelochemicals are released into the atmosphere 
or rhizosphere by root exudation   (Bertin et  al. 2003; 
Weston 2003), volatilization (Bertin et al. 2003; Xie et al. 
2021), leaching through soil (Bertin et al. 2003; Kobayashi 
2004), residue decomposition (Singh et al. 2005a, b; Kong 
et al. 2006; Zohaib et al. 2016), pollen grains like maize 
(Roshchina 2008; Loughnan 2014) and stress conditions like 
droughts, high temperature, and exposure to UV radiations 
(Alexieva et al. 2001; Pedrol et al. 2006; Bornman et al. 
2015). The release and fate of allelochemicals in the envi-
ronment are shown in Fig. 1.

Based on the resemblance in the chemistry of compounds, 
allelochemicals are categorized into the subsequent 
14 groups namely aliphatic aldehydes, straight-chain 
alcohols, water-soluble organic acids, benzoic acid, and its 
derivatives; simple unsaturated lactones; long-chain fatty 
acids and polyacetylenes; anthraquinone, benzoquinone, 
and complex quinones; simple phenols, alkaloids, and 
cyanohydrins; cinnamic acid and its derivatives; coumarin, 
flavonoids, tannins, terpenoids and steroids; amino acids 
and peptides; sulfide and glucosinolates; and purines and 
nucleosides (Rice 1974). The speedy growth of investigation 
skills (such as column chromatography using silica gel and 
Sephadex LH-20) has made the possibility to separate and 
classify the small compositions of allelochemicals and to 
perform their complex molecular analyses. The techniques 
like GCMS, LCMS, HPLC, etc. are used to analyze the 
complex organic and biochemical extracts of allelopathic 
plants. These analyses have provided the chemical and 
structural details of compounds present in the extracts.

Biochemistry of allelopathy

Allelopathic plants suppress the growth of neighbouring 
plants by affecting their biochemical and physiological 
processes. The secondary metabolites (allelochemicals) 
carry on various chemical reactions with other plants, which 
result in the suppression of their growth by affecting the plant 
machinery at the cellular, physiological, and biochemical 
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levels. Below are some examples of the physiological and 
biochemical alterations caused by allelochemicals in plants.

Effect on photosynthesis

Allelochemicals primarily affect the circuitry used for 
photosynthesis in plants and hasten the breakdown of 
photosynthetic pigments (Rehman et al. 2019; Yuliyani 
et al. 2019). There are many allelochemicals which have 
been studied for their effect on photosynthesis in plants. 
But the most comprehensive study has been executed 
on sorgoleone, an important allelochemical released 
by Sorghum bicolor (Głąb et al. 2017). Sorgoleone and 
other natural allelochemicals showed a similar trend of 
the mechanism of action as that of synthetic chemicals. 
Photosynthetic enzymes were found to be degraded by 
allelochemicals (Cheng and Cheng 2015; Rehman et al. 
2019). These allelochemicals mostly damage Photosystem 
II (PSII) and thereby significantly affect photosynthesis 
(Wang et al. 2014; Hussain and Reigosa 2017). Sorgoleone 
is a well-known allelotoxin and a lipophilic benzoquinone 
component known to inhibit PSII by restraining the 
photosynthetic electron transport chain (ETC) (Dayan et al. 
2009). It completely inhibits the binding sites of atrazine 
(a synthetic chemical) and thereby stops the decline of 
plastoquinone B (QB) by disturbing the ETC linking QA 
and QB (Czarnota et al. 2001; Sowiński et al. 2020). There 

are several other allelotoxins (such as resorcinolic lipids) 
from the root exudates of Sorghum bicolor which have 
been reported to inhibit oxygen evolution in photosynthesis 
(Rimando et al. 2003). Sorgoleone is also known to induce 
foliar bleaching resulting from deranging the carotenoid 
synthesis by inhibiting hydroxyphenylpyruvate dioxygenase 
(HPPD) (Meazza et al. 2002). Ye et al. (2013) investigated 
the effect of the dried macroalga, Gracilariatenuistipitata 
on a microalga, Phaeodactylumtricornutum and observed 
a reduction in the number of active reaction centres and a 
blockage of the electron transport chain. Allelotoxins like 
o-hydroxyphenyl acetic acid, p-coumaric acid, and ferulic 
acid have been found to inhibit chlorophyll accumulation 
in Oryza sativa (Yang et  al. 2002). The interference in 
photosynthesis is caused by disrupting the biochemical 
pathways and photosynthetic pigments (Yu et al. 2003).

Effect on cell permeability and antioxidant enzyme activity

Multiple investigations have demonstrated that 
allelochemicals severely reduce the activity of antioxidant 
enzymes and raise free radical levels, which causes 
increased membrane lipid peroxidation and alteration in 
membrane potential (Harun et al. 2014). The methanolic 
extracts have been proven to affect the antioxidant enzymes 
(including peroxidase activity, super oxidase dismutases 
and catalases), and to cause cell injury by malondialdehyde 

Fig. 1   Diagram showing the process of allelopathy in the biological 
system. The diagram depicts that Volatile Organic Compounds mod-
erate the above-ground interactions, while below-ground interactions 
in the rhizosphere are mediated by root exudates and phytotoxins 
released by litter decomposition and leaching. Microorganisms mod-

ify, improve, or diminish the allelopathic effects by transforming the 
allelochemicals into different forms. With the help of the transcrip-
tomic approach and molecular breeding, we can create new cultivars 
with greater allelopathic potential
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(MDA) content (Ullah et al. 2015). Allelochemicals and 
root extracts of Cucumis sativus are also known to enhance 
the activity of root peroxidase and super oxidase dismutase, 
and also significantly elevate membrane peroxidation (Yu 
et al. 2003). On the cellular level, these phytotoxins provoke 
lipid peroxidation and perform the depolarization of cell 
membranes, thus enhancing the membrane permeability 
and clogging up nutrient uptake of plants (Weir et  al. 
2004). On the contrary, some allelochemicals were 
earlier known to reduce the concentration of antioxidant 
enzymes, like secalonic acid F (C32H30O14) produced by 
Aspergillus japonicus reduced the activity of peroxidase 
and superoxide dismutase activity of many test plants 
(Zeng et al. 2001). Similarly, aqueous extracts of Oryza 
sativa significantly inhibited the activity of catalase and 
superoxide dismutase in barnyard grass (Lin et al. 2000). 
The results reflect that sometimes allelotoxins are directly 
involved in the production of reactive oxygen species, 
which ultimately enhance the activity of peroxidase and 
superoxide dismutase. Sometimes, allelotoxins directly 
inhibit oxidizing enzymes, allowing the plant to oxidative 
annihilation. Studies have shown that aqueous extracts and 
methanolic extracts of Capparis spinosa L. and siliquae of 
Cleome arabica L. improved the MDA levels in leaves and 
roots of lettuce and exhibited cytotoxic effects on root cells 
causing root necrosis, reduction in mitotic index (Ladhari 
et al. 2014). Aqueous extract of Crysanthemum morifolium 
stimulated the MDA level in the leaves of the same species 
(Chrysanthemum morifolium) by disturbing the balance of 
anti-oxidative enzymes and lipid peroxidation in membranes 
(Zhou et al. 2009) and this affected the structure and function 
of cell membranes, the ultimate method of allelopathy 
(Singh et al. 2001).

Effect on cell proliferation and DNA synthesis

Allelochemicals like camphene, alpha-pinene, beta-pinene, 
1,8-cineole, and camphor impacted DNA synthesis and 
cell proliferation in Brassica campestris L. (Nishida et al. 
2005). Being equal to the number of cells in mitotic phases, 
the mitotic index is used as a marker of cell proliferation. 
Allelochemicals from the ethyl acetate fraction of Aglaia 
odorata left a strong mitodepressive effect on the dividing 
cells of Allium cepa. The fraction inhibited cell division and 
induced cell abnormalities by manipulating the structure and 
functions of chromosomes and spindle fibres in the exhibited 
roots (Teerarak et al. 2012). The same mitodepressive effects 
were shown by allelochemicals, xanthosine (Charoenying 
et al. 2010) and cyanamide (Soltys et al. 2011). Many other 
studies agreed that allelochemicals interfere with mitotic 
division and perform morphological, cytological, and 
physiological changes in target plants (Singh et al. 2005b; 
Batish et al. 2006; Gulzar et al. 2016; Mushtaq et al. 2019). 

The disparity of mitosis could be because of the blocking in 
the G2- phase of cell division, averting the cell from entering 
mitotic division. The decrease in the mitotic index might 
be due to the inhibition of DNA synthesis and microtubule 
arrangement, marred nucleoprotein synthesis, and a 
diminished amount of ATP for providing energy for spindle 
elongation, chromosome movement, and microtubule 
inclination (Türkoğlu 2012).

Effect on respiration

Allelochemicals regulate many steps of respiration in 
plants, including electron transport, ATP enzyme activity, 
CO2 emission, and oxidative phosphorylation (Cheng 
and Cheng 2015). These phytotoxins seem to affect the 
respiratory mechanism by interrupting various phases like 
oxygen uptake, preventing NADH oxidation, ATP synthesis 
enzyme activity, ATP creation in mitochondria, disrupting 
plant oxidative phosphorylation, and eventually inhibiting 
respiration. It has been suggested that allelochemicals 
are responsible for the interruption of mitochondrial 
respiration (Weir et al. 2004). The interruption is attributed 
to the inhibition of enzymatic activities of glycolysis and 
pentose phosphate pathway (Musculo et al. 2001). Juglone, 
an allelochemical from Juglans regia has been found to 
decrease H+-ATPase activity in maize and soyabean. It has 
been discovered that juglone may enter the mitochondria 
of maize and soyabean seedlings through roots, interfering 
with their ability to uptake oxygen (Hejl and Koster 
2004a). Alpha-pinene exerts its effects through the 
suppression of electron transfer and decoupling of oxidative 
phosphorylation. The generation of ATP in the mitochondria 
is severely inhibited by alpha-pinene, which also lowers the 
transmembrane potential and hampers mitochondrial energy 
metabolism (Abrahim et al. 2003a). Camphor is known 
to carry out mitochondrial uncoupling and limonene is 
supposed to inhibit ATP synthase and the activity of adenine 
nucleotide translocase complexes (Abrahim et al. 2003b).

Effect on protein and nucleic acid synthesis

Allelopathic potential can be seen in most alkaloids. While 
some can stop protein production, others can inhibit DNA 
polymerase I and stop DNA from being translated and 
transcribed. Some alkaloids tightly interact with DNA 
and raise the temperature at which it cleaves (Inderjit 
et al. 1995; Wink and Latz-Bruning 1995). All phenolic 
acids have the possibility of disrupting DNA and RNA 
stability. Moreover, numerous phenols and alkaloids, 
including ferulic acid, cinnamic acid, and many others, 
can prevent the formation of proteins (Zeng et al. 2001; Li 
et al. 2010). Romero-Romero et al. (2002) found that the 
protein pattern of Lycopersicon esculentum (tomato), was 
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significantly hindered by the aqueous leachates of Sicyos 
deppei, Lantana camara, Sebastiania adenophora and 
Acacia sedillense. While examining the gene expression 
pattern of the plant Arabidopsis thaliana L., after being 
exposed to the allelochemicals of Fagopyrum esculentum 
(fagomine, rutin, and gallic acid), it has been noticed 
that the majority of the genes that responded to the 
allelochemicals fit into various essential groups, including 
metabolism, cell rescue, resistance and pathogenicity, 
cellular uptake, proteins with a binding role, and proteins 
that demand cofactors (Golisz et al. 2008). According 
to Kato-Noguchi et  al. (2013), allelochemicals from 
rice (momilactone A and B) may prevent the storage 
proteins—cruciferin and cruciferina from degrading, 
hence preventing the germination in Arabidopsis. This 
implies that these fundamental targets, including DNA, 
RNA, protein production, and associated activities, 
are contributing factors in the observed allelopathic 
phenomenon.

Effect on water and nutrient uptake

Several allelochemicals interfere with plant roots’ 
ability to absorb nutrients or cause water stress by 
permanently reducing water uptake. The actions of Na+/
K+-ATPase, which are responsible for the absorption and 
transport of ions at the cell membrane, can be inhibited 
by allelochemicals, which inhibit cellular uptake of 
K+, Na+, and other essential ions. Cinnamic acid and 
p-hydroxybenzoic acid, the two primary allelochemicals 
in cucumber root exudates severely suppressed the activity 
of root dehydrogenase, root combined ATPase, and nitrate 
reductase in cucumber, preventing the absorption of K+, 
NO3

−, and H2PO4
− by the roots (Lv et al. 2002). Abenavoli 

et  al. (2010), found that trans-cinnamic, p-coumaric 
and ferulic acids had a concentration-dependent impact 
on net nitrate uptake in Zea mays seedlings. Residues 
of Helianthus annus had a deleterious impact on plant 
growth, the effectiveness of assimilation, and nutrient 
absorption in Brassica rapa (de Morais et  al. 2014). 
Another mechanism contributing to the reported plant 
growth inhibition by sorgoleone is the disruption of crucial 
plant functions like water and solute absorption, driven by 
proton pump across the root cell plasma membranes (Hejl 
and Koster 2004b). Allelochemical dosages and types are 
directly related to how allelochemicals affect ion uptake. 
For instance, a small amount of dibutyl phthalate enhances 
the uptake of N while lowering the uptake of P and K. Yet, 
a large amount of this substance prevents the absorption 
of N, P, and K. Similarly, tomato roots absorb N and K 
more readily than P when diphenylamine is present at low 
concentrations (Geng et al. 2009).

Effect on plant growth regulator system

Allelochemicals can change the composition of plant 
growth regulators or cause instabilities in a variety of 
phytohormones, which prevents plants from growing and 
developing. The majority of phenolic allelochemicals can 
increase IAA oxidase activity and reduce the ability of POD, 
bound gibberellic acid, or indole acetic acid to interact with 
endogenous hormone levels (Yang et al. 2005). The roots 
of Solanum lycopersicum were affected by cyanamide 
(1.2 mM), which upset the equilibrium of plant hormones 
ethylene and auxin. In barnyard grass, an aqueous extract 
of rice was found to drastically increase IAA oxidase 
activity and decrease IAA levels, affecting the plants’s 
growth regulatory system and preventing growth parameters 
(Wenxiong et al. 2001).

Plant growth can be affected by phytotoxins through 
different methods. They can affect the plant’s biochemistry, 
physiology, cytology, and morphology of plants, thereby 
directly affecting the plant’s growth and development. 
Irrespective of relations between plant species, a firm base 
for the scientific foundation of the subsistence and utility of 
the allelopathic process should be generalized.

Role of Allelopathy in;

Weed management

Weeds are the undesired plants in the crop fields and are 
the most obstinate competitors of crops that compete 
for nutrients, water, space, and other necessities for 
photosynthesis, decreasing the harvest yield (Sardrood 
and Goltapeh 2018). Non-natural fabricated herbicides 
have got the capability of controlling weeds efficiently 
and lessen the exertion of weeding but can cause 
hazardous effects on the ecosystem by boosting the 
evolution of chemical herbicide-resistant weeds and 
other serious ecosystem problems like bioaccumulation 
(Jabran and Chauhan 2015). This has got a negative 
effect on the health and survival of living organisms 
and their environment. Since it is known that plants can 
self-regulate their existence, distribution, and densities 
in nature via allelopathic interactions, scientists have 
attempted to make use of those characteristics of crops and 
weeds in agricultural fields. Many agronomic scientists 
have been attracted to the utilization of allelopathy 
in the biological control of weeds. Many allelopathic 
aqueous extracts have been successfully used by many 
scientists to control the growth and germination of 
weeds in agricultural fields. Being diverse in nature, 
allelochemicals lack similar methods of accomplishment. 
It is the phytotoxicity of allelochemicals that affects the 
germination, growth and establishment of weeds and 
crops. The allelochemicals interfere with membrane 



502	 Physiol Mol Biol Plants (April 2023) 29(4):495–511

1 3

permeability and integrity (Poulin et  al. 2018), plant 
water relations (Araniti et al. 2017), cell division (Goga 
et al. 2017), hormone biosynthesis and transport (Li et al. 
2019), mineral uptake and transport (Lupini et al. 2018), 
nutrient composition of the soil (Mohammadkhani and 
Servati 2018), stomatal oscillations (Syahri et al. 2017), 
photosynthesis (Bortolo et al. 2018), metabolism (Long 
et al. 2018), respiration (Lelong et al. 2011) and protein 
metabolism (Ashraf et al. 2017). Allelopathic aqueous 
extracts have abridged herbicide dosages by half of the 
recommended ones, controlling hazardous fast-growing 
weeds of common crops effectively. Aqueous extracts 
of Sorghum bicolor, Helianthus annuus and Eucalyptus 
globulus (Cheema et al. 2003), Sesamum indicum, Oryza 
sativa and Brassica have shown efficient consequences in 
regulating weed plants via diminishing herbicide doses 
likely half of the standard ones(Nawaz et al. 2014). Hence, 
allelochemicals can substitute synthetic weedicides and 
can help in controlling weeds to minimize weed-crop 
counteraction and in improving crop yield and growth. 
There are shreds of evidence that rhizosphere soil also 
possesses allelochemicals, hence playing an important 
role in eliminating weeds. Many experiments have been 
done on rhizosphere soil (root residue and leaf residue 
rhizosphere amended soils) and they have proved 
fruitful in controlling the growth of weeds. Mulching 
of residues also provided good results by suppressing 
the growth of weed plants (Mahmood et  al. 2016; 
Naeem et al. 2015). The rhizosphere soil of Ecliptaalba 
influence the germination, escalation, and establishment 
of common crop plants (Oryza sativa andPhaseolus 
aureus) and weeds (Cassia sophera  and  Cassia tora) 
(Gulzar et al. 2014). Crude extracts of rhizosphere soil 
of Saussurealappa exhibited repression on the seeds of 
S. lappa and Lactuca sativa in a concentration-dependent 
manner (Liu et  al. 2018). The infestation of soil with 
Chenopodium morale and ameliorated with it showed the 
inhibitory effect on seedling emergence, growth, and some 
physiological parameters of Triticum aestivum, Trifolium 
alexandrinum, Lycopersicum esculentum, Melilotus 
indices and Cucumis sativus (El-Khatib et al. 2004). These 
plentiful advancements of allelopathic application have 
varying degrees of achievements based on ecological and 
managing causes. However, all the approaches can play 
a role as organic weed-managing agents. Natural weed 
control using allelopathy has magnificent functions in 
the agricultural sector. This will work proficiently if the 
integration of all these methods is done in a scientifically 
glossed way. There is a need for biotechnological 
improvements and genetic modifications for improving 
the allelopathic potential in plants, which ultimately will 
help in improving their potential and competitiveness. 

Table 1 shows the recent reports on the role of the major 
allelochemicals in weed management.

Insect‑pest management

Insects are the biotic agents responsible for the considerable 
loss of cereals, pulses, fibre crops, fruits, and vegetables. In 
agriculture, many chemical insecticides are used to get rid of 
these hazardous agents. But the chemicals used to repel these 
insects create serious problems in the natural ecosystems. 
Moreover, the insects develop resistance to these chemicals, 
which in turn forces the farmers to increase the doses of 
these chemicals, leading to an increase in the problems. 
Unlike chemical insecticides, allelochemicals can prove 
environmental-friendly in modern agriculture. Extracts from 
different medicinal plant species and their active components 
are natural sources of bioinsecticides. The effect of the 
aqueous extract of Satureja montana has an insecticidal 
property. The aqueous extract has shown a toxic effect with 
a high mortality rate of greenhouse whitefly, with a non-
toxic effect on test plants—pepper seedlings (Sućur et al. 
2015a). Good knowledge of allelochemicals can provide 
fruitful tools to eliminate the use of chemical pesticides. The 
aqueous extracts of Salvia sclarea in lower concentrations 
induce lipid peroxidation in black nightshade (Solanum 
nigrum) roots and a toxic effect against whitefly (Trialeuro 
desvaporariorum) with 56.6% mortality (Sućur et al. 2015b). 
Some medicinal plant extracts have got a variety of chemical 
compounds in their essential oils. The repellency of several 
essential oils, including those from the family Lamiaceae 
like S. sclarea, against several insect species, including the 
common house flies, is reported (Fakoorziba et al. 2014). 
The essential oils of Pogostemoncablin, Mentha pulegium, 
Mentha citrata, Nepeta cataria, Thuja occidentalis, Salvia 
sclarea, Thymus mastichina, Origanum majorana, Origanum 
vulgare, Origanum compactum, Melissa officinalis, and 
Lavandula angustifolia, applied by fumigation proved 
highly toxic against larvae Spodoptera littoralis (Pavela 
2005). Essential oils of Chenopodium ambrosioides and 
Ocimumlamiifolium have got a larvicidal effect against 
Anopheles arabiensis and Aedes aegypti (Massebo et al. 
2009). Pest management (management of insects) through 
allelochemicals could be a valuable contrivance to control 
injurious insects organically. Insect pest resistance of crop 
plants against synthetic insecticides must be abridged in this 
way. Table 2 shows the allelopathic works done for insect 
management.

Plant disease management

Plant diseases arise because of the invasion of plant patho-
gens or any other abiotic or biotic stress. Plant pathogens 
being parasitic in nature, consume the nutrients of plants 
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and become responsible for a great deal of damage and 
harvest loss. It is difficult to fulfil the feeding needs of the 
increasing global population because of persistent plant 
diseases. The main diligent agents for seed-borne and soil-
borne diseases are bacteria, viruses, fungi, and nematodes. 
Chemical control mainly leads to ecological disturbances 
in food chains and food webs in natural and agricultural 
ecosystems. Allelochemicals encompass an affirmative job 
in controlling plant diseases in diverse ways like aque-
ous extorts, oil extracts, residues, etc. Allelochemicals 

extracted from Decalepishamiltonii, Lawsoniainermis, and 
Mimosopselengi were comparatively evaluated through the 
synthetic chemical fungicides viz., thiram, bavin, dithane, 
botox, captan, and M-45 at the suggested dosages and the 
impact was almost equivalent (Mohana et al. 2011). Thus, 
allelochemicals can be utilized for managing pathogenic 
seed-borne fungi and avoidance of degradation of crops 
in an environmentally friendly way. Table 3 highlights the 
allelopathic work done in plant disease management.

Table 2   Major reports on the role of allelopathy in insect management

Plants Insects controlled References

Satureja montana L Whitefly Sucur et al. (2015a)
Salvia sclarea L Trialeurodes vaporariorum Sucur et al. (2015b)
Nepeta cataria, Thuja occidentalis, Salvia sclarea, Thymus 

mastichina, Origanum majorana, Pogostemon cablin, Mentha 
pulegium, Mentha citrate, O. vulgare, O. compactum, Melissa 
officinalis, and Lavandula angustifolia

Spodoptera littoralis Pavela (2005)

Chenopodium ambrosioides L. and Ocimum lamiifolium Hochst Anopheles arabiensis Patton and Aedes aegypti L Massebo et al. (2009)
Salvia sclarea L Several insect species including the common 

house flies (Musa domestica)
Fakoorziba et al. (2014)

Melia azdarach, Myrtus communis, Mentha longifolia, Pegnum 
harmala and Cymbopogon citrates

Sitophilus oryzae L Saljoqi et al. (2006)

Olea europea, Thea chinensis, Canabis sativa, Elephantia sp., 
Allium sativum, Piper nigrum and Capsicum annum

Callosobruchus chinensis Zia et al. (2011)

Lycopersicon esculentum, Azadirachta indica and Capsicum 
annuum

Taeniothrips sjostedti and Heliothis armigera Hongo and Karel (1986)

Table 3   Major reports on the role of allelopathy in management of the major plant diseases

Plant Pathogen controlled References

Ficus sycomorus Bacteria Salem et al. (2014)
Oryza sativa Fungi and bacteria Kong et al. (2004)
Ageratum conyzoides L Rhizoctonia solani and Pyricularia oryzae Nguyen et al. (2021)
Datura stramonium L., Datura innoxia, Datura metal 

L. and Datura ferox L
Alternaria solani and Fusarium oxysporum Jalander and Gachande (2012)

Acacia nilotica, Caesalpinia coriaria, Decalepisha 
miltonii, Emblica officinalis, Lawsonia inermis and 
Mimusops elengi

Alternaria alternata, Aspergillus flavus, Curvularia 
lunata, Drechslera oryzae, D. halodes, Fusarium 
moniliforme, Pyricularia oryzae and Trichoconis 
padwickii

Mohana et al. (2011)

Solanum tomentosum (Bacteria) Bacillus cereus, Micrococcus kristinae, 
Streptococcus pyrogens, Escherichia coli, Salmonella 
pooni, Serratia marcescens, Pseudomonas 
aeruginosa, and (Fungi) Fusarium oxysporum, 
Aspergillus niger

Aliero and Afolayan (2006)

Heracleum crenatifolium Boiss, Heracleum 
platytaenium Boiss, Heracleum sphondylium L

Staphylococcus aureus, Staphylococcus epidermitis, 
Listeria monocytogenes, Pseudomonas aureginosa, 
Escherichia coli, Corinobacterium diphteria, 
Streptococcus pyogenes, Enterococcus feacalis, 
Candida albicans, Candida guilliermondi, Candida 
tropicalis, Candida crusei and Aspergillus niger

Ergene et al. (2004)

Azadirachta indica, Emblica officinalis, Pongamia 
glabra and Acacia nilotca

Magnaporthe oryzae and Bipolaris oryzae Pandey (2015)
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Abiotic stress tolerance

Adverse environmental conditions (temperature, salinity, 
drought, humidity, UV radiations) lead to the development 
of stress in plants. Plant stress ultimately leads to the 
alteration in physiological and biochemical pathways and 
adversely influences plant growth and yield (Madani et al. 
2019). Plants are braced with organized and systematized 
defence set-ups against abiotic stresses (Hasanuzzaman 
et al. 2012). Plant phenolic compounds act as promising 
phytoprotectants, which help plants to acquire forbearance 
against abiotic stresses. Phenolic compounds are 
amalgamated by the plants to adapt their defence contrivance 
against various stresses (Parvin et al. 2022). The propitious 
characteristic of these phenolic compounds (allelochemicals) 
for gaining plant tolerance against abiotic stresses is their 
antioxidant nature (Macias et  al. 2007; Kaurinovic and 
Vastag 2019; Parvin et al. 2022). Under heavy metal stress, 
plant phenolics present themselves as chelators of metal 
ions, and conversely, they persistently forage molecular 
species of reactive oxygen. Phenolic compounds, mainly 
phenylpropanoids and flavenoids, perform H2O2 rummaging, 
and ascorbate/peroxidase coordination (Michalak 2006). 
Their chemical structure is primarily responsible for their 
antioxidant nature (Kaurinovic and Vastag 2019). Phenolic 
acids (subclass of plant phenolics) hold resonance stabilized 
structure and phenol moiety that contributes H-atom 
resulting in antioxidant property through radical scavenging. 
Radicle quenching through electron donation and quenching 
of active singlet oxygen adds to the antioxidant property of 
phenolic acids (Kumar and Goel 2019; Vuolo et al. 2019). 
Shreds of evidence are there, which highlight the production 
of plant phenolics as a response to abiotic stresses (Michalak 
2006; Teklić et al. 2021). Some phenolic compounds protect 
plant tissues by acting as natural screening agents against 
harmful UV-B radiations. Hydroxycinnamic acids and 
flavonoids possess high UV absorbance and are almost 
present in all plants (Grace 2005; Agati et  al. 2020). 
Evidence is in support of the fact that flavenoid synthesis 
is induced by UV-B radiation (Eichholz et al. 2012; Zhao 
et al. 2020). The presence of flavones and flavonols in higher 
quantities in the leaf epidermal surfaces depicts their role 
as UV protectants (Pfündel et al. 2008). Ultimately, there 
is an expectation to protect the stressed plants with these 
phytoprotectant constituents.

Conclusions and perspectives

Weeds and pests are reasons for yield loss more than any 
other abiotic stress. Because of enormous applications 
in weed and pest management, allelopathy can substitute 
harmful synthetic chemicals and expensive mechanical 

techniques being utilized in agricultural practices. Cost 
and environmental pollution are major issues in the use 
of synthetic pesticides. Allelopathic aqueous extracts 
provide improved substitutes for this purpose due to 
cost-effectiveness, environment-friendly nature, simple 
usage, efficiency, and safety. Future research must be on 
the selection of plants with more allelopathic potentials, 
exploration of flair cultivars fabricating extra allelochemicals 
and categorizing growth inhibitory and promoting 
allelochemicals in aqueous plant extracts. Other areas are the 
analysis of their (allelochemicals’) mechanisms of action, 
the genetic and biochemical study of allelopathic plants, 
and the marketing of organic aqueous extracts as growth 
inhibitors (weedicides) and promoters (fertilizers). It could 
prove to be a radiant road, leading to achieving food security, 
agrarian maintainability, ecological security, resource 
preservation and management, and financial stability. Thus, 
allelopathy can be privileged as a natural substitute for 
mechanical and chemical methods for weed management, 
insect management, crop growth, and disease management.
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