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Summary
Background Rheumatoid arthritis (RA) shares genetic variants with other autoimmune conditions, but existing
studies test the association between RA variants with a pre-defined set of phenotypes. The objective of this study was
to perform a large-scale, systemic screen to determine phenotypes that share genetic architecture with RA to inform
our understanding of shared pathways.

Methods In the UK Biobank (UKB), we constructed RA genetic risk scores (GRS) incorporating human leukocyte
antigen (HLA) and non-HLA risk alleles. Phenotypes were defined using groupings of International Classification of
Diseases (ICD) codes. Patients with an RA code were excluded to mitigate the possibility of associations being driven
by the diagnosis or management of RA. We performed a phenome-wide association study, testing the association
between the RA GRS with phenotypes using multivariate generalized estimating equations that adjusted for age,
sex, and first five principal components. Statistical significance was defined using Bonferroni correction. Results
were replicated in an independent cohort and replicated phenotypes were validated using medical record review of
patients.

FindingsWe studied n = 316,166 subjects from UKB without evidence of RA and screened for association between the
RA GRS and n = 1317 phenotypes. In the UKB, 20 phenotypes were significantly associated with the RA GRS, of
which 13 (65%) were immune mediated conditions including polymyalgia rheumatica, granulomatosis with poly-
angiitis (GPA), type 1 diabetes, and multiple sclerosis. We further identified a novel association in Celiac disease
where the HLA and non-HLA alleles had strong associations in opposite directions. Strikingly, we observed that the
non-HLA GRS was exclusively associated with greater risk of the validated conditions, suggesting shared underlying
pathways outside the HLA region.

Interpretation This study replicated and identified novel autoimmune phenotypes verified by medical record review
that share immune pathways with RA and may inform opportunities for shared treatment targets, as well as risk
assessment for conditions with a paucity of genomic data, such as GPA.
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Research in context

Evidence before this study
Rheumatoid arthritis (RA) is the most common autoimmune
inflammatory joint disease worldwide. Prior epidemiologic
studies have identified associations between RA and other
autoimmune conditions. Studies testing the relationship
between RA risk alleles with these conditions confirmed that
the associations between RA and other autoimmune
conditions can in part be explained by shared genetic
architecture.

Added value of this study
This phenome-wide association study (PheWAS) using a
composite genetic risk score (GRS) for both HLA, not tested in
prior studies, as well as the non-HLA RA risk alleles add several
findings to our current body of knowledge. First, we
performed a screen of association between the RA GRS and a
broad range of conditions regardless of prior associations.
Using this agnostic approach, we identified the previously
observed associations between the RA GRS with other
autoimmune conditions such as type 1 diabetes (T1D) and
vasculitis. The medical record review performed as part of this
study enabled more precise and accurate phenotyping, thus
uncovering that the association between the RA GRS and TID
was driven by those with poor outcomes such as retinopathy.
Our study provides new information regarding differential
associations between the HLA and non-HLA RA risk alleles
associated with risk for other autoimmune conditions. For

example, the RA HLA alleles were associated with reduced risk
of Celiac, while non-HLA were associated with increased risk.
In addition to understanding pathways for studies of etiology,
these data may have potential applications in evaluating
treatments. We further reviewed studies of therapeutic
treatments that were tested in RA and other autoimmune
conditions identified in this study. Among conditions where
RA risk alleles were associated with increased risk for the
condition, the conditions share common therapies. Among
conditions where RA risk alleles were associated with reduced
risk, RA treatments exacerbated the condition.

Implications of all the available evidence
The PheWAS approach using an RA GRS allowed testing
across a broad range of phenotypes, and ultimately replicated
findings from large-scale epidemiologic studies,
demonstrating an alternate approach in using genetics to
study relationships across conditions. RA shares genetic
architecture mainly with other autoimmune conditions vs
non-autoimmune conditions. However, differential
associations can exist between the RA HLA and non-HLA
alleles with other autoimmune conditions. For uncommon
conditions such as vasculitis, with a paucity of data for genetic
risk, the RA GRS could potentially be included in strategies for
risk assessment. Knowledge of shared genetic architecture
shared across conditions can inform studies of etiology, risk
assessment, and potentially shared therapies.
Introduction
Rheumatoid arthritis (RA) is the most common auto-
immune inflammatory joint disease worldwide and is
often studied as a human model of inflammation.1–6 The
growth of large population-based biobanks, such as the
UK Biobank, along with the development of methods
for aggregating genetic variants into risk scores, afford
novel approaches to examine genetic relationships and
mechanisms across diseases, complementing existing
epidemiologic studies.7–10 Previous work has highlighted
the possibility of leveraging biobanks and genome wide
association study (GWAS) data to uncover novel genetic
relationships that exist between complex diseases,
demonstrating the utility of these datasets in furthering
our understanding of the genetics of complex dis-
eases.11,12 For example, a recent study provided novel
insights into the shared genetics underlying circulatory
and nervous system disorders.13 In particular, the RA
genetic risk score (GRS), an aggregate representation of
genetic susceptibility to RA, can explain up to 50–60% of
risk for developing RA.14,15 Thus, one can consider the
RA GRS as a proxy for individuals with elevated genetic
susceptibility and risk of RA. Identifying the conditions
significantly associated with the RA GRS can shed light
on complex conditions which share genetic architecture
with RA and inform novel ascertainment strategies of
disease risk or help identify shared pathways early in the
development of autoimmunity amenable for therapeutic
targeting.

The Phenome Wide Association Study (PheWAS)
approach is a method designed for biobanks with linked
electronic health records and genomic data. Initially
developed to screen for associations between a genomic
variant of interest and multiple phenotypes, it can also
be used to screen for association between an aggregate
genetic risk score and a broad range of phenotypes. This
bioinformatics approach identifies multiple EHR-based
phenotypes associated with a genetic variant or risk
score in an agnostic fashion and is less constrained by
prior assumptions as previous genetic association
studies are.16–19

Existing PheWAS for RA risk alleles have focused on
the non-HLA alleles, and thus may not capture differ-
ential associations between HLA and non-HLA alleles.17
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This represents a current gap in the literature as the
largest known genetic risk factor for RA is the shared
epitope region in the human leukocyte antigen (HLA)
region, which encodes a sequence of amino acids.20,21

The identification of five amino acids explaining the
majority of the association with RA across 3 HLA pro-
teins has enabled imputation of the shared epitope us-
ing GWAS data.20,22 Due to the large effect on disease
risk, genomic studies in RA often stratify findings based
on HLA or non-HLA regions.

In this study, we used an RA GRS which in-
corporates HLA and non-HLA risk loci to identify novel
associations of conditions with RA and identified po-
tential shared pathways across conditions using real-
world EHR data from the UK Biobank in a PheWAS.
All results were validated in an independent biobank,
and phenotype accuracies were validated with manual
medical record review. For select associated and vali-
dated phenotypes, we show effective genetic risk strati-
fication via dose–response relationships using the RA
GRS and identified potential shared genetic variants
between associated conditions.
Methods
Study populations
The UK Biobank served as the main study cohort. The
UK Biobank is a prospective study containing extensive
genetic and phenotypic data of participants from the
general population of the United Kingdom.7,8 Partici-
pants were between the ages of 40 and 69 at recruit-
ment. Phenotype information available in the UK
Biobank include individual inpatient International Sta-
tistical Classification of Diseases and Related Health Prob-
lems, Ninth and Tenth Revision (ICD-9, ICD-10) codes.
ICD codes up to December 2020 were included in the
phenotype data. Deidentified data from UK Biobank are
available online following informed consent obtained
from all participants.

The Mass General Brigham (MGB) Biobank is a
cohort study from the MGB healthcare network and
served as the replication cohort.23–25 The MGB healthcare
network is a large healthcare network covering the
Greater Boston area in the United States. The MGB
Biobank contains EHR, genetic, and lifestyle data
collected from community-based primary care facilities
and tertiary care centers. Recruitment for the MGB
Biobank is ongoing, and at the time of analysis clinical
and genetic data were available for 34,195 participants.
All recruited patients provided written informed consent
upon enrollment. The study protocol was approved by
the MGB Institutional Review Board.

Aggregate genetic-risk score
Study participants at the UK Biobank were genotyped
centrally by the UK Biobank study staff and genetic data
was obtained using array-based imputation procedures
www.thelancet.com Vol 92 June, 2023
as previously published.7 Study participants of the MGB
Biobank were genotyped on Illumina arrays such as the
Infinium MEGA array. Standard quality control was
performed for genotyped data, followed by imputation
using the 1000 Genomes reference panel.24 Genotype
data was used to calculate an RA GRS for study partic-
ipants. Both HLA GRS and non-HLA RA GRS were
calculated. The HLA and non-HLA GRS were then
summed to estimate a composite RA GRS. Statistically
imputed HLA haplotypes with an established associa-
tion with RA were used to calculate the HLA GRS.20

Single nucleotide polymorphisms (SNPs) outside of
the HLA region associated with RA from a meta-analysis
of genome-wide association studies (GWAS) were used
to calculate non-HLA GRS.4 The 95 genetic variants and
their corresponding effect sizes used to construct the
RA GRS are provided in Supplementary Table S1.

To construct the HLA-GRS, we utilized classical
HLA-DRB1 allele data imputed using the HLA*IMP:02
software and a merged reference panel representative of
8869 individuals of various ancestries.26,27 Alleles of the
HLA-DRB1 gene associated with RA were included.20

The HLA GRS were subsequently calculated as:

GRSHLA = ∑
p

i=1
wiXi

where p = 26 is the number of considered HLA-DRB1
alleles, wi is the assigned weight for each allele, and Xi

is the number of alleles identified (0, 1, or 2). Allele-
specific weights were derived by taking a log trans-
formation of odds ratios for RA among individuals of
European descent as reported in Raychaudhuri et al.20

The non-HLA GRS was calculated as:

GRSnon−HLA = ∑
n

i=1
wiYi

where n = 69 is the number of RA risk SNPs consid-
ered, wi is the assigned weight for SNPi, and Yi is the
SNP frequency (0, 1, or 2). Weights for each SNP were
calculated as the log transformation of trans-ethnic odds
ratios derived from the Okada et al. RA GWAS meta-
analysis.4

Statistical methods
Phenotypes were defined using published groupings of
ICD-9 and ICD-10 codes into clinically relevant codes,
termed PheWAS codes or PheCodes.28 As the original
UKB data contained inpatient ICD codes, a participant
was defined as having a phenotype if they had 1 or more
PheCodes for a particular phenotype. PheCodes with a
prevalence of 0.1% or less were excluded from the
analysis.

The PheWAS study tested associations between the
RA GRS and each phenotype defined by PheCodes. We
3
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constructed multivariate generalized estimating equa-
tion (GEE) methods using version 1.3.9 of the “geepack”
package for each test with a logit link and an
exchangeable working correlation structure to control
for potential kinship relations between participants.29–31

The GEE approach using a working correlation matrix
was designed to analyze potentially correlated or clus-
tered data without requiring explicit specification or
calculation of the correlation structure, i.e., kinship re-
lations. In each model, RA GRS served as the inde-
pendent variable, and age at enrollment, self-reported
sex, first five principal components, and log-
transformed number of hospital visits served as cova-
riates. The number of hospital visits was used as a
surrogate for healthcare utilization, was included in
GEE methods to adjust for density of EHR data. To
mitigate the possibility of phenotype associations with
RA GRS being primarily driven by the diagnosis of RA,
we performed after the primary analysis excluding pa-
tients with one or more PheWAS codes for RA (Phe-
Code 714.1). We further conducted separate PheWAS
using either HLA GRS or non-HLA GRS as indepen-
dent variables to identify genomic risk contributions to
phenotypes between these two regions.

To account for multiple testing, we defined statistical
significance as a P value less than a threshold control-
ling for Bonferroni correction at a familywise error rate
of 5%.32 As a reference, we further reported the
threshold controlling for a false discovery rate (FDR) of
5% using the Benjamini-Hochberg procedure.33

Next, we tested whether a higher burden of RA risk
alleles was associated with a higher magnitude and odds
for a phenotype by categorizing subjects by their decile of
GRS. We then estimated the odds of developing the dis-
ease in the second through tenth deciles, using the first
decile as the reference. We further used linear regression
to test for dose–response relationships. To identify shared
genetic variants among phenotypes associated with RA
GRS, we fit multivariate adaptive LASSO regression
frameworks to test for the association between individual
RA risk loci and phenotypes associated with RA GRS. We
used bootstrapping over 500 samples to estimate standard
errors for significance testing.

All analyses were implemented in R, version 4.0.1
(the R Foundation).

Replication of findings in the mass general brigham
biobank
We further studied UK Biobank phenotypes with sig-
nificant associations with the RA GRS in the MGB
Biobank. RA GRS were constructed for MGB Biobank
patients in the same manner as was done in UK Bio-
bank. Both ICD-9 and ICD-10 codes were mapped to
PheWAS codes in the same manner. All replication
studies used age at the last visit, sex, self-reported race,
and log-transformed number of hospital visits as cova-
riates. To define statistical significance in replication
studies, a P value less than 0.05 was considered
significant.

Validation of significant outcomes with medical
record review
For phenotypes in the UK Biobank which were signifi-
cant after Bonferroni correction and replicated in the
MGB Biobank, we validated the accuracy of each
phenotype through manual medical record review. For
each phenotype, 50 patients from the MGB Biobank
were randomly selected among those who were defined
to have the phenotype and reviewed for evidence of the
phenotype in narrative notes or diagnostic reports. All
reviewers were either clinically trained health pro-
fessionals or supervised by clinically trained health
professionals. We reported the positive predictive value
(PPV) as defined by the number of confirmed pheno-
types based on manual review divided by the number of
participants with either 1 or more PheWAS codes. A
PheWAS code with a PPV of 80% or greater was
considered an accurate surrogate for the phenotype.

Since the majority of RA genetic risk alleles were
identified from populations of majority European
descent, we additionally performed a sensitivity analysis
in the UK Biobank restricting the PheWAS to in-
dividuals of European ancestry. We followed an identical
study design to the main PheWAS that was inclusive of
all individuals regardless of their ancestry.

Ethics
Informed consent was obtained from all participants,
and all ethical approvals for the study were obtained by
the Institutional Review Boards of the MGB Healthcare
System. Further, this project is under UK Biobank
application ID 37072.

Role of funders
None of the funding sources played a role in the study
design, data collection, data analyses, interpretation, or
writing the manuscript.
Results
The RA GRS PheWAS consisted of 316,166 participants
from the UK Biobank, of which 140,005 (44.3%) were
male and 176,161 (55.7%) were female. The mean age
(SD) of participants was 57.1 (8.1) years, and most par-
ticipants self-reported European ancestry (94.2%) while
fewer reported Asian (2.2%) or African ancestry (1.6%).
The most common conditions present in the study
population based on PheWAS codes were essential hy-
pertension (28.2%), abdominal hernia (17.5%), osteo-
arthrosis (15.2%), hyperlipidemia (13.7%), and
esophagitis and gastroesophageal reflux disease (13.6%).
The mean age (SD) of participants in the MGB Biobank
replication cohort was 58.8 (17.2), and 18,050 (52.8%)
participants were male.
www.thelancet.com Vol 92 June, 2023
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As a positive control, we first confirmed the associ-
ation between the RA GRS for RA (OR, 1.46; 95% CI,
1.42–1.51; P = 5.21×10−152 [Wald Test]). The PheWAS
excluding participants with RA identified 20 phenotypes
significantly associated with the RA GRS, of which 13
(65%) were immune mediated conditions (Fig. 1). The
threshold for significance after Bonferroni correction at
a familywise error rate of 5% was P<3.78×10−5. Among
34,195 participants in the MGB Biobank, we replicated
11 of the 20 significant associations (Table 1). The
phenotypes that replicated with the highest significance
(lowest p-value) included Celiac disease (OR, 0.65;
95% CI, 0.63–0.68), hypothyroidism (OR, 1.14; 95%
CI, 1.12–1.16), polymyalgia rheumatica (OR, 1.32; 95%
CI, 1.26–1.38), type 1 diabetes (OR, 1.19; 95% CI,
1.15–1.23), and complications of type 1 diabetes, e.g.
ophthalmic and circulatory manifestations (Table 1).
Estimated effect sizes were highly concordant between
the UK Biobank and MGB Biobank studies (Table 1 and
Supplementary Table S2).

Medical record review in the MGB Biobank esti-
mated PPV of PheWAS codes ranging from 32% to 98%
(Table 2), and phenotypes with PPV>0.8 were reported
in the downstream analyses (Figs. 2 and 3). The Phe-
WAS codes with highest PPV were those for granulo-
matous polyangiitis (GPA), polymyalgia rheumatica,
multiple sclerosis (MS), hypothyroidism, and Celiac
disease. The phenotype group for inflammation of the
eye included inflammation of the eyelids, conjunctivitis,
and, uveitis (Supplementary Table S3).
Fig. 1: Phenome-Wide Association Manhattan Plot of Rheumatoid Arthrit
“TID” in the figure. The Bonferroni threshold in red color denotes Bonfer
Rate (FDR) 5% threshold in blue color was defined using the Benjamini-

www.thelancet.com Vol 92 June, 2023
Eight phenotypes were statistically significant after
Bonferroni correction, replicated in MGB Biobank
cohort, and confirmed to have a PPV>0.8 for the accu-
racy of the phenotype based on medical record review.
The relative contribution of the genetic effect between
HLA and non-HLA alleles for these phenotypes is
shown in Fig. 2. The ORs between HLA GRS and non-
HLA GRS largely shared the same direction of associa-
tion, with the exception of Celiac disease and multiple
sclerosis. The RA HLA GRS was associated with
reduced risk for Celiac disease, while the non-HLA GRS
was associated with significantly increased risk for Ce-
liac disease (Fig. 2). In MS, the HLA GRS was associated
with reduced odds, while the non-HLA GRS had no
association (Fig. 2). Strikingly, the non-HLA GRS was
strongly associated with greater odds of disease across
all eight phenotypes, seven of which are statistically
significant effects after Bonferroni correction (Fig. 2).
Supplementary Fig. S1 shows a side-by-side comparison
of the results in the UK Biobank with the MGB Biobank,
demonstrating consistent directions of effect.

The odds of developing a phenotype among partici-
pants in each decile relative to participants with lowest
the GRS in the first decile is reported in Fig. 3, and
significant dose–response relationships were observed
for all depicted curves. We further plot the odds of
developing RA among participants in each decile rela-
tive to participants in the first decile as a reference in
Supplementary Fig. S2. A higher composite RA GRS
decile was associated with a higher odds of having
is Genetic-Risk Score in UK Biobank. Type 1 diabetes is abbreviated as
roni correction at a familywise error rate of 5%. The False Discovery
Hochberg procedure. P values calculated using the Wald test.

5
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Phenotype description UK Biobank MGB biobank (Replication
cohort)

Prevalence (%) OR (95% CI) P value OR (95% CI) P value

Celiac disease 0.66 0.65 (0.63–0.68) 4.88×10−88 0.86 (0.76–0.96) 7.34×10−3

Hypothyroidism 5.50 1.14 (1.12–1.16) 2.26×10−79 1.07 (1.04–1.10) 6.98×10−6

Polymyalgia Rheumatica 0.47 1.32 (1.26–1.38) 2.07×10−36 1.31 (1.19–1.43) 7.93×10−9

Diabetes mellitus 3.94×10−87

Type 1 diabetes 1.10 1.19 (1.15–1.23) 1.27×10−27 1.10 (1.03–1.16) 2.17×10−3

Type 1 diabetes with ophthalmic manifestations 0.20 1.37 (1.28–1.47) 1.05×10−17 1.40 (1.19–1.65) 9.65×10−5

Type 1 diabetes with peripheral circulatory disorders 0.04 1.41 (1.20–1.64) 2.22×10−5 1.30 (1.02–1.66) 3.20×10−2

Diabetic retinopathy 0.60 1.14 (1.10–1.19) 3.02×10−10 1.10 (1.02–1.19) 9.56×10−3

Inflammation of the eye 1.11 1.09 (1.06–1.13) 5.57×10−9 1.07 (1.02–1.12) 5.34×10−3

Multiple sclerosis 0.46 0.88 (0.84–0.92) 2.55×10−8 0.92 (0.84–1.00) 4.04×10−2

Vasculitides 3.94×10−87

Polyarteritis nodosa and allied conditions 0.31 1.16 (1.10–1.22) 1.77×10−7 1.09 (1.02–1.16) 9.02×10−3

Granulomatosis with polyangiitis 0.06 1.31 (1.16–1.47) 1.10×10−5 1.29 (1.04–1.60) 1.97×10−2

P values calculated using the Wald test.

Table 1: Significant associations of rheumatoid arthritis genetic-risk score with HLA and non-HLA variants with Phenome-Wide Association Study
(PheWAS) codes in the UK Biobank that were also replicated in the Mass General Brigham (MGB) Biobank.
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complications of diabetes, i.e., retinopathy, with P
values of the trends of the OR’s across GRS deciles
ranging from 8.40×10−6 to 1.55×10−2 [Wald Test]. For
Celiac disease and MS, each increasing decile for the RA
GRS was associated with a reduced odds of disease, with
P values of the trends of the ORs across GRS deciles
being 8.40×10−6 to 1.05×10−3 [Wald Test].

The individual risk allele analysis showed that the
majority of the shared associations across phenotypes
were driven by the HLA-DRB1, 03:01, 04:01, and 04:04
alleles, however in varying directional effects between
phenotypes (Supplementary Fig. S3).

The results of the sensitivity analyses in the UK
Biobank restricting to individuals of European ancestry
Characteristic Positive predictive
value

Celiac disease 0.86

Hypothyroidism 0.90

Polymyalgia Rheumatica 0.98

Type 1 diabetes 0.32

Type 1 diabetes with ophthalmic
manifestations

0.70

Type 1 diabetes with peripheral circulatory
disorders

0.60

Diabetic retinopathy 0.84

Inflammation of the eye 0.84

Multiple sclerosis 0.94

Polyarteritis nodosa and allied conditions 0.86

Granulomatosis with polyangiitis 0.98

Table 2: Positive Predictive Value (PPV) based on Medical Record
Review of Phenome-Wide Association Study (PheWAS) codes
significantly associated with rheumatoid arthritis genetic-risk score.
were highly concordant to the results using the entire
cohort adjusting for population stratification
(Supplementary Table S4).

Discussion
In this large-scale population-based study validated in 2
independent cohorts, we identified conditions with
increased or reduced risk in association with an
increasing burden of RA risk alleles. A higher RA GRS
was associated with increased risk for GPA, polyarteritis
nodosa, inflammatory conditions of the eye, PMR and
T1D complications. In contrast, the RA GRS was
inversely associated with celiac and multiple sclerosis.
We also provide novel findings demonstrating the
opposite effects of HLA and non-HLA alleles particu-
larly for celiac disease risk. Additionally, the HLA GRS
was associated with reduced odds for MS while the non-
HLA GRS had no association. Further, we found that
the non-HLA GRS was associated with greater odds of
all eight validated conditions, in contrast to disease-
specific HLA GRS directions of associations. These
shared genetic risk factors suggest robustly shared
pathways for pathogenesis with RA especially outside of
the HLA region and provide intriguing hypothesis
generating data with implications for screening or for
targeted treatment either for the development of the
condition or disease-related complications.

In this study, we built upon a few studies identifying
the association between RA risk alleles with GPA by
replicating across multiple large independent cohorts
for this uncommon condition with a poor prognosis.34,35

The association between RA risk factors and GPA were
driven by non-HLA alleles. In this study we demon-
strated a significant dose–response relationship between
www.thelancet.com Vol 92 June, 2023
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Fig. 2: Effect sizes from the UK Biobank of human leukocyte antigen (HLA) GRS and non-HLA GRS among significantly associated phenotypes
that were successfully replicated and confirmed using medical record review. Effect sizes were estimated by regressing the GRS on the
phenotype while adjusting for age at enrollment, sex, healthcare utilization, and first five principal components. P values calculated using the
Wald test.
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RA GRS and risk for GPA (P = 1.71×10−5 [Wald Test]),
suggesting that the RA that the GRS may provide data to
assist with classifying high- and low-risk individuals in
real-world settings. To our knowledge, a GRS for GPA
or polyarteritis nodosa has not yet been developed. As
concerted efforts are underway to develop methods us-
ing genetics to screen for at-risk patients prior to the
presentation of the condition, future studies can
consider evaluating subjects with a high RA GRS for RA
and GPA.

Prior studies have identified an association between
RA risk alleles with increased risk of type 1 diabetes.36–38

The present study observed that RA risk alleles may be
informative not only for predicting risk of type 1 dia-
betes, but also for poor outcomes among those with type
1 diabetes, such as retinopathy.39 Both the HLA and
non-HLA GRS were associated with increased risk of
type 1 diabetes, demonstrating that the genetic effects of
the two regions were in the same direction. Of note, a
variant in PTPN22 is a known genetic risk factor for
both RA and type 1 diabetes and is likely contributing to
the shared association of the two phenotypes with the
non-HLA GRS.40

This study also highlights pleiotropy resulting in
opposite directions of effect observed, with the largest
www.thelancet.com Vol 92 June, 2023
differences in the HLA region for RA and celiac. Pre-
vious studies have implicated variants in the HLA class
II region as risk alleles for Celiac and RA, suggesting a
similar molecular pathogenesis in both diseases
through autoantigen specific CD4+ T cell immune
responses.20,21,41–45 However, genetic predisposition for
Celiac disease has been linked to HLA-DQ2 and HLA-
DQ8 haplotypes, while genetic predisposition for RA
is instead attributed to HLA-DRB1 haplotypes.20,43,44 The
observed shared but opposite associations in the HLA-
DRB1 region may be a result of differing functionality
across cell types, or differences in the host environment
resulting in a differing gene–environment interaction.46

At the population level, small-scale studies have also
reported decreased prevalence of RA among patients
with Celiac disease.47–50

A decreased risk for MS was associated with the RA
GRS, a finding which has been similarly observed in
other genetic and epidemiologic studies.17,51–53 When
separating the RA GRS into HLA and non-HLA com-
ponents, we observed that the HLA GRS drove the
observed signal for reduced odds while the effect size of
the non-HLA GRS was minimal (OR: 1.06; 95%:
0.98–1.15; P = 0.17 [Wald Test]). It has been established
that the HLA-DRB1 15:01 variant confers the most risk
7
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Fig. 3: Odds-ratio (OR) for a phenotype in a specified decile relative to individuals in the first decile of the composite rheumatoid arthritis
genetic-risk score incorporating HLA and non-HLA variants.
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for MS and further studies have found this variant to be
associated with a reduced odds for RA.20,54,55 While the
HLA-DRB1 15:01 variant was not specifically examined
in this study, the observations of a similar and reciprocal
negative relationship, where RA risk variants in the
HLA-DRB1 gene were associated with reduced odds for
MS is in line with the literature. Previous genetic
studies have also reported that RA and MS shared non-
HLA risk alleles which increased risk of both diseases,
however, the current study did not find any significant
association between non-HLA GRS and MS, suggesting
that previously reported associations may have been
attenuated when considering additive effects of many
risk alleles in the GRS.56

When linking our knowledge from current clinical
care, we observed that the genetic relationships some-
what mirror treatments that mitigate or exacerbate the
conditions, i.e., phenotypes where RA GRS associated
with increased risk share similar therapies. Metho-
trexate is the first-line therapy for RA and is also an
option for PMR refractory to steroid therapy, and
specific manifestations of small vessel vasculitis, e.g.,
inflammatory joint disease and upper airway disease.
Two trials tested MTX in inducing T1D remission had
mixed results. In one study remission was achieved in
combination with another immunomodulator, while the
other had no effect.57,58 However, MTX has not been
tested in preventing complications of T1D such as dia-
betic retinopathy observed in this study. We did not
identify studies of MTX for treatment or prevention of
autoimmune thyroiditis.

The RA GRS was associated with a reduced odds of
celiac and MS and there are no common therapies to
date. However, the experience of targeting effective
pathways for RA exacerbating MS correlates with the
genomic findings. The tumor necrosis factor (TNF)
pathway is a well-established effective target for the
treatment of RA. This targeting this pathway was
tested in MS using lenercept and was observed to
increase MS exacerbations and neurologic deficits.59,60

The mainstay of treatment for celiac is avoidance of
gluten.
www.thelancet.com Vol 92 June, 2023
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Limitations
This study has limitations. PheWAS codes are based on
ICD codes whose accuracy is known to vary. We there-
fore performed chart review in the MGB Biobank where
we had access to the medical records and reported as-
sociations with PPV>0.8. This approach has the poten-
tial to miss true associations for phenotypes that are less
well defined by ICD codes due to smaller numbers of
cases defined and corresponding insufficient statistical
power. Further, the standard mapping of ICD codes to
PheWAS codes defines phenotypes that are not in-
dependent of each other. We sought to account for
correlated outcomes using Bonferroni and Benjamini-
Hochberg FDR control procedures.

Second, the majority of study participants were of
European ancestry, and thus our findings may not
generalize well to other populations, and further work is
needed to robustly study these outcomes in non-
European populations. In line with this point, the pre-
viously published effect sizes of genetic variants to
construct the RA GRS were estimated from populations
that were predominantly of European ancestry. Thus, we
performed a sensitivity analysis restricting the popula-
tion to individuals of individual ancestry. The sensitivity
analysis’ results were nearly identical with results from
the main analysis, suggesting that the reported signals
were not due to differences in populations. Overall,
however, more data are needed regarding RA risk fac-
tors among individuals of non-European ancestry, spe-
cifically African ancestry. Further, when constructing
the HLA GRS, we were unable to use amino acid poly-
morphism data as it was not centrally available at the UK
Biobank. Lastly, further replication studies in indepen-
dent cohorts are needed to confirm and generalize the
observed associations in this study.

Conclusion
In this study, we provide a roadmap approach to study
the relationships across conditions using RA genetics as
an anchor point. Our conclusions were supported by
existing studies, highlighting the advantages of using a
data-driven, phenome-wide approach over genetic
studies with one or two outcomes. Overall, we identified
novel associations demonstrating differential risk be-
tween HLA and non-HLA alleles, and their associations
with other autoimmune conditions, particularly in Ce-
liac disease where HLA and non-HLA alleles had
opposite directions of effect. As the biomedical field
moves toward incorporating genetics into clinical prac-
tice, it will become important to thoroughly understand
how RA risk loci may predispose patients to other in-
flammatory conditions. Finally, we observed that the
patterns of shared genetics mirror effects of treatments.
Specifically, the genetic variants associated with RA
were associated with a reduced risk for MS. The most
common targeted therapy in RA inhibits the TNF
pathway resulting in control of RA symptoms, and in a
www.thelancet.com Vol 92 June, 2023
trial of TNF in MS, inhibiting the pathway had an
opposite effect. Future directions include further eluci-
dating the specific pathways that these conditions share
in their pathogenesis as well as developing novel ther-
apeutics that target these pathways. Data from this study
can serve as hypothesis generating when considering
therapies for other autoimmune conditions or their
complications.
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