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Abstract
Extracellular vesicles (EVs) secreted by various cells offer great potential for use in the diagnosis and treatment of disease. 
EVs are heterogeneous membranous vesicles. Exosomes are a subtype of EVs, 40–150 nm spherical vesicles with a lipid 
layer derived from endosomes. Exosomes, which are involved in signal transduction and maintain homeostasis, are released 
from almost all cells, tissues, and body fluids. Although several methods exist to isolate and characterize EVs and exosomes, 
each technique has significant drawbacks and limitations that prevent progress in the field. New approaches in the biology 
of EVs show great potential for isolating and characterizing EVs, which will help us better understand their biological func-
tion. The strengths and limitations of conventional strategies and novel methods (microfluidic) for EV isolation are outlined 
in this review. We also present various exosome isolation techniques and kits that are commercially available and assess the 
global market demand for exosome assays.
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Introduction

Communication between cells in multicellular organisms 
involves the secretion of proteins that bind to receptors on 
neighboring cells and the release of membrane vesicles 
[1]. Membrane vesicles consist of a lipid bilayer contain-
ing soluble hydrophilic components and transmembrane 
proteins from the donor cell [2]. There are several types of 
secreted mentioned vesicles that have different biochemical 
and structural properties based on their intracellular site of 
origin, which likely influence their function. These include 
microvesicles, also called ectosomes, which range in size 
from 100 to 350 nm and are formed by vesicles that secrete 
directly from the plasma membrane [3, 4]. Apoptotic bodies 
are more large EVs than others that contain parts of dying 

cells, e.g., intact organelles, micronuclei, and chromatin 
remnants [5]. Amphisomes are intermediate organelles 
produced through the fusion of endosomes with autophago-
somes within cells. Amphisome formation is an essential 
step during a sequential maturation process of autophago-
somes before their ultimate fusion with lysosomes for cargo 
degradation [6]. Amphisomes form by single or multiple 
autophagosome-endosome fusions and can be recognized 
morphologically by their mixed autophagic-endocytic con-
tents. Autophagy and exosome pathways are strictly inter-
connected at several levels. Amphisomes are then either 
degraded by lysosomal enzymes or released from the cell 
as exosomes.

Exosomes, extracellular vesicles with a diameter of 
40–100 nm in which nucleic acids, proteins, and lipids 
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are embedded, regulate many pathophysiological pro-
cesses, including immune responses, metabolism, etc. [7]. 
Exosomes can transport biochemically active molecules 
and regulate expression of gene and cellular functions [8]. 
Therefore, the pharmaceutical industry and academia are 
particularly interested in exosomes as an innovative drug 
delivery system.

Exosomes are constituted of several molecules, such as 
proteins, RNA, and DNA. Exosomal proteins differ in their 
properties from the cells or tissues from which they are 
derived [9]. Chaperones, adhesion molecules, and MHCs 
are the most important exosomal proteins [10]. Exosome-
specific proteins could serve as biomarkers for exosome 
identification [11]. ALG -2-Interacting protein X (ALIX), 
Heat shock protein 70 (HSP 70), tetraspanins, and tumor 
susceptibility gene 101 (TSG101) are among the proteins 
with higher levels in exosomes [12]. Exosomes also con-
tain mitochondrial DNA, noncoding RNAs (ncRNAs), and 
metabolic enzymes, as well as signaling molecules such as 
G-proteins and protein kinases [13]. Exosomes are taken 
up by recipient cells through multiple mechanisms, includ-
ing interactions between exosomal molecules and recipient 
cells receptors. These include binding of phosphatidylserine 
to lymphocyte: T cell immunoglobulin domain and mucin 
domain protein 1 (TIM1) or TIM4, intercellular adhesion 
molecule 1 (ICAM1) to lymphocyte function-associated 
antigen 1 (LFA1), and possibly milk fat globule EGF factor 
8 protein (MFGE8) to avβ3 or avβ5 integrins. After interac-
tion with molecules on the recipient cell, the exosome could 
fuse directly to the membrane [14].

Cellular communication mediated by exosomes is 
involved in a variety of processes, including angiogenesis, 
senescence, immune signaling, differentiation, and pro-
liferation. There is also evidence that exosomes aid in the 
spread of pathological proteins, including viral proteins and 
genomic RNA, microRNA, and mRNA found in exosomes 
from virus-infected cells. Exosomes can play an important 
role in viral infections, especially retroviruses, depend-
ing on their genetic content and proteins [15]. The ability 
of exosomes to transmit inflammatory mediators makes 
exosomes important players in inflammatory responses and 
in the pathogenesis of diseases such as type 2 diabetes mel-
litus, cancer, and degenerative diseases [16]. Since exosomes 
are abundant in biofluids, they have great potential as a non-
invasive method to study exosome-associated biomarkers 
to determine their diagnostic and prognostic value. How-
ever, due to the challenges posed by the heterogeneity of 
extracellular vesicles, researchers are increasingly focusing 
on improving methods to isolate and characterize diverse 
populations of EVs. Here, we review current exosome iso-
lation techniques, the diagnostic and therapeutic value of 
exosomes, and the commercial approach of exosome-based 
detection methods.

Preparation and characterization 
of exosomes

The “Minimal Information for Studies of Extracellular Vesi-
cles” (MISEV) guidelines were created by the International 
Society for Extracellular Vesicles (ISEV) with the goal of 
standardizing the characterization, isolation, and report-
ing of EVs, such as exosomes. These guidelines provide 
researchers with a structured approach to ensure that their 
studies are both reproducible and comparable to others in 
the field. By following these guidelines, researchers can 
establish a solid framework for EVs research that promotes 
consistency and reliability [17].

A group of professors has formed the Extracellular Vesi-
cles Track Consortium to establish standardized protocols 
for the isolation and characterization of EVs. The main goal 
of this group is to define best practices for EV research and 
to promote a collaborative approach to the field. Specifi-
cally, the consortium has developed a set of protocols for the 
isolation of exosomes from various biological fluids such as 
blood, urine, and cerebrospinal fluid. These protocols have 
been designed to be both reproducible and scalable, allowing 
researchers to isolate exosomes from both small and large 
volumes of biological samples [18].

Conventional approaches for exosome isolation

It is difficult to obtain exosomes in complex body fluids 
with a high yield because they are a nanoscale vesicular 
component. Exosomes are obtained from cell cultures or 
plasma, and their morphological and physical properties 
allow their identification [19]. Numerous techniques have 
been established for the isolation of exosomes. These tech-
niques include differential and gradient density centrifuga-
tion, precipitation, immunoaffinity capture, filtration, size 
exclusion chromatography, and microfluidics-based tech-
niques (Table 1).

Differential and gradient density centrifugation

The gold standard method for separating exosomes is cen-
trifugation, especially ultracentrifugation [20]. These tech-
niques do not require technical skill or complex sample prep-
aration. Differential centrifugation typically requires several 
steps, including removal of cells, debris, and larger vesicles, 
followed by precipitation of exosomes at high speed at 100 
000 g [21]. Density gradient ultracentrifugation (UC) is the 
other alternative technique that uses a density gradient for 
isolation. Sucrose is a commonly used medium for density 
centrifugation. In this method, vesicles are separated accord-
ing to their flotation density, allowing them to float upward 
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in a sucrose gradient. Therefore, exosomes can be separated 
without aggregates using this technique by pelleting and eas-
ily removing impurities at the bottom of the tube [7].

Size exclusion chromatography (SEC)

SEC is a size separation technique using a porous phase. 
Particles with a small radius can pass through the pores, 
while larger particles cannot enter the pores [22]. It has been 
reported that SEC indicates acceptable purity for the isola-
tion of exosomes from blood [23]. SEC could be combined 
with other techniques such as precipitation to improve purity 
and yield. Although SEC preserves vesicle structure and 
integrity, it is not scalable for high-throughput applications 
due to its long run time [24].

Filtration

Filtration-based methods have recently become known for 
the isolation of exosomes [25]. Originally, filtration was used 
as a stand-alone technique, but recently the first two cen-
trifugation steps have been replaced by filtration with ultra-
centrifugation [26]. Thus, filtration can remove large debris, 
while ultracentrifugation allows for greater purification of 
filtered samples. Although filtration is easier and faster than 
ultracentrifugation and does not require specialized equip-
ment, it can affect exosomes by trapping them in the pores of 
the filters [27]. In addition, the force exerted as the sample 
passes over the filter membranes can cause structural dam-
age to large vesicles [28].

Precipitation

This is a simple and instrument-free technique for the iso-
lation of exosomes. Precipitation is a polymer-based tech-
nique in which the sample is mixed with a polymer at low 

temperature and adjusted salt concentration. Polyethylene 
glycol (PEG) is the most commonly used polymer in this 
procedure [29–31]. Commercial kits have been reported to 
be more effective in isolation than ultracentrifugation and 
nanomembrane concentrators [25]. PEG, however, carries 
the risk of adding impurities to the extracted exosomes that 
may interfere with their biological activities. Nowadays, a 
non-PEG/ exosome precipitation was developed by Invent 
Biotechnologies (MINUTETM, Plymouth, USA) [32].

Immune‑affinity capture

Proteomics of exosomes has demonstrated the existence of 
several protein markers on the exosome membrane [33]. 
These proteins are the perfect markers for immunologic 
based isolation of exosomes because of the immunoaffinity 
interactions among the antibodies and proteins [34]. Select-
ing the correct and specific markers such as the tetraspanin 
family (CD9, CD63, and CD81) is the crucial step in immu-
noassay techniques and can be used for effective immuno-
capture [35].

Microfluidics for exosome isolation and analysis

Microfluidic devices can overcome the limitations of previ-
ous methods that do not provide the high levels of purity, 
recovery, and yield required for routine isolation and analy-
sis in the clinic [40]. In addition, high cost, long processing 
times, and difficulties in standardization are other draw-
backs. Microfluidics provides parallel separation and sensing 
capabilities for exosome isolation, detection, and analysis 
on a single chip. Fast performance, high specificity, high 
sensitivity, and a user-friendly format enable the production 
of point-of-care (POC) diagnostics for noninvasive liquid 
biopsy of exosomes for personalized medicine and clini-
cal applications [41]. Generally, either labeled or label-free 

Table 1  Conventional approaches for exosome isolation

Methods Principle Advantages Disadvantages References

Ultracentrifugation Size-based separation Easy to use, high capacity Expensive, Time-consuming, 
exosome damage

[36]

Precipitation Precipitation of low level solu-
bility components of sample 
out of solution

Easy to use, cheap Co-existence with microvesi-
cles, lipoproteins, proteins, 
and precipitation reagents

[37]

Immunoaffinity The specific binding between 
antibody and exosome-spe-
cific marker

High yield Expensive, exosome damage, 
low yields

[37]

Filtration Size-based separation Easy to use, rapid, cheap Exosome damage, loss of small 
size exosomes, co-existence 
with components

[38]

Size exclusion chromatography Size-based separation, Polymer 
column filled with nanopo-
rous beads

Maintain the integrity of 
exosomes, high yield, good 
reproducibility

Special equipment, co-isolation 
of albumin and lipoproteins

[39]
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methods are used in microfluidic systems. While label-based 
methods use immunoaffinity interaction to specifically sepa-
rate exosomes from a mixture of other components, label-
free methods use and isolate exosomes based on physico-
chemical differences such as size and density. Below, we 
present examples of each of these methods and discuss their 
biomedical potential for disease diagnosis, health monitor-
ing, and therapy [42].

Label‑free microfluidic methods for exosome isolation

There are several methods for sorting exosomes based on 
their density and size. For example, it has been reported that 
integrating acoustics with microfluidics results in high yield 
and pure exosome isolation directly from undiluted whole 
blood samples. By applying different acoustic forces to EVs 
depending on their size and density, the authors were able 
to separate particles of different sizes directly from whole 
blood [43] (Fig. 1). The cell removal unit of the microfluidic 
device was designed to fractionate blood components > with 
a diameter of 1 µm, including white blood cells (WBCs), 
red blood cells (RBCs), and platelets (PLTs), to obtain a 
cell-free plasma for the downstream exosome isolation unit 
that separates nanoscale bioparticles. This step requires the 
application of a higher frequency (∼ 40 MHz). Finally, the 
products of the previous phase were delivered to the exo-
some isolation unit, which was able to discriminate between 
subgroups of EVs. Due to its biocompatible, label-free, and 

non-contact (automated) properties, such a method offers the 
potential to preserve the properties, structures, and functions 
of the isolated exosomes. Moreover, automated exosome iso-
lation enables short processing times, biohazard contain-
ment, and provides reproducible results with convenient 
integration and minimal human intervention in downstream 
exosome analyzers [44].

Deterministic lateral displacement (DLD) column arrays 
are an additional label-free yet efficient technology for sort-
ing, separation, and enrichment of micro- and nanoparticles. 
In this series, nano-DLD arrays are fabricated with constant 
slit sizes between 25 and 235 nm. At low Péclet numbers 
(Pe), where deterministic displacement and diffusion com-
pete, nano-DLD arrays sort particles based on their size in 
the range of 20–110 nm with high resolution [45]. Another 
popular label-free detection method exploits the plasmon 
resonance properties of various novel materials to achieve 
nanoplasmonic phenomena. Light interacts uniquely with 
metallic nanoscale materials, such as gold nanoparticles, 
can provide unmatched sensitivity for real-time imaging and 
analysis [46]. Several methods use nanoplasmonic platforms 
to detect and characterize EVs. However, the most suitable 
formats are based on surface-enhanced Raman spectroscopy 
(SERS), surface plasmon resonance (SPR), and localized 
SPR [47]. Several nanoplasmon-based devices using SPR 
for sensing have been used for ultrasensitive label-free detec-
tion of exosomes [46, 48, 49]. Initially, imaging SPR (SPRi) 
was introduced as a label-free, quantitative, and real-time 

Fig. 1  schematic diagram of a label-free acoustofluidic device for 
exosome isolation. A A microfluidic device composed of different 
units. B An optical image of the integrated acoustofluidic device. C 

Working principle for size-based separation using lateral deflection 
induced by taSSAW field [44]
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method for the detection and characterization of tumor-ema-
nating exosomes without purification or enrichment. Such 
SPR-based microfluidic device was demonstrated for the 
detection of exosomes in cell culture supernatant (CCS) of 
B16-F1/10 (mouse melanoma cell lines) and MHCC97H/L 
(human hepatoma cell lines) using antibodies for tyrosine 
kinase receptor MET, glycoprotein CD41b, and tetraspanins 
(e.g., CD9), specific antibodies against exosome transmem-
brane proteins. Moreover, SPR-based real-time monitoring 
of exosomes showed a positive relation in their abundance 
and metastatic ability in cell lines. The working principle of 
SPRi (Zhu et al., 2014) is shown in Fig. 2 [50].

Label‑based (immunoaffinity)‑ microfluidics for exosome 
separation

Lable-based methods can be used to improve the specificity 
of exosomes for protein profiling. The markers are antigens 
selectively expressed on the surface of exosomes, such as 
CD63 and EpCAM. As mentioned previously, combining 
label-free detection methods such as SPR with label-based 
methods to isolate exosomes has yielded promising results 
[50].

In one preparation, an immunoaffinity-based microfluidic 
device led to the identification of more up to 20 proteins 
of exosome expressed in serous ovarian cancer (SOC) cell 
lines in compared with normal cells. In addition, HGF and 
STAT3 were identified as top regulatory proteins by pathway 
analysis. The discovery of novel exosome-based biomarkers 
can be used for the early detection of high grade SOC and 

the development of new targeted therapies that target high 
grade SOC-specific pathways, and thus may improve clinical 
outcomes in women with high grade SOC [51]. Microflu-
idic devices such as ExoChip [52] and ExoChip are reported 
for commercial purposes. While ExoChip uses anti-CD63, 
its new format uses both CD63 and phosphatidylserine 
(PS)-specific protein to increase the specificity of exosome 
separation. The device achieves 38% for healthy exosomes 
and 90% capture efficiency for cancer cell exosomes. It also 
separates 35% more A549 exosomes than the ExoChip. 
Moreover, the captured exosomes are readily released by 
Ca2 + chelation, which enables their downstream profiling 
[53]. Another device called ExoSearch uses immunomag-
netic beads for multiplex measurement of EpCAM, CD24, 
and CA -125 exosomal tumor markers in plasma of ovar-
ian cancer patients. The device showed significant diagnos-
tic performance equivalent to the standard Bradford assay 
(Fig. 3) [54].

In another design, MVs were extracted from packed red 
blood cells (pRBCs) using a filter-assisted microfluidic 
device. MVs were labeled with anti-CD44, anti-CD47, 
and anti-CD55 magnetic nanoparticles, which allowed 
their further detection and quantification with a minia-
turized nuclear magnetic resonance (µNMR) system. The 
results showed that a time-dependent increase in MV can 
be used as an effective measure of blood aging. In addi-
tion, the ability of MVs to act as generators of oxidative 
stress and consumers of nitric oxide became apparent. 
These new insights into the biology of MV can be used to 
improve transfusion safety and blood product quality [55]. 

Fig. 2  An antiexosome antibody microarray is used in combination 
with SPRi to bind and detect exosomes in CCS. Once the sample 
is injected into the flow cell, the exosomes and antibodies can bind 

to the chip. The binding of a specific ligand to the coated antibody 
changes the refractive index, and the CCD camera records a higher 
intensity of the reflections [50]
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In another nanointerface-based format, graphene oxide/
polydopamine (GO /PDA) is used to improve the efficiency 
and specificity of exosome immuno-capturing. The nano-
interface enabled an ultrasensitive exosome ELISA assay 
with a very low detection limit of 50 μL(-1) and a dynamic 
range of 4 log, which is significantly superior to exist-
ing methods. This platform differentiated healthy controls 
from ovarian cancer patients by quantitatively measuring 
exosomes from as little as 2 μl of plasma without sample 
processing [56]. Similarly, immunomagnetic beads immo-
bilized with EpCAM antibodies are reported to provide 
highly accurate microvalve-based fluid control, allowing 
on-chip isolation and direct fluorescence-based detec-
tion of circulating exosomes within 1.5 h in the blood of 
breast cancer patients (56). Similar to µNMR [55], immu-
nodetection based on CD24 and EpCAM markers is used 
in conjunction with a nano-plasmonic exosome assay 
(nPLEX) to improve sensitivity over previous methods. 
The device is portable when equipped with miniaturized 
optics and can collect exosomes for further study [57]. 
Microfluidics-based exosome sorting is also applied for 
real-time monitoring of drug efficacy in APNG (alkylpu-
rine-DNA N-glycosylase) and MGMT (O(6)-methylgua-
nine-DNA methyltransferase), the key enzymes that can 
repair temozolomide-induced DNA damage in glioblas-
toma multiforme (GBM). A microfluidic chip was used to 
study the mRNA levels of these enzymes in the tumor. The 
results show that the original tumor and exosomes have 

comparable mRNA levels for these two enzymes and that 
these levels change significantly during treatment. Conse-
quently, such a platform, if validated in a large population, 
could be applied to GBM patients to predict drug response 
[58].

Characterization

According to the International Society for Extracellular Ves-
icles (ISEV), several characterization indices are required 
to identify isolated exosomes, including transmembrane or 
GPI-anchored proteins [59]. It is also possible to determine 
the purity of exosomes from biological fluids by detect-
ing the presence or absence of certain non-EV structural 
proteins. Three steps are usually used for the identifica-
tion of isolated exosomes in research: Transmission elec-
tron microscopy (TEM) and scanning electron microscopy 
(SEM) for internal and external morphology, respectively; 
nanoparticle tracking analysis (NTA) and dynamic light 
scattering (DLS) for size; and Western blot, enzyme-linked 
immunosorbent assay (ELISA), and flow cytometry for sur-
face protein markers. Methods for exosome characterization 
can be divided into external (particle sizing and morphol-
ogy) and inclusion characterization (lipid raft and membrane 
protein) [59–64]. Table 2 provides an overview of the pur-
pose, advantages, and disadvantages of the commonly used 
methods.

Fig. 3  a ExoSearch chip workflow for continuous exosome isola-
tion, mixing, multiplexing, and in  situ detection. The performance 
of immunomagnetic beads under a bright-field microscope (b–c). d 
Accumulation of exosome-bound immunomagnetic beads in a micro-

chamber where exosomes are continuously collected and released by 
a magnet that can be switched on and off. e: Transmission electron 
microscope cross-section of an exosome-bound immunomagnetic 
bead [54]
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Diagnostics value of exosomes

Due to the functions of exosomes in disease progression 
and intercellular communication, as well as their cargo and 
surface proteins, they are currently used as diagnostic bio-
markers in clinical trials. Exosomes have high plasma sta-
bility and can slow down the rapid degradation of nucleic 
acids [65]. Exosome-based liquid biopsy can be used to 
detect circulating tumor cells and their DNA or cell-free 
RNA from body fluids [66].

Cancer cell-derived exosomes contain a variety of pro-
teins and RNAs that can serve as biomarkers for diagnosis 
and prognosis [67, 68]. In addition, exosomes are being 
used in the ongoing clinical investigation (NCT03478410) 
to characterize atrial fibrillation due to atherosclerosis, 
hypertension, and cardiac abnormalities [69]. Investiga-
tors will determine whether exosomes released from the 
epicardial adipose tissue of patients with and without atrial 
fibrillation differ as biomarkers of cardiac arrhythmias that 
can be used for both prevention and treatment.

Exosomes have been shown to have great potential as 
diagnostic biomarkers for neurodegenerative diseases such 
as Alzheimer's and Parkinson’s disease [70]. Exosomes 
are involved in the pathogenesis of Parkinson’s disease by 
transporting α-synuclein [71]. Mutations in Leucinerich 
repeat kinase 2 (LRRK2) are considered to be the cause of 
Parkinson's disease [72]. To develop a test to evaluate the 
effects of LRRK2 inhibitors, exosomal proteins, urinary 
and blood biomarkers from PD patients and healthy indi-
viduals were analyzed in a clinical trial (NCT01860118) 
[73]. As biomarkers, exosomes may also be involved in 
the development of Alzheimer's disease. In addition, 
exosome behavior in individuals at risk for AD is being 
investigated in two clinical trials (NCT03275363 and 
NCT03944603) [74, 75]. Changes in exosomal markers 
in blood and CSF at 2-year intervals in individuals aged 60 
to 89 years are the primary outcome of the NCT03944603 
study. By investigating the relationship between immune 
system biomarkers and aging, this study wants to find the 
mechanisms involved in mild cognitive impairment and 
Alzheimer’s disease.

Exosomes have shown promise as diagnostic and prog-
nostic biomarkers for a number of diseases. However, to 
obtain accurate data, it is critical to separate exosomal RNA 
from contaminating nanoparticles. Fortunately, several iso-
lation and characterization techniques have been developed 
to effectively isolate exosomes from other extracellular vesi-
cles and cell debris. However, obtaining reliable exosomal 
RNA in the clinical setting requires quality control meas-
ures and standardized protocols that are reproducible across 
laboratories.

Exosomes in the clinic

A lipid bilayer and abundance of adhesion molecules 
in exosomes make them ideal vehicles for targeted drug 
delivery. Low immunogenicity and the ability to cross the 
blood–brain barrier make them an ideal method for drug 
delivery [76]. Recent advances in nanomedicine led to the 
development of engineered exosomes, which demonstrated 
the potential of exosomes for targeted drug delivery [77]. 
Diabetes mellitus (DM) can be regulated by exosomes miR-
NAs, which are known to be key regulators of insulin resist-
ance and pancreatic b-cell damage concerning the devel-
opment of DM. This suggests that DM can be treated by 
exogenous silencing or activation of exosomal miRNAs [78].

Exosomal gp130 from breast cancer activates the signal-
ing pathway of IL -6/STAT3 in macrophages, causing them 
to produce protumor cytokines and develop into a procan-
cer phenotype. This discovery by Hamet et al. [79] raises 
the possibility that exosomal proteins, particularly breast 
cancer-derived exosomal proteins, are critical for cancer 
development. The researchers discovered that chemotherapy 
induces the EZH2/STAT3 signaling pathway in cancerous 
cells of breast and releases miR-378d and miR-378a-3p-rich 
exosomes that are taken up by patients. These exosomes acti-
vate the NOTCH and WNT stem cell pathways by targeting 
NAMB and DKK3, finally conclude in drug resistance. Con-
sequently, avoiding exosomes during chemotherapy could 
minimize drug resistance [80].

Table 2  Common exosome characterization methods

Methods Detecting Advantages Disadvantages

TEM Morphology Observing internal and external structure of exosomes Complicated operation, time concuming
NTA Size and concentration Fast, high resolution Complicated operation
DLS Size 10 nm detection limit Not suitable for complex samples
Western blot Marker proteins Qualitative and quantitative analyzing Complicated operation
Flow cytometry Marker proteins Multi-channel and high-throughput analyszing, fast, low 

sample requirement
Time-consuming, 400 nm detection 

limit, low accuracy and resolution
ELISA Marker proteins High specificity, rapid detection, high-throughput analyzing Complicated operation, low repeatability
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As well, exosomes derived from bone marrow MSCs 
have been shown to modify the polarization of microglia to 
reduce demyelination and inflammation in rats [81]. There-
fore, the administration of exosomes derived from bone 
marrow-derived MSCs has the potential to be a therapeutic 
strategy for the treatment of inflammatory diseases such as 
MS.

Exosomes have attracted much attention in the field of 
regenerative medicine because of their potential therapeu-
tic applications. These tiny membrane vesicles have been 
found to promote tissue regeneration by stimulating cell 
proliferation and differentiation. In addition, exosomes pos-
sess immunomodulatory properties, making them a potential 
therapy for autoimmune diseases. Recently, ongoing clinical 
trials have demonstrated the safety and efficacy of mesen-
chymal stem cell-derived exosomes in patients with acute 
respiratory distress syndrome (ARDS) and have shown the 
potential of exosomes as a novel therapeutic strategy [82].

A recent Phase I/ II clinical trial has demonstrated the 
safety and efficacy of exosome therapy in patients with 
ischemic stroke [83]. In addition, a phase I clinical trial 
is investigating the potential use of dendritic cell-derived 
exosomes as a vaccine against melanoma [84]. The results 
of these studies could revolutionize the field of exosome 
therapy and remove current barriers to widespread use at 
the bedside.

Global market trends in exosome 
investigation

In recent years, an increase in exosome-related patents has 
been observed. Exosome products need to be produced 
at large scale and low cost to be used in commercial and 
clinical applications. The diagnostics segment is predicted 
to grow at a compound annual growth rate of 58.5%, from 
$10.0 million in 2016 to $100.0 million in 2021, which may 
indicate the importance of exosomes as diagnostic biomark-
ers in some diseases, particularly cancer. The therapeutics 
segment is forecast to grow 14.9%, from $5.0 million in 
2016 to $10.0 million in 2021. This sluggishness could be 
due to the FDA’s indecision on therapeutic authorities. How-
ever, stringent regulations and uncertainties in the therapeu-
tic and biological definitions of EVs pose a challenge to 
the expanding EVs market. Overall, the global market for 
diagnostic and therapeutic exosome products is estimated 
to grow to $2.9 billion by 2030, with a projected CAGR of 
29.4% between 2021 and 2030 [85]. Currently, there are sev-
eral commercially developed methods for exosome enrich-
ment and isolation. These techniques attempt to facilitate the 
isolation of exosomes that could be used for high-throughput 
biomarker studies [86]. Here, we comprehensively evaluate 
some companies and commercially available products for 
EVs (Table 3 and Table 4) [87].

Table 3  Exosome research and development of potential therapeutic commercial products are the focus of companies

Company Source Product Potential References

Kimera labs Placental XoGlo Tissue repositioning to reduce scarring caused by healing [88]
Capricor therapeutics Cardiosphere-

derived cells 
(CDCs)

CAP-2003 Examine the CDCs’ anti-inflammatory, pro-angiogenic, antia-
poptotic, and antifibrotic properties

[89]

NanoSomiX Brain ExoM and ExoC Predictive biomarkers for possible nervous system disorders [90]
Exosomedx Plasma ExoDx Clinical laboratory improvement amendments (CLIA) certi-

fied product to conduct advanced clinical testing
[91]

Aruna biomedical Neural AB126 Murine thromboembolic models of stroke [92]

Table 4  Commercially available products for exosome isolation

Product/company Method References

Exosome purification kit (Norgen Biotek), ExoQuick exosome precipitation (system biosciences), EXO-Prep 
(HasnaBioMed Life Sciences), Exo-spin (cell guidance systems), miRCURY (Exiqon), PureExo (101 Bio, Palo 
Alto), Invitrogen, RIBO

Precipitation [93–98]

PURE-Evs (HansaBioMed), EVSecond (GL Sciences), qEV (iZON Science), ExoLutE (Rosetta exosome com-
pany)

Size-exclusion 
chromatog-
raphy

[99–102]

Exosome isolation kit CD81/CD63 (Miltenyi Biotec), EpCAM (Thermofisher), MagCapture (FUJIFILM), Abcam Immunoaffinity [103–105]
ExoChip, ExoSearch Microfluidic [106]
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Future outlook and conclusion

Exosomes have great potential as biomarkers for clinical 
applications in disease detection and therapy, as they not 
only possess signaling functions that enable communica-
tion between cells but can also be utilized for targeted 
drug delivery. However, their small size and heterogene-
ity present a challenge in isolating and detecting them at 
a low cost and with the desired sensitivity and selectivity 
in body fluids. Thus, it is crucial to develop an effective 
method to separate exosomes for clinical use. Conven-
tional isolation methods have drawbacks, such as small 
sample volume, many processing steps, and structural 
damage to exosomes due to applied forces. In addition, 
commercially available exosome separation kits offer 
many advantages such as speed, high yield, and applica-
bility, but they are also expensive, have low purity, and are 
not effective in separating exosomes from complex fluids. 
While conventional methods remain the gold standard for 
exosome separation, microfluidic methods reperesent a 
promising alternative that can overcome existing difficul-
ties. Microfluidic devices also offer several advantages, 
such as low cost, relatively small size, low sample con-
sumption, fast turnaround time, and high sensitivity, which 
make them suitable for clinical use, especially in the field 
of personalized medicine. Although several microfluidic-
based isolation techniques have been developed for this 
purpose, it is difficult to apply these technologies on a 
large and industrial scale.

The choice of isolation method depends on the objective 
of the study and the availability of la-boratory equipment 
and resources. As mentioned earlier, various techniques have 
been used to separate different types of vesicles based on 
their size, shape, surface properties, and density, but inef-
ficient separation methods, difficulties in characterization, 
and lack of specific bi-omarkers are still a matter of debate. 
On the other hand, it can be challenging to isolate exo-somes 
from amphisomes and ectosomes that have the same size 
and density [107]. To overcome these problems, it is impor-
tant to carefully select appropriate controls and opti-mize 
experimental conditions to minimize contamination by other 
cellular components. The use of negative controls, such as 
detergent-treated samples or mock isolation procedures, can 
help identify potential sources of contamination. Optimiza-
tion of isolation conditions such as buffer composition and 
centrifugation speed can also help improve the purity and 
specificity of isolated exosome preparations. Novel proce-
dures for purification of autophagosomes and partial purifi-
cation of amphisomes have allowed preliminary biochemi-
cal characterization of both organelles [108]. In addition, 
extensive studies are needed to confirm these properties in 
various disease con-texts. [11, 108].

It is expected that exosome research will continue to 
advance in the near future, which will likely lead to inno-
vations in the treatment of patients. This review highlights 
recent scientific developments and technical obstacles in 
exosome isolation. It also presents a comprehensive analysis 
of current exosome products that provides recommendations 
for selecting the best commercial exosome kits based on the 
specific application.
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