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� Abstract: Background: In humans, age-related DNA methylation has been studied in blood, tissues, 
buccal swabs, and fibroblasts, and changes in DNA methylation patterns according to age and sex 
have been detected. To date, approximately 137,000 samples have been analyzed from 14,000 studies, 
and the information has been uploaded to the NCBI GEO database. 
Methods: A correlation between age and methylation level and longitudinal changes in methylation 
levels was revealed in both sexes. Here, 20 public datasets derived from whole blood were analyzed 
using the Illumina BeadChip. Batch effects with respect to the time differences were correlated. The 
overall change in the pattern was provided as the inverse of the coefficient of variation (COV). 
Results: Of the 20 datasets, nine were from a longitudinal study. All data had age and sex as common 
variables. Comprehensive details of age-, sex-, and longitudinal change-based DNA methylation lev-
els in the whole blood sample were elucidated in this study. ELOVL2 and FHL2 showed the maximum 
correlation between age and DNA methylation. The methylation patterns of genes related to mental 
health differed according to age. Age-correlated genes have been associated with malformations (an-
teverted nostril, craniofacial abnormalities, and depressed nasal bridge) and drug addiction (drug ha-
bituation and smoking). 
Conclusion: Based on 20 public DNA methylation datasets, methylation levels according to age and 
longitudinal changes by sex were identified and visualized using an integrated approach. The results 
highlight the molecular mechanisms underlying the association of sex and biological age with changes 
in DNA methylation, and the importance of optimal genomic information management. 
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1. INTRODUCTION 

 Epigenetic modifications, such as DNA methylation, 
play important roles in development, aging, genomic im-
printing, X-chromosome inactivation, carcinogenesis, and 
inhibition of transposable elements [1-7]. The modification 
of DNA bases in a context- and the genomic region-specific 
way is induced by different enzymes by distinct pathways. 
Methylcytosine (5-mC) means that methyl groups are added 
in the fifth carbon of cytosine. Additional base modifica-
tions have been revealed as hydroxymethylcytosine (5-
hmC), formylcytosine (5-fC), carboxylcytosine (5-caC), and 
N6-methyladenine (6-mA) [8]. DNA methylation levels 
showed age-related differences and has been used as a 
methylation score to predict chronological aging [3, 9-12]. 
Several diseases accelerate the change in DNA methylation 
levels with aging, and the disease-associated risk scores 
have been elucidated. Studies have been conducted on 
changes in DNA methylation according to neurological dis-
orders, such as Alzheimer's disease (AD), posttraumatic 
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stress disorder (PTSD), and suicidal ideation [13-17]. Smok-
ing, lifestyle, and socioeconomic factors can be attributed to 
varying DNA methylation patterns [11, 18, 19]. Because of 
the large number of CpG sites (450,000) in one-sample 
analysis, it is relatively easy to discover biological features 
and explain complex traits. DNA methylation level is also 
related to X chromosome inactivation, and different patterns 
have been observed depending on sex [19-21]. Among 
many factors related to DNA methylation, age and sex are 
the most important. Therefore, studying patterns of DNA 
methylation with respect to these two factors is important. 

 Advanced technologies, such as the Illumina Hu-
manMethylation BeadChip, which can evaluate DNA meth-
ylation levels, have been used in cohort studies of twins or 
individuals with chronic diseases [22-24]. In addition, a 
longitudinal study reported the change in the DNA methyla-
tion profile in one individual [25-29]. The Korean Genome 
and Epidemiology Study (KoGES) was conducted to ana-
lyze population health trends for personalized and preven-
tive medicine. KoGES collected longitudinal follow-up clin-
ical data using DNA methylation analysis [30]. Cohort-
based longitudinal studies have sufficiently explained DNA 
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methylation changes due to age and chronic diseases; how-
ever, integrated approaches and comprehensive analysis of 
these results are warranted. 

 DNA methylation analysis results derived from various 
cohorts have been deposited in public databases such as 
NCBI GEO, and information related to cohort characteris-
tics, including age and sex, are publicly available. To date, 
approximately 137,000 samples from 14,000 studies have 
been analyzed and uploaded to the NCBI GEO database 
[31]. From NCBI GEO, 20 datasets derived from whole 
blood that were analyzed using the Illumina HumanMethyl-
ation BeadChip were selected for integrative analysis. To 
confirm the methylation status associated with aging and 
longitudinal changes according to sex, comprehensive land-
scapes showing the correlation between age and methylation 
level, differences between sexes, and longitudinal changes 
in methylation levels were visualized in this study. 

2. MATERIALS AND METHODS 

2.1. Public Datasets 

 The “GSExxxxx_series_matrix.txt.gz” file was down-
loaded from the “Series Matrix File(s)” section of NCBI 
GEO. In some cases, the downloaded file contained subject 
information and beta value; otherwise, a beta value was 
provided separately in the “Supplementary file” section. 
Sample information was retrieved from the “GSExxxxx_ 
series_matrix.txt.gz” files, and “Sample_characteristics” 
strings were selected using the “filter” function of “dplyr” R 
package. The characteristics of samples (such as age, sex, 
and other information) were retrieved as sample information 
files with sample accession numbers. The beta value and 
sample information files were opened using the “fread” 
function of “data.frame” R package. All beta values and 
sample information have been deposited as “dataframe” in 
R, and the row and column indices were CpG sites and 
sample accession numbers, respectively. 

2.2. Batch Effect Correction 

 To correct the batch effects with respect to the time dif-
ference in the longitudinal study, the "ComBat" function of 
"sva" R package was utilized [32]. The two time points, 
baseline (BL) and follow-up (FU) were the parameters used 
as the default of the “ComBat” function. 

2.3. Statistical Analysis 

 For information on the age of the subjects, the correla-
tion coefficient and p-value with the subject's beta value 
were obtained using the “cor.test” function, which is the 
default function of R. Statistical significance of age-
correlated CpG sites was visualized as Manhattan plots. The 
“manhattan” function of “qqman” R package was used, and 
input data were -log10 treated p-values of each CpG site. 
FCs between two sexes, and two time points (BL and FU) 
with p-value were retrieved using the “t.test” R default func-
tion. 
 To confirm the longitudinal changes between the two 
time-points, the FU matrix was divided by BL. The overall 

change in the pattern was retrieved by the inverse of the 
coefficient of variation (COV), which was obtained by di-
viding the standard deviation (SD) by the average of each 
CpG. The higher the methylation level of the CpG site be-
tween the two time points and the greater the similarity in 
the pattern, the higher the inverse of the COV observed. 

2.4. Visualization 

 In the volcano plot, the fold change (FC) between two 
sexes and time point is displayed on the x-axis, the -log10 
treated p-value is displayed on the y-axis, and the points are 
the CpG sites analyzed in each study. Statistically signifi-
cant genes that were hypermethylated in males and females 
are shown in blue on the upper right and red on the upper 
left, respectively. Similarly, genes hypermethylated in FU 
and BL are indicated in blue on the upper right and red on 
the upper left, respectively. For volcano plot, four R's de-
fault functions “with,” “plot,” “abline,” “subset,” and 
“points” were used. 
 Heatmaps were visualized using the “pheatmap” R 
package. Two sexes or time-points were provided as a col-
umn annotation bar. FCs, -log10 treated p-values, and 
chromosomal location (autosomes and sex chromosomes) of 
each CpG site are provided as row annotation bars. Selected 
CpG sites were labelled as gene symbols, and annotation 
numbers (cgxxxxxxxx) were labelled when the CpG sites 
were in the intergenic regions. 

3. RESULTS 

3.1. Analysis Platform 

 Twenty datasets derived from whole blood that were 
analyzed using the Illumina HumanMethylation BeadChip 
were included in this study (Table 1). From the 20 datasets, 
nine datasets were longitudinal studies, and 11 datasets were 
analyzed simultaneously. All datasets included age, sex, and 
other information, such as disease, treatment and clinical 
laboratory data. The average, SD, minimum, and maximum 
values of each study were recorded at the time of collection. 
CpG probe accession numbers (Illumina) starting with “cg” 
were retrieved from the beta-value matrix. Missing values 
and duplicate values of all samples were excluded to avoid 
errors in the statistical analysis. 
 As KoGES is a community-based cohort and does not 
include patients with acute diseases, all subjects were con-
sidered healthy [30]. In three studies, all samples were from 
breast cancer, chronic lymphocytic leukemia (CLL), and 
lupus. GSE140038 included 72 female subjects with breast 
cancer [33], and nine male CLL patients were enrolled in 
GSE143411 [34]. GSE161476 included 54 female subjects 
with lupus [25]. In GSE140038, it was unclear which sub-
ject was connected between the two time-points. Therefore, 
serial changes could not be confirmed, and only a t-test 
could be performed between two time points. Healthy indi-
viduals and patients were separated and analyzed separately. 
In the GSE116339 dataset, subjects with a total PBB expo-
sure of 1 were considered healthy individuals [35]. The 
GSE74548 study was divided into a folic acid and vitamin 
B12 treatment group and a non-treated group; the treatment 
group was excluded [36]. 
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Table 1. All datasets used in this study. 

Study No. 

Subject No. 

(Female No., 

%) 

Age (Average±SD) 

(Min, Max) 

(Ethnicity) 

Healthy Individuals 

(Female No., %) 

Disease 

(Female No., %) 

Sources 

CpG No. 
Platform References 

Longitudinal Study Includes Normal Samples with Continuous Age 

BL KoGES 
446 (220, 

49.33%)* 

52.24±8.41 (40, 69) 

(Korean) 
All samples were considered as normal. 403,129 GPL13534 [30] 

FU KoGES 
50 (21, 

42.00%)* 

44.94±4.81 (40, 63) (Base) 

52.90±4.83 (48, 71) (FU) 

(Korean) 

All samples were considered as normal. 431,651 GPL13534 [30] 

GSE61151 
92 (92, 

100.00%) 

53.20±8.62 (35, 77) (Base) 

59.20±8.63 (41, 83) (FU) 

(Englishman) 

All samples were considered as normal. 484,949 GPL13534 [37] 

GSE74548 
87 (47, 

54.02%) 

70.92±2.96 (65, 75) (Base) 

72.92±2.96 (67, 77) (FU) 

(Dutch) 

Placebo group: 43 subjects. 
Supplementation group: folic acid 

and vitamin B12 for 44 subjects. 
485,512 GPL13534 [36] 

GSE130748 
20 (11, 

55.00%)* 

75.47±2.39 (71, 79) (Base) 

80.00±2.50 (76, 84) (FU) 

(African American or Caucasian) 

All samples were considered as normal. 866,836 GPL21145 [59] 

GSE140038 
72 (72, 

100.00%)* 

56.68±10.17 (36, 77) (Base) 

57.07±10.28 (36, 77) (FU) 

(American) 

NA 
All subjects were breast cancer 

patients. 
865,859 GPL23976 [33] 

GSE142512 
174 (79, 

45.40%) 

4.0626±3.1680 (0.7255, 12.2272) 

(Unique) 

2.3500±2.7512 (0.5859, 15.0773) 

(Base) 

8.7060±4.4064 (1.1010, 22.7930) 

(FU) 

(American) 

Healthy controls: 199 subjects. T1D: 196 subjects. 
375,020 

664,614 

GPL13534  

(n = 184), 

GPL23976  

(n = 211) 

[23, 39] 

GSE143411 
10 (1, 

10.00%)** 

58.30±4.85 (49, 66) (Base) 

63.50±4.90 (54, 71) (FU) 

(German) 

NA All subjects were CLL patients. 364,108 GPL13534 [34] 

GSE150643 
120 (73, 

60.83%) 

11.376±1.017 (9.188, 13.807) (Base) 

13.330±1.034 (11.150, 15.850) (FU) 

(American) 

All samples were considered as normal. 797,603 GPL21145 [60] 

GSE161476 
54 (54, 

100.00%) 

40.61±13.30 (19, 69) (Base) 

42.37±13.27 (21, 70) (FU) 

(American) 

NA 
Lupus patients, 54 female subjects 

of 229 samples.  
582,738 GPL21145 [25] 

(Table 1) contd…. 
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Study No. 

Subject No. 

(Female No., 

%) 

Age (Average±SD) 

(Min, Max) 

(Ethnicity) 

Healthy Individuals 

(Female No., %) 

Disease 

(Female No., %) 

Sources 

CpG No. 
Platform References 

Large Cohort Study Includes Normal Samples with Continuous Age 

GSE30870 40 (0, 0%) 
93.15±4.31 (89, 103) 

(Only nonagenarians) 
Male newborns 20 subjects. Male nonagenarians 20 subjects. 485,577 GPL13534 [61, 62] 

GSE40279 
656 (338, 

51.52%) 

64.04±14.74 (19, 101) 

(American) 
All samples were considered as normal. 473,034 GPL13534 [44] 

GSE51388 
60 (24, 

40.00%) 

34.52±12.27 (23, 74) 

(Chinese) 
All samples were considered as normal. 362,822 GPL13534 [63] 

GSE55763 
2,711 (871, 

32.13%) 

51.02±10.09 (23.7, 75.0) 

(Englishman) 
All samples were considered as normal. 431,906 GPL13534 [40, 41] 

GSE69270 
184 (111, 

60.33%) 

44.22±3.25 (40, 49) 

(Finnish) 
All samples were considered as normal. 408,148 GPL13534 [64, 65] 

GSE72774 
508 (227, 

44.69%) 

69.58±11.22 (35.1, 91.9) 

(American) 
Healthy controls: 219 subjects. PD: 289 subjects. 484,673 GPL13534 [66-68] 

GSE72775 
335 (138, 

41.19%) 

70.22±10.30 (36.5, 90.5) 

(American) 
All samples were considered as normal. 484,915 GPL13534 [46, 69, 70] 

GSE87571 
729 (388, 

32.13%) 

47.40±20.94 (14, 94) 

(Swedish) 
All samples were considered as normal. 450,282 GPL13534 [38] 

GSE111629 
572 (249, 

43.53%) 

69.05±11.50 (35, 92) 

(American) 
Healthy controls: 237 subjects. PD: 335 subjects. 484,643 GPL13534 [48, 67, 68] 

GSE112611 
402 (170, 

32.13%) 

13.45±3.26 (4.50, 20.78) 

(American) 
Healthy controls: 74 subjects. CD: 328 subjects. 504,790 GPL21145 [71] 

GSE116339 
679 (399, 

58.76%) 

53.92±12.92 (23.00, 88.46) 

(American) 

Healthy controls were considered as 

PBB-153 exposure < 1: 520 subjects 

PBB exposure subjects were 

considered as PBB-153 exposure > 

1: 159 subjects. 

763,746 GPL21145 [35] 

Abbreviation: CB; cord blood. CD; Crohn’s disease. CLL; chronic lymphocytic leukemia. FU; follow-up. GPL13534; Illumina HumanMethylation450 BeadChip. GPL21145; 
Illumina Infinium MethylationEPIC BeadChip. GPL23976; Illumina Infinium HumanMethylation850 BeadChip. KoGES: Korean genome and epidemiology study. NA; not appli-
cable. PBB; Polybrominated biphenyl. PD; Parkinson's disease PD; Parkinson's disease. T1D; type 1 diabetes. Note: *Not matched between BL and FU subjects. **Because the 
female subject was only one, correlation analysis was performed in the male subjects. If ethnicity was clearly presented in the NCBI GEO database or research papers, it was indi-
cated as it is, otherwise it was regarded as a citizen of the country where the study was conducted. 

 In the GSE61151 dataset, four samples (two subjects) 
were excluded out of the 188 female samples [37], because 
the samples had unclear subject information. The 
GSE87571 dataset included 732 samples, and samples with 
no information (n = 3) were excluded from the analysis [38]. 
In the case of the GSE142512 analysis, three or more time-
points were used [23, 39], and the first and last results were 
used (time-points ≥ 3) in this analysis. In most FU studies, 
subjects enrolled at baseline (BL) were included in the final 
analysis. Unmatched BL and FU subjects were excluded 
from the longitudinal analysis. In the case of KoGES, a FU 
study was conducted on 50 of the 446 BL samples [30]. 

Therefore, a separate row is included in Table 1, and 50 BL 
subjects are indicated together with the FU studies. 

 Fig. 1 displays the average age of the subjects in each 
cohort in proportion to the x-axis for the 20 datasets. The 
interval between the BL and FU studies was reflected in the 
longitudinal study. Cohorts that comprised only patients are 
shown on a green background, and cohorts containing both 
the normal and disease groups are shown on a yellow back-
ground. The rest are displayed on a white background. A 
comparative analysis was performed on samples that exactly 
matched the subjects between the BL and FU studies. 
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3.2. Correlation Analysis of DNA Methylation and Age 
at a Given Point in Time 

 For each of the 20 cohorts, the correlation between age 
and total CpG sites was analyzed 51 times. The correlation 
coefficient and p-value were obtained using R's default 
function “cor.test.” A total of 2,343,070 CpG sites satisfying 
p-value < 0.01 were obtained from each of the 51 analyses. 
These sites were divided into 1,191,273 male- and 
1,151,797 female-specific CpG sites and provided as two 
Manhattan plots. CpG sites, which showed a statistically 
significant correlation with age, were observed in most of 
the genomic regions (Fig. 2). Next, the genomic region of 
the CpG site that had a statistically significant correlation 
with age was determined. In males, two or more CpG sites 
beyond the red horizontal line with p-value < 10-200 were 
observed on chromosomes 2 and 6. In females, and patterns 
of significant correlation with age were observed on chro-
mosomes 2 and 6, although a relatively lower statistical sig-
nificance was observed. 
 Manhattan plots for each dataset were obtained from 51 
analyses (Fig. S1). Two horizontal guide lines are indicated 
in blue and red at 50% and 80% of the maximum value of 
log10 (p-value), respectively. The top 100 and bottom 100 
CpG sites were selected by sorting them in the order of de-
creasing correlation coefficients. These data were merged 
according to cohort information, sex, and negative or posi-
tive correlation, and finally, 10,200 CpG sites were identi-
fied (Table S1). From these 10,200 CpG sites, 6,868 CpG 
sites were unique, whereas 3,332 CpG sites were common 
in two or more cohorts. The CpG sites that showed a statis-
tically significant correlation with age in males and females 
were the FHL2 gene on chromosome 2 and the ELOVL2 
gene on chromosome 6. A higher correlation of the two 
genes was found in GSE55763,which had the largest num-
ber of samples; GSE87571 had the next largest number. 
ELOVL2 and FHL2 were commonly observed in 11 male 

and 15 female cohorts. A probe on the Y chromosome in the 
female datasets was considered sample contamination or 
false positive. 

3.3. Differently Methylated Patterns between Two Sexes 
at a Given Point in Time 

 A total of 21 t-tests were performed on 15 cohorts to 
identify significant genes between the two sexes, and FC 
and p-values were obtained. Volcano plots are presented 
based on these analyses, and genes significantly different 
between the sexes are displayed in different colors (Fig. S2). 
As the number of samples increased, the p-value tended to 
decrease, and in large cohorts, such as GSE55763 [40, 41], 
as evident from a point located at the end of the y-axis with 
a low p-value. 
 A heatmap was generated to visualize the beta value for 
each subject by selecting significantly different methylated 
CpG sites according to sex (Fig. S3). The two sexes are pre-
sented as column annotation bars indicated on the x-axis, 
and they were well distinguished by unsupervised k-means 
clustering. In the y-axis direction, FC and -log10 treated p-
values for each CpG site are presented as row annotation 
bars. If the gene symbol was annotated at the CpG site, it 
was presented on the label; otherwise, the CpG probe anno-
tation number was presented. The thresholds for selecting 
different methylated CpG sites are listed in Table 2, and 
1,070 CpG sites are listed in Table S2. 

3.4. Ratios Between Two Time-points of the Longitudinal 
Study 

 To quantify the difference between BL and FU in the 
longitudinal study, the FU value was divided by BL for the 
CpG sites. To evaluate the degree and consistency of the 
pattern of change between the two groups, the SD and aver-
age FU/BL were calculated for each CpG site. The COV,

 
Fig. (1). Twenty public datasets of DNA methylation analysis were used in this study. Left side of rectangle represents the average age at the 
position on the X-axis. Nine longitudinal studies are shown at the top, and 11 large cohort studies are shown at the bottom. White back-
ground indicates normal cohort, and yellow background indicates cohort containing disease samples. Green background indicates that cohort 
comprised patients. Total, male and female subjects included in the dataset are presented. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
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Fig. (2). Manhattan plots of statistical significance for correlation between age and DNA methylation level. Correlation was analyzed for 
male (top) and female (bottom) samples, and -log10 was treated to p-value. Two guide horizonal lines (p-values of 10-50 and 10-200) are 
shown as blue and red lines, respectively. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
Table 2. Thresholds for selecting different methylated CpG sites between two sexes. 

Study No. Time Point CpG Sites No. FC < FC > -log10(PV) 

GSE40279 One time 44 -10 10 100 

GSE51388 One time 58 -0.2 0.2 5 

GSE55763 One time 56 -0.1 0.1 200 

GSE69270 One time 47 -0.55 0.4 150 

GSE72774 One time 56 -0.55 0.4 160 

GSE72775 One time 54 -0.6 0.5 200 

GSE74548 BL 57 -0.45 0.35 25 

GSE74548 FU 57 -0.45 0.35 29 

GSE87571 One time 50 -0.6 0.4 300 

GSE111629 One time 45 -0.45 0.35 200 

GSE112611 One time 59 -0.5 0.5 35 

GSE116339 One time 46 -0.55 0.4 300 

GSE130748 BL 46 -0.45 0.35 18 

GSE130748 FU 35 -0.45 0.35 15 

GSE142512 One time 60 -5 4 10 

GSE142512 BL 44 -5 4 33 

GSE142512 FU 60 -5 4 37 

GSE150643 BL 53 -0.1 0.1 10 

GSE150643 FU 54 -0.1 0.1 10 

KoGES BL 53 -0.55 0.35 280 

KoGES FU 36 -0.6 0.5 20 

Abbreviation: BL; baseline. FU; follow-up. FC; fold change. PV; p-value. 
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calculated as SD/average, was then obtained, and the recip-
rocal of the COV was calculated. The reciprocal of COV is 
expressed as a Manhattan plot. The reciprocal of the COV 
was higher, with a lower SD and a higher average (high 
amount of change) at each CpG site. 
 A total of 7,284,406 CpG sites were retrieved, and Man-
hattan plots for the COV reciprocal for all 14 pairs are pre-
sented for each dataset. Selected 27,839 CpG sites with 
|COV reciprocal| > 0.6 are listed in Table S3. Then, COV 
reciprocals are provided as two Manhattan plots according 
to sex (Fig. S4). A total of 6,172,646 and 1,111,760 COV 
reciprocals were used for the men and women, respectively. 
The larger the positive value on the y-axis, the more hyper-
methylated the CpG sites in FU compared to BL. Alterna-
tively, a negative value indicated a hypomethylated CpG 
site in the second analysis (Fig. 3). 

3.5. Differently Methylated Patterns between Two Time 
Points in Longitudinal Study 

 Fourteen t-tests were performed on the nine cohorts to 
identify the significant genes between the two time-points, 
and FC and p-values were obtained. A volcano plot was 
generated based on these results, and significantly different 
genes are displayed in different colors (Fig. S5). 
 By selecting significantly different methylated CpG sites 
according to the two time-points, a heat map was generated 
to visualize the beta value for each subject (Fig. S6). The 
two time-points are presented as column annotation bars 
indicated on the x-axis, and they were distinguished by un-
supervised k-means clustering. In the y-axis, FC and -log10 
treated p-values for each CpG site are presented as row an-
notation bars. If the gene symbol was annotated at the CpG 
site, it was presented on the label; otherwise, the CpG probe 
annotation number starting with “cg” was presented. The 
thresholds for selecting different methylated CpG sites are 
listed in Table 3, and 784 CpG sites are listed in Table S4. 

3.6. Comprehensive Visualization 

 All datasets were merged according to genomic location, 
correlation coefficients, FCs, and p-values. Enrichment 
terms were then extracted using correlation coefficients and 
FCs to select functions related to age and sex differences. 
KEGG terms, upset plots, and network analyses were per-
formed. 
 Two KEGG enrichment analyses were performed, and 
enrichment terms were visualized using KEGG analysis 
(Fig. S7) [42]. Correlation coefficients were retrieved from 
20 integrated cohorts, and the top 20 KEGG terms were 
visualized as dot plots. The reciprocals of the COVs were 
used as input data for KEGG enrichment analysis, and the 
top 20 KEGG terms were listed. Four of the top five terms 
were common: “human papillomavirus infection,” “MAPK 
signaling pathway,” “calcium signaling pathway,” and 
“Rap1 signaling pathway.” 
 Upset plots and networks were visualized based on the 
age-correlated CpG sites, and enrichment terms of age-
correlated genes were revealed (Fig. 4) The sites correlated 
with the other three conditions were also provided as upset 
plots and networks (Fig. S8). Among the age-correlated 
genes, differentially methylated CpG sites were enriched in 
neurologic terms. Total 10 terms were revealed as upset 
plot, and GNG12 and GNG7 genes were linked to all the 10 
terms (Fig. 4a). Then, differently methylated regions of the 
two sexes were used to input features of the “pathfindR” 
package [43]. In network analysis, age-correlated genes also 
have been related to mental disorder, such as malformations 
(anteverted nostril, craniofacial abnormalities, and de-
pressed nasal bridge) and drug addiction (drug habituation 
and smoking) (Fig. 4b). Ten terms with hypomethylated 
genes in female samples were revealed in an upset plot (Fig. 
S8a), and five nodes were revealed in the network analysis 
(Fig. S8b). The reciprocals of the COVs were used as input 
features, and the upset plot and network analysis revealed 

 
Fig. (3). Manhattan plots of coefficient of variation (COV) reciprocals for each CpG sites from total pairs of baseline (BL) and follow-up 
(FU) datasets. In FU matrix, beta value for each CpG site was divided by that of BL matrix. COV (standard deviation (SD) / average) for 
each CpG site was calculated, and reciprocal of COV was displayed on y-axis of the Manhattan plot. Calculations were performed on the 
matrices corresponding to BL and FU in the two sexes. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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ten terms and two nodes (Fig. S8c and S8d). Ten terms and 
one node (poor school performance) were detected and the 
longitudinal differences in differently methylated regions 
are shown in Figs. S8e and S8f. 
 Four analyses were integrated into two peaks and two 
heatmaps in one circos plot (Fig. 5). Age correlations, sex 
differences, and longitudinally changed patterns are summa-
rized as four tracks. In the outer peak of the circos plot, pos-
itive and negative correlations between age and beta value 
of CpG sites are indicated as outer red and inner blue peaks, 
respectively. In the inner peak of the circos plot, the recip-
rocals of the COVs were visualized as peaks. The yellow 
and green colors represent hypermethylation and hypometh-
ylation in FU, respectively, when compared to BL.  
 The FC between the two groups is presented as the se-
cond and fourth heatmaps from the outside. In most ge-
nomic regions, hypermethylated CpG sites were observed in 
males, and a hypermethylated pattern on the sex chromo-
some was observed in females. When comparing the two 
time points, hypermethylation and hypomethylation in FU 
compared to BL are displayed in pink and dark green, re-
spectively. Overall, hypomethylation was observed in FU, 
and 14 regions showed hypermethylation, including chro-
mosomes 1, 2, 4, and 10. 

4. DISCUSSION 

4.1. Comprehensive Analysis of DNA Methylation Pat-
terns by Integrating Public Datasets 

 This study aimed to provide a comprehensive landscape 
of the correlation between age and DNA methylation level, 
differences between the sexes, and longitudinal changes in 

DNA methylation levels. To the best of my knowledge, this 
is the first study to reveal and visualize patterns of DNA 
methylation changes based on age, sex, and time. The hu-
man aging rate has been explained by DNA methylation and 
established in terms of the aging clock [44] or epigenetic 
drift [7]. According to the aging clock model, the epigenetic 
clock accelerates under the influence of PTSD, menopause, 
and Down syndrome [17, 45, 46]. This study further elabo-
rates on the aging clock model and its outcomes can be uti-
lized for disease prediction and health management accord-
ing to the age and sex of the subject. 

 DNA methylation patterns have been studied according 
to sex and age, and global hypomethylation has been detect-
ed in aged samples. In female samples, global hypomethyla-
tion patterns were detected except for the sex chromosome. 
When comparing the genomic imprinting between the sexes, 
the sex chromosomes have a different pattern from the auto-
some [20, 21]. This study also detected global hypomethyla-
tion in females, and the methylation levels decreased over 
time (Fig. 5). The approaches used in this study can help to 
reveal and visualize group-specific methylation patterns in 
future studies. 

 DNA methylation analysis was included in the FU data 
in the cohort study, which will remain publicly available. 
DNA methylation patterns have been observed in FU stud-
ies for various diseases [25, 47, 48], and a methodology has 
been presented. In this study, a comparative analysis using 
the t-test, is presented. Here, the reciprocal of COV was 
used as the degree of change to confirm the longitudinal 
change. This method can be used to track time-dependent 
changes in DNA methylation patterns. 

Table 3. Threshold for selecting different methylated CpG sites between two time points. 

Study No. Sex CpG Sites No. FC < FC > PV 

GSE61151 F 48 -0.035 0.035 2 

GSE74548 F 61 -0.04 0.04 2 

GSE74548 M 53 -0.07 0.07 2 

GSE130748 F 53 -0.095 0.095 2 

GSE130748 M 50 -0.12 0.12 2 

GSE140038 F 44 -0.055 0.055 5 

GSE142512 F 49 -1.1 1.1 4 

GSE142512 M 62 -1.2 1.2 5 

GSE143411 M 44 -0.2 0.2 1 

GSE150643 F 55 -0.037 0.037 3 

GSE150643 M 55 -0.033 0.033 2 

GSE161476 F 66 -0.35 0.35 2.5 

KoGES FU F 71 -0.075 0.075 8 

KoGES FU M 73 -0.06 0.06 6 

BL; baseline. FU; follow-up. FC; fold change. PV; p-value. 
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Fig. (4). Comprehensive analysis of age-correlated genes using upset plot and network analysis. (a) Upset plot of age-correlated genes and 
ten enrichment terms. In the heatmap, red and green indicate positively and negatively correlated genes, respectively. (b) Network analysis 
of age-related genes. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (5). Circos plot indicates the genomic location of the four features (from outer to inner circles), age correlations of peak, differently 
methylated regions between two sexes of heatmap, ratios between two longitudinal times of peak, and differences between two longitudinal 
times of heatmap. Continuous variables are indicated as peaks (positively correlated peaks are shown in red and yellow, and negatively cor-
related peaks are shown in blue and green, respectively). Fold changes (FCs) indicated as heatmap, and the two sexes and two longitudinal 
time-points (baseline; BL and follow-up; FU) were compared. Hypermethylation with high FC in males and FU are shown in blue and pink, 
and hypermethylation with low FC in females and BL are shown in orange and green. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 In the comprehensive analysis, ELOVL2 and FHL2 
showed the maximum correlation between age and DNA 
methylation. It means that the roles of two genes in whole 
human blood could be related to aging. In previous study, 
three genes (ELOVL2, FHL2, and PENK) were revealed to 
predict human chronological age from teeth DNA methyla-
tion [49]. As a transmembrane protein, ELOVL2 is involved 
in the synthesis of very long polyunsaturated fatty acids. 
These fatty acids are related to retinal biology and photore-
ceptor renewal, and the pathway of age-related eye diseases, 
such as age-related macular degeneration has been studied 
[50]. By a comprehensive review of the FHL2 gene, rele-
vance to various diseases was suggested [51]. ELOVL2 and 
FHL2 genes were used for age prediction models in saliva, 
buccal swab, and blood [52]. 

 The Illumina BeadChip for analyzing CpG sites in the 
human genome has been applied to various studies, enabling 
this integration studies on the same platform. The method 
presented in this study will continue to be applied to the 
Illumina BeadChip data to be obtained in future studies. 
DNA methylation specific to each genomic region related to 
aging and sex will continue to be discovered. 

4.2. DNA Methylation Patterns of Healthy Individuals 

 As the cost of genomic analysis per sample remains 
high, public datasets of normal individuals or patients with 
similar diseases are a valuable resource. DNA methylation 
patterns based on different groups were confirmed in this 
study. Due to limited resources, it was difficult to collect 
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normal samples. Thus, here, normal samples from large co-
horts were merged and processed together (Fig. 1 and Table 
1). A large cohort study for normal subjects will continue 
[27, 30, 53], and a more elaborate batch effect correction 
tool will be presented [32, 54]. The methylation patterns of 
the healthy individuals were compared with those of the 
patient samples, and patient-specific DNA methylation pat-
terns were elucidated. 
 DNA methylation is the reversible addition of a methyl 
group to a nucleotide, which can be altered by environmen-
tal and lifestyle factors [18, 19, 47]. DNA methylation is a 
dynamic process that also occurs in a chronological manner 
and is influenced by multiple factors. For normal subjects 
included in the cohort, lifestyle factors, including diet and 
exercise could not be completely controlled. Similarly, 
among normal subjects, those who may have had an undi-
agnosed disease, or a transitional stage of a chronic disease, 
may have been included. Therefore, this study made an ef-
fort to observe the overall DNA methylation pattern by inte-
grating several healthy individuals. DNA methylation pat-
tern-based selection criteria for normal/healthy individuals 
should be developed for future studies. 

4.3. Limitations of this Study 

 This study has several limitations. First, the two time 
points were not constant. The KoGES study was conducted 
approximately eight years apart. Usually, analyses are per-
formed at approximately 5-year intervalss, whereas a 2-year 
interval was used here. As the number of FU datasets in-
creases, a cohort with a longer FU period will be created. 
The methods used in this study can be used to analyze sam-
ples obtained during long FU periods. Second, the number 
of subjects included in the cohort differed, and only age and 
sex were used as variables. Moreover, classification criteria 
subdivided according to race or lifestyle were not used. A 
cohort design is necessary to subdivide the subject enroll-
ment criteria, such as lifestyle and race. Third, no gene set 
enrichment analysis (GSEA) was performed. GSEA is not 
only applied to NGS or microarray-based gene expression 
data [55] but also to DNA methylation analysis [56]. In this 
study, GSEA was excluded because it was difficult to com-
bine three or more study groups analyzed on different plat-
forms and at different times. In the future, integrated GSEA 
can be performed using a more sophisticated algorithm for 
data integration. Fourth, only genome-wide patterns were 
presented, and no analysis patterns by genomic region, such 
as promoters of specific genes or transposable elements, 
were presented. It would be interesting to study the different 
contexts of DNA methylation for specific genes and for spe-
cific families of transposable elements for aging [5, 6, 10]. 
Finally, there are no experimental validations of genes that 
differ according to age or sex presented in this paper. In 
further studies, comparing the results of this study and DNA 
methylation levels of aging cell lines or animal models 
could be interesting. 

4.4. Further Aspects: Genomic Information Manage-
ment 

 As the analyzed libraries have become more sophisticat-
ed, omics data processing and visualization are feasible in R 
or Python. The computer processing speed and storage 

space have increased. In this scenario, integrated insights 
are applicable to the processing of omics data. Thus, it is 
possible to understand the mechanisms of aging according 
to sex and to improve health in old age by suggesting pre-
ventive or therapeutic strategies. Identifying and maintain-
ing the optimal DNA methylation state for healthy aging 
would enable proper genome information management [47, 
57]. 
 Illumina chips for DNA methylation analysis have been 
developed from 27k to 450k and 850k [58]. Currently, com-
puter performance and R-or Python-based library analysis 
are sufficient. However, appropriate methods would be re-
quired to process the beta values for several CpG sites 
quickly. The method presented in this study can be used to 
identify factors associated with a healthy state. Future stud-
ies on DNA methylation changes should be performed for 
various conditions for a higher number of subjects to gener-
ate more comprehensive datasets [59-71]. 

CONCLUSION 

 In this study, changes in methylation levels according to 
age and longitudinal changes by sex were revealed and vis-
ualized for 20 publicly available DNA methylation datasets. 
Two genes, ELOVL2 and FHL2 showed the maximum cor-
relation between age and DNA methylation. Age-correlated 
genes have been associated with three terms of malfor-
mations (anteverted nostril, craniofacial abnormalities, and 
depressed nasal bridge) and two terms of drug addiction 
(drug habituation and smoking). As an integrated approach, 
the analysis methods and visualization strategies will form 
the basis of methylation-based data analysis in the future. 
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