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ABSTRACT: Interdependence across time and length scales is
common in biology, where atomic interactions can impact larger-
scale phenomenon. Such dependence is especially true for a well-
known cancer signaling pathway, where the membrane-bound RAS
protein binds an effector protein called RAF. To capture the
driving forces that bring RAS and RAF (represented as two
domains, RBD and CRD) together on the plasma membrane,
simulations with the ability to calculate atomic detail while having
long time and large length- scales are needed. The Multiscale
Machine-Learned Modeling Infrastructure (MuMMI) is able to
resolve RAS/RAF protein−membrane interactions that identify
specific lipid−protein fingerprints that enhance protein orienta-
tions viable for effector binding. MuMMI is a fully automated,
ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate
milliseconds of time for a 1 μm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein−
lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins.
MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for
better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the
coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the
largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase
and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to
address complex science questions.

1. INTRODUCTION

One of the fundamental challenges in computational modeling
is to balance the trade-off between the length and time scales
that need to be simulated and the corresponding computa-
tional costs. Relevant time scales are typically determined by
the phenomena of interest, e.g., a protein’s activation or a
chemical reaction, whereas length scales are usually chosen
based on the amount of detail needed, ranging anywhere from
the first-principles representation of elementary particles to the
entire cosmos. Unfortunately, despite the continuing growth in
computational capabilities, many applications still face a gap of
many orders of magnitude between the length and time scales
needed to generate new insights and what is currently feasible,
even on the largest supercomputers in the world.

One approach to overcome this limitation is to acknowledge
that not every aspect of a simulation is equally interesting or
important. Often, a majority of compute resources are spent
waiting for rare or random events of interest and/or on
resolving large regions of space to avoid boundary artifacts.
Multiscale modeling and simulations offer an efficient way to
limit unproductive simulations and maximize relevant
computation. Using coarser length and/or time scales for
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most of the computation and selectively resolving at the finer
scale the events or regions of interest, simulations can be fully
exploited for new and deeper scientific insights.1−4

Multiscale models do not typically have a closed-form
solution but, instead, work by combining models at different
scales to address different aspects of the phenomena of interest
while ensuring that the coupling across scales is consistent.
Generically, a multiscale setup requires two fundamental
building blocks: (a) the ability to define relevant scales and
bridge them locally, i.e., to couple a coarse- and a fine-scale
simulation (e.g., through projection, model reduction, or
upscaling) and (b) an indicator to determine when to switch
scales. A wide variety of solutions have been proposed in
diverse areas of science, such as material science, biology, high-
energy physics, and combustion.5−8 Multiscale may also be
achieved by integrating sliding scales. Adaptive mesh refine-
ment techniques are commonly used that selectively refine
length and time scales in regions and periods of interest.
However, these approaches are limited because they are built
upon the assumption that the computational methods and
discretization techniques remain the same, e.g., finite element
representations. Different scales often require different discrete
modeling approaches, such as continuum models using partial
differential equations and particle-based molecular dynamics
(MD) models. For such applications, significant challenges
arise not only in managing the complex computational
infrastructure but also, more importantly, in coupling these
scales and selectively switching between them since a key
challenge is to identify when and/or where to up/down scale.
Many existing approaches focus on exploring known and
predefined configuration spaces and use some form of
predefined error bounds to decide when up/down scaling
should be performed.6,8 Nevertheless, the challenge remains
that predefined spaces are limited to known behavior and often
fail to capture new hypotheses, whereas attempts to update
these spaces or errors require laborious efforts, lengthening the
time to solution.
Multiscale approaches have been of great benefit to

computational chemistry and computational biology.9−14

Relevant to this work, classical all-atom (AA) MD is used
extensively to study various types of membrane−protein
interactions with great detail.15,16 AA simulations explicitly
represent all atoms and capture details down to hydrogen
bonding and vibrations. AA simulations are, however, limited
in length and time scale due to their high computational cost,
rendering the sampling of such large-scale behavior as protein
reorganization due to lipid interaction hard to capture, and the
exploration of lipid environment-dependent protein−protein
dynamics near impossible.17,18 To address these challenges,
various coarser models have been used, ranging from
continuum models19,20 to coarse-grained (CG) models of
different levels of granularity.21−23 CG models reduce the
degrees of freedom, e.g., by combining atoms into effective
“beads” and reducing allowable vibrations in bonds, often
resulting in orders of magnitude reduction in computational
cost.21 Of course, all CG models, due to their reduced degrees
of freedom, are of reduced resolution and need to be used
within their domain of applicability. CG models can generally
be built using bottom-up and/or top-down approaches. The
former entails utilizing the dynamics observed in fine-
resolution simulations (such as AA) to parameterize the CG
model, so that they can reproduce the collective behavior of
high-fidelity simulations. Several bottom-up CG models exist

and have been employed to study a variety of membrane−
protein problems.24−28 The top-down approaches, on the
other hand, are parameterized to reproduce certain structural
or thermodynamic properties of the system. These models
have also proven successful in membrane−protein stud-
ies.29−31 The Martini force field32 is a particularly common
CG model with a broad array of parameterized molecules.33

Within Martini, the interaction potentials are optimized to
match partition coefficients and molecule dynamics derived
from AA simulations.
Various multiscale applications and methods have been used

to address computational biology problems that require both
large length and time scales as well as high resolution. A typical
application couples two scales, passing information from one
resolution to the other, and uses a fixed model at each scale. A
common approach is some form of serial multiscaling, e.g.,
simulate using general CG models and, for selected
configurations of interest, convert them from CG into AA
resolution and run AA simulations to verify and/or refine
interactions and dynamics from the CG model.34−36 This form
of multiscaling may also utilize the bottom-up approach to
generalize the observed dynamics at the AA scale and
propagate them further in time and space.11,28 Such ideas
have been employed to study various problems related to
membrane−protein complexes, such as the mechanism of
membrane remodeling induced by BAR proteins.24,37 In
contrast to serial approaches, parallel multiscaling involves
modeling different components of the system at different
resolutions that are coupled together and run concurrently. In
this approach, a region or molecule(s) of interest in a complex
system is described using a higher-resolution model, while the
rest of the system is described by a computationally more
efficient, low-resolution model. For instance, a protein can be
modeled in atomistic detail within a CG membrane solvated by
CG waters,38,39 or a specific area of interest can be modeled
using AA resolution, surrounded by CG/AA annealing/mixing
regions, inside larger CG simulations.40,41 Additionally, in the
multiscale quantum mechanics/molecular mechanics (QM/
MM) approach,42,43 specific regions of proteins are described
at the electronic level to simulate the breaking and forming of
chemical bonds, whereas the rest of the protein is modeled by
molecular mechanics to allow inclusion of complex environ-
mental effects and efficient sampling of the conformational
space. QM/MM has been used to study such mechanisms as
the ATP hydrolysis reaction in actin proteins44 and
investigation of the catalytic effect of enzymatic reactions,
with the goal to calculate the activation free energies of these
processes.45,46

The multiscaling approach taken here is ensemble-based.
Our ensemble-based multiscaling relies on a computationally
efficient “macro” model to sample a relevant landscape of
possible configurations exhaustively, from which a select subset
is systematically explored using a higher-resolution “micro”
model. Ensemble-based methods have long been employed in
computational sciences,47−50 including in the context of
multiscale simulations.51,52 Through parallel exploration of
many simulations, ensemble methods facilitate the simulation
of long-term behavior as well as rare events. More recently,
ML-based approaches have been utilized to create large
multiscale ensembles by sampling in learned spaces that
represent phenomena of interest, such as protein conformation
states53,54 and dynamics of SARS-CoV-2 spike protein.55

Recent work on the Multiscale Machine-Learned Modeling
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Infrastructure (MuMMI)56 demonstrated such ideas at a
massive scale by constructing a ML-driven ensemble of several
tens of thousands of micro simulations. MuMMI enables the
query of relevant hypotheses through a machine-learned latent
space,57 allowing automatic and optimal sampling of this space
to maximize new insights. Furthermore, MuMMI also
leverages this automated ML-driven approach to facilitate an
on-the-fly feedback loop to improve the fidelity of the running
macro model through in situ analysis of micro model
simulations. MuMMI was previously limited to connecting
two scales. This paper presents the first three-scale multiscale
approach to explore the RAS/RAF/MAPK signaling pathway
that is frequently dysregulated in cancer.58 In particular, our
work generalizes and significantly extends the previous
MuMMI infrastructure.56 First, in addition to the continuum
and CG MD scales of the original approach, we introduce a
third scale�AA MD simulations�to explore protein−lipid-
dependent structural rearrangements. The AA scale provides
more details about the phenomena explored by CG and
improves the parameterization at CG scale and, transitively, the
continuum scale, resulting in a complete feedback loop that
spans three scales. Second, the new framework extends
hypothesis-driven refinement to the AA scale. Rather than
selecting CG-to-AA starting structures based on a fixed
criterion or explicit triggers, we expand MuMMI’s sampling
capabilities to dynamically explore and sample from a
parameter space of interest (here the tilt, rotation, and depth
of the proteins with respect to the membrane). Finally, the new
framework introduces the RAS-binding domain (RBD) and
cysteine-rich domain (CRD) of RAF1 to the system and
enables the exploration of RAS-RBDCRD complexes as well as
combinations of multiple RAS and multiple complexes.
The RAS/RAF/MAPK signaling pathway is one of the cell’s

main pathways for promoting cell division, differentiation, and
growth. When dysregulated, this pathway is a prominent driver

in cancer biology.58,59 Mutations of RAS proteins alone appear
in a larger fraction of all human cancers diagnosed in the
US,60−62 rendering RAS an attractive therapeutic target.
Recently, the FDA approved new drugs that target a select
RAS mutation (the codon 12 glycine to cysteine mutation
most commonly found in lung cancer), giving new hope to
cancer patients, but there is still an unmet need for new
inhibitors and approaches targeting other RAS mutations.63−65

RAS proteins localize on the inner leaflet of the cells’ plasma
membrane (PM). To initiate signaling, RAS proteins are
loaded with GTP, resulting in an active conformation, which
primes them to bind downstream effector proteins, particularly
RAF. The RAF kinase domain dimerizes after two RAS-RAF
complexes are formed on the membrane, resulting in the
activation of kinase activity, which propagates downstream
signaling. However, the exact mechanisms by which RAS and
RAF colocalize on the membrane and undergo activation are
unknown at the molecular level, and insights are needed to
understand signal activation.
RAS proteins, specifically of the common splice variant

KRAS4b used here, colocalize and form nanoclusters in the
presence of anionic lipids, and the nanoclustering has been
shown to be very sensitive to changes in lipid composition.66,67

Using MD simulations, numerous RAS−RAS interfaces have
been described68−71 as well as RAS preference for anionic
lipids.66,72,73 Previously, a two-resolution multiscale simulation
using MuMMI56 was performed to explore RAS dynamics on
an 8-lipid type PM mimetic.74 This simulation and supporting
experiments56 revealed that lipid sub-compositions preferen-
tially associated with RAS demonstrated the existence of
detailed lipid fingerprints29 associated with different conforma-
tional states of RAS and indicated the promiscuous nature of
RAS−RAS G-domain multimerization. Depending on RAS
membrane orientation, the RBD domain of RAF can bind
RAS, and the RAF CRD domain can reorient and interact with

Figure 1. Three-scale MuMMI scheme. As the continuum macro model (A) evolves over time, ML-driven sampling is used to identify a diverse set
of configurations (B) from the continuum model to spawn CG simulations (C) in a DL-based latent space. From the resulting CG simulations,
candidate CG snapshots to convert to AA simulations are chosen in a three-dimensional parameter space (D). The subsequent AA simulations (E)
are analyzed in real time to provide updated protein parameters (F) to the CG simulations. Concurrently, in situ analysis of the CG simulations
refines the protein−lipid interactions (G) for the macro model.
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the membrane.75 Resolving the lipid dependence of RAS with
and without the RAF RBDCRD domains as well as their
respective protein−protein interactions requires simulations
spanning multiple resolutions: (1) capturing different possible
lipid environments and protein conformations/stoichiometry
requires sampling at cellular time and length scales; (2)
capturing lipid−protein interactions, protein conformation
dynamics, and protein−protein interactions under such a
variety of local environments requires tens of thousands of
multi-microsecond MD simulations, out of reach for AA but
attainable by CG; and (3) detailed interactions of the RAS and
RAF proteins with the membrane alters the local environment
in a way that can change local secondary structures76�
especially the RAF1 CRD when inserted into the membrane�
requiring specific AA details to resolve, as this is beyond the
capabilities of most CG force fields. Together, these require-
ments necessitate expanding the MuMMI framework to three
scales.
Given the immense value of such multiscale simulations, we

expanded the MuMMI framework to support an AA scale and
perform a large multiscale simulation of RAS-RBDCRD
interactions on the PM, where RBD and CRD are two
domains of the RAF1 protein. This paper presents a holistic
description of significant extensions to MuMMI, referred to
herein as the three-scale MuMMI. Results specific to RAS and
RAF dynamics are forthcoming in separate manuscripts�here,
we focus on demonstrating MuMMI’s capability of coupling
between scales, the benefits of coupling multiple scales, and the
benefits of running feedback coupled ensemble multiscale
campaign. The three-scale MuMMI illustrated here greatly
extends the original two-scale MuMMI.56,57,77 The underlying
computational workflow was generalized to support multiple
simultaneous scales and to greatly extend scalability and fault
tolerance.78 The AA scale was added with reliable CG-to-AA
transformations,76 CG parameters were updated through
additional preliminary simulations,75 and support for addi-
tional proteins components were added in CG (SI Section
1.3). A higher fidelity and faster continuum model79 used
updated parameterization (SI Section 1.1), and a new deep
learning-based sampling framework was used to analyze and
sample macro configurations with several types of protein
constellations and varying lipid environments.80

2. METHODS
2.1. Multiscale Machine-Learned Modeling Infra-

structure (MuMMI). To deliver a massive multiscale
simulation capable of autonomous execution through ML-
driven bidirectional coupling (see Figure 1), a new computa-
tional framework is needed that not only allows executing the
different types of simulations autonomously and dynamically
but also evolves them jointly as a coupled multiscale simulation
model that learns and improves with time. Such sophisticated
multiscale coupling also necessitates an equally competent
infrastructure to manage its software and hardware elements
with minimal manual intervention while achieving unprece-
dented computational scales on modern heterogeneous
computing technologies. MuMMI is the key enabling
technology behind our coupled multiscale simulations.
Broadly, MuMMI consists of three main parts: (1) simulation
models at all relevant scales with the associated protocols for
scale transformations, (2) coupling across scales, accomplished
with ML-driven sampling and in situ feedback, and (3) a

dynamic and fault-tolerant workflow that orchestrates all of the
individual simulations at scale.

2.1.1. Simulation Models at Three Relevant Scales and
Protocols to Transform Representations across Models. At
the coarsest scale, MuMMI employs a macro scale continuum
model79 to explore the long- and large-scale interaction
behavior between lipids and RAS and RAF (RBD and CRD
domains) proteins. The continuum model represents the lipid
bilayer as density fields for each lipid of interest.79 To evolve
single-particle representations of the proteins over space and
time for a 1 × 1 μm2 PM, the model uses dynamic density
functional theory (DDFT)81 with an implicit integration
technique. Two types of proteins are represented, each in
three possible states that differ in orientation relative to the
PM. Although the continuum model does not provide the
required fidelity for specific lipid or protein interactions, it does
offer sufficient detail to capture the overall membrane
dynamics�sampling local fluctuations in lipid densities as
well as overall lipid preferences of the proteins for each protein
state. We have developed a high performance and parallel
implementation of this continuum model.79 In the macro
simulation presented here, we achieved a simulation perform-
ance of 0.96 ms per day using 2400 CPU cores (IBM
POWER9). The details of this simulation tool will be
presented in a forthcoming publication.
At a finer resolution, the lipid bilayer and the proteins are

represented at the CG MD scale and evolved over time using
the Martini force field.32,82,83 Since MD simulations are
computationally expensive and unable to simulate the entire
system, only local regions of the PM are considered at CG
resolution. Specifically, 30 × 30 nm2 “patches” of the PM
sections are cut out from the continuum membrane
representation and, if deemed important, are promoted to
the CG scale. We primarily consider patches centered around
RAS proteins and RAS-RBDCRD complexes; a small set of
patches without any proteins are also selected as a control set.
A custom tool, Createsims (SI Section S1.3), was developed
that uses a modified version of insane84 to convert the
continuum representation into a particle-based one and then
GROMACS85 to relax and equilibrate the CG representation.
Next, CG simulations are performed using a specially designed,
CUDA-enabled version of the ddcMD simulation engine.86

These CG simulations�each containing around 140K
particles�achieved ∼1.04 μs of MD trajectories per day
utilizing one NVIDIA V100 GPU.86 During execution,
MuMMI orchestrated in situ analysis of CG simulations,
providing input that is key to dynamic coupling through
feedback from the CG to the continuum model (SI Section
S1.4).
The finest scale currently supported by MuMMI is AA

resolution76 using the CHARMM36 force field.87,88 Snapshots
from all CG simulations are evaluated (sampled every 2 ns),
and selected snapshots are extracted and converted to the AA
representation using a modified backward tool,34,76 followed by
energy minimization using GROMACS,85 and format con-
version using ParmEd.89 A description of the MuMMI AA
modules and a complete protocol of this backmapping
procedure are given by Loṕez et al.76 The 30 × 30 nm2 AA
representations are then evolved on a single-GPU using
AMBER18.90 AA simulations comprise, on average, ∼1.6 M
atoms and run at ∼14 ns per day per NVIDIA V100 GPU.

2.1.2. Coupling across Scales: ML-Driven Sampling and In
Situ Feedback. Given the three simulation models discussed
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above, MuMMI couples adjacent scales in a pairwise manner
using machine learning (ML). Here, the key challenge that
MuMMI addresses is the dynamic nature of the coupling�
both forward (sampling) and backward (feedback).
To maximize the opportunity for discovery, MuMMI aims to

create a diverse set of CG and AA simulations along specified
dimensions of interest and prevent redundant simulations, i.e.,
configurations similar to the ones previously simulated.
Comparing continuum patches directly in the space of lipids
and proteins is challenging since no direct comparative metrics
exist that synergize similarities in lipids with similarities in
proteins; instead, MuMMI uses ML to evaluate similarities
among patches. A pretrained ML model is used to evaluate
patches generated from the continuum simulation and order
them by their diversity importance.57 When computational
resources are available, the top candidates are selected by a
dynamic-sampling framework,57 and corresponding CG
simulations are spawned. MuMMI offers a flexible sampling
framework that allows opportunities to customize and control
the extent of diversity sampling and is agnostic to the type of
ML used. For example, MuMMI also offers controlled or
limited diversity and can utilize autoencoder-type deep
learning, neural network-based metric learning, or traditional
statistical measures. For the current simulation campaign,
sampling for CG uses a 9-D metric space generated by a deep
neural network.80 Continuum patches are classified with
respect to proteins (no proteins, one RAS protein, one RAS-
RBDCRD complex, and all others) and ranked by diversity
within each class, creating a diverse set of spatially resolved
lipid compositions for the given protein configurations.
Predefined proportions are used (10, 10, 20, and 60%,
respectively) to obtain statistically significant sets of target
simulations in each class.
To select an appropriately diverse set of initial configurations

for AA simulations, CG frames (sampled every 2 ns) from all
running and concluded simulations with a single RAS-
RBDCRD are evaluated. Evaluation of CG frames is performed
directly in a three-dimensional (3D) space representing the
rotation and tilt of RAS and the depth of RAF CRD with
respect to the membrane. Specifically, a 3D histogram is
computed and dynamically evolved to capture the variability
observed in these order parameters, from which the
configuration’s degree of diversity can be ascertained. For
sampling, a tunable parameter is introduced that offers a
balance between randomness and diversity, facilitating the
consideration of both the dominant modes and a truly diverse
distribution. For the current application, the method was
configured to sample an interpolated distribution that
represents a 20−80% balance of diversity and randomness,
resulting in an AA ensemble that captures dominant modes
while efficiently exploring the diversity in configurations.
A unique capability of the MuMMI multiscale approach is

the ability to use the information obtained from a fine-scale
simulation to update and improve the coarse-scale simulations
while the multiscale campaign is running. This automatic
feedback has two components. First, in situ analysis of all
running simulations is performed to compute relevant
properties, which are continually aggregated across all
simulations. Second, appropriate weighting is used to debias
the statistics of the effects of diversity sampling before the
update. Since redundancies are not simulated, more common
configurations are weighted correspondingly higher.57 For CG,
protein−lipid radial density functions (RDFs) are computed

for each simulation frame, and the aggregated RDFs are used
to update the parameterization of the continuum model. The
growing ensemble of CG simulations explored during a
MuMMI campaign readily outpaces the limited, initial training
set and covers a more diverse set of lipid compositions and
configurations, steadily updating the continuum model
protein−lipid interactions during the multiscale campaign. In
the case of AA, protein secondary structures from the AA
simulations are analyzed and aggregated to identify shifts in
secondary structures, which are then used to improve the CG
protein models. The AA simulation ensemble is constructed to
sample different RAS-RBDCRD membrane orientations and
CRD membrane insertion depths, leading to better sampling of
relevant environments.

2.1.3. Dynamic Workflow and Orchestration of Simu-
lation Ensembles. The award-winning MuMMI workflow
technology77,78 was developed to steer the multiscale
simulation campaign using ML and to simultaneously
coordinate a large number of different types of simulations.
The MuMMI workflow supports a fully automated and
dynamic selection of simulations to be run based on real-
time evaluation using ML. Furthermore, it supports a complex
software stack and can accommodate diverse hardware
requirements of the different kinds of simulations and use
knowledge of those differences to better utilize resources on
heterogeneous machines. The MuMMI workflow can seam-
lessly run at different computational scales using various
numbers of compute nodes and has been tested in runs using
5−4000 nodes. MuMMI runs can be scaled up or down as
needed for a given simulation campaign and available
resources, e.g., restoring from a 100-node job to start a
4000-node one or vice versa. The DDFT-based macro model
runs on CPU cores only and requires little compute resource.
The CG and AA simulations are the most computationally
intensive calculations in the framework. Since the CG and AA
simulations are highly parallelized, and each simulation is
designed to run on one GPU to maximize GPU utilization,
scaling up or down the number of nodes does not affect the
performance of the individual CG and AA simulations. The
workflow can be deployed on most GPU compute clusters
without sacrificing performance due to its flexible usage of
compute nodes. Scaled across a large number of nodes,
MuMMI can orchestrate several thousands of simulations
simultaneously and manages the creation, analysis, and storage
of several hundred TBs of data using an advanced file system
and database technologies. This is made possible by leveraging
modern heterogeneous computing machines such as Sierra and
Summit, at the time, two of the three most powerful
supercomputers on the planet.
2.2. Modeling and Analysis Methods. The models and

parameters for the different sub-simulations of the RAS-
RBDCRD multiscale campaign are documented as follows:
continuum model in SI Section S1.1, CG as in Ingoĺfsson et
al.56 and listed in SI Section S1.3 with parameter updates
described in Nguyen et al.,75 and AA are described in Nguyen
et al.74 and Lopez et al.75,76 Additional analysis used in this
manuscript is listed here. Note that in some cases, the lipid
names in the 8-lipid type PM mimetic74 differ between the CG
lipid and the AA lipid selected to represent that CG lipid, as
noted earlier.76 Here, we use the common CG names: 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-
palmitoyl-2- arachidonoyl-sn-glycero-3-phosphocholine
(PAPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol-
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amine (POPE), 1,2-dilinoleoyl-sn-glycero-3-phosphoethanol-
amine (DIPE), N-stearoyl-D-erythro-sphingosylphosphorylcho-
line (DPSM), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phos-
phatidylserine (PAPS), phosphatidylinositol 4,5-bisphosphate
(PIP2), and cholesterol (CHOL).

2.2.1. Lipid Equilibration. To estimate equilibrium of lipids
next to the proteins, lipids were counted if the distance
between the RAS farnesylated cysteine (SC1 bead) and the
PO4 bead of the lipid of interest in each leaflet falls within a
given cutoff distance. Lipid counts are evaluated every 10 ns
and normalized to the total number of specified lipid species in
that leaflet.

2.2.2. Computation of RDFs. Through online analysis of
CG simulations, the number of lipids of each type are counted
within each radial shell (thickness 0.02 nm) up to 12 nm from
the protein and are aggregated per simulation. Given any
instant in the multiscale simulation, these counts are used to
compute lipid−protein RDFs by adding the initial estimates
(also stored as lipid counts), dividing the counts of each bin by
the bin volume, and normalizing the result so that the RDF
equals one at a distance of 12 nm (taken an approximation of
infinity, i.e., far enough away so that the radial density has
converged to a constant).

2.2.3. Computation of Protein Secondary Structures. The
AA-to-CG feedback module of MuMMI monitors changes in
the secondary structure of feedback regions in AA simulations
via the DSSP algorithm91,92 and generates updated CG
topologies by utilizing martinize.py.83 The end-to-end distance
of the RAS hypervariable region (HVR) and the depth of CRD
(with respect to the PM) are calculated through online analysis
of AA and CG.

3. RESULTS
3.1. Multiscale Simulation Campaign. A large multiscale

simulation campaign was run using the three-scale MuMMI,
which is presented here in its full form (see Section 2). The
campaign had two main goals: resolve RAS (KRAS4b) and
RAS-RBDCRD dynamics on a PM and demonstrate the
capability of the new, three-scale MuMMI. The results in this
manuscript focus on MuMMI’s multiscale capabilities and the
utility of running concurrently at different resolution scales.
The campaign setup followed a similar protocol as the RAS-
only, two-scale MuMMI campaign presented in Ingoĺfsson et
al.56 (i.e., running a cellular scale, 1 × 1 μm2, continuum
simulation with 300 proteins on an 8-lipid type PM mimic74).
Here, the CG protein and lipid parameters are updated, and
models for the RBD and CRD domains of RAF1 are added75

to MuMMI’s simulation framework. In the continuum
simulation, these domains can bind RAS when RAS is in an
appropriate conformational state, changing the interaction
from RAS-only to RAS-RBDCRD. The AA scale is used for
single RAS-RBDCRD simulations to capture lipid-dependent
structural changes in secondary structures, which are used to
update the CG model. The AA models and parameters are
described in previous publications.75,76

The continuum macro model was parameterized in a similar
manner as an earlier RAS-only macro model56 using reference
simulations with updated Martini CG parameters75 and
includes RAS-RBDCRD (RAS bound to RBD and CRD
domains from RAF1). The model represents RAS as one bead
and RAS-RBDCRD as two. Each can exist in a variety of states,
and during macro simulations, the RAF1 domains can bind
and unbind RAS in a state-specific manner. The parameter-

ization is described in SI Section S1.1, where the main
components include RAS-only and RAS-RBDCRD para-
metrization Martini simulations described by Nguyen et al.75

augmented with lipid-only simulations and longer protein
simulations and a determination of protein conformational
states and transition rates between protein conformational
states (see SI Section S1.1 for details). The protein-state
definitions are summarized in Figure 2A,B, and the conforma-
tional-state transition rates are given in Figure 2C.

The multiscale simulation campaign, focusing on both RAS-
PM and RAS-RBDCRD-PM interactions, comprises a single
continuum simulation that was run for 20.5 ms, from which
34,523 patches were selected using ML and converted to CG
simulations. Through in situ analysis of these CG simulations,
9623 snapshots were selected, and corresponding AA
simulations were spawned. The campaign delivered a total of
97.36 ms of CG trajectories and 326.26 μs of AA trajectories.
Figure 3A,B shows the distribution of simulation lengths for
CG and AA simulations, respectively. As MuMMI continu-
ously replenishes concluded simulations with the new ones, the

Figure 2. Continuum macro model parameterization. (A, B) Tilt and
rotation of RAS G-domain with respect to the membrane is used to
define the protein states for RAS-only (A) and RAS-RBDCRD (B).
Definition and parameterization are given in SI Section S1.1. Note
that RAS-RBDCRD state definition also relies on CRD distance from
the membrane center. (A) Population in tilt−rotation space for CG
simulations of RAS-only (left) and RAS-RBDCRD (right). (B)
Defined state basins obtained using a descent method in the
population histogram. For RAS-RBDCRD, there is an elevated “Z”
state where CRD is significantly off the membrane, which is defined
by a rotation interval for RAS and a minimum membrane distance of
CRD. (C) Transition pathways between RAS and RAS-RBDCRD
states, along with the corresponding transition rates used (rates
reported in μs−1). Details of rate calculations can be found in SI
Section S1.1.
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distributions show several peaks highlighting the simulations
that were started more recently than others. The target
durations of CG and AA simulations were 5 μs and 50 ns,
respectively. A large number of simulations were set up and
run for a brief period at the end of the campaign to
demonstrate full-machine execution of MuMMI on Summit
(4000 nodes, 24,000 GPUs), as described with the MuMMI
workflow.78 The continuum simulation evolved 300 RAS and
∼150 RBDCRD “beads” on the PM, exploring a wide variety
of protein compositions, including high-order aggregates. The
campaign explored many different types of protein composi-
tions at the CG scale (Figure 3C and SI Table S1). For AA,
only the compositions with a single RAS-RBDCRD were
selected.
3.2. Bridging Continuum and CG Resolutions. The

continuum-to-CG coupling in MuMMI provides great benefits
for overall system modeling at both resolutions. Using a
realistic large and long time scale continuum model allows for
the exploration of relevant diversity of protein−lipid
constellations and types of proteins in different conformational
states and their relative orientation with a diverse sampling of
realistic local lipid compositions and arrangements. MuMMI
uses ML-guided diversity selection to sample the continuum
simulation while it is running, populating an ever-increasing
ensemble of CG-MD simulations. The continuum-to-CG
coupling enables the creation of the relevant CG simulation
ensemble, enabling CG-level analytics over an extremely broad
range of possible configurations and allowing for conditional
analysis as well as population analysis by utilizing the “weights”
of the simulations. The CG simulation ensemble also provides
benefits for the continuum resolution, both offline to verify the
accuracy of the macro model and online, where on-the-fly
analysis of the CG simulations is used to update the running
macro model.

3.2.1. Dynamic Sampling of Diverse Continuum-Scale
Patches. As mentioned earlier, our RAS-RAF multiscale
simulation campaign comprises a single continuum simulation
that generates a continuous and steady stream of patches. Over
the course of the simulation, 6,828,831 patches were explored
by the continuum simulation (333 patches for each of the
20,507 continuum snapshots), exhibiting a wide variety of lipid
compositions as well as protein configurations.
To select a diverse subset of these patches, a deep learning

(DL)-based metric-learning approach was used.80 Specifically,

a custom neural network was designed and trained to compare
patches. The input data was a 37 × 37 × 14 image representing
the 14 lipid concentrations discretized within each patch in a
37 × 37 grid and 9 labels describing different protein
conformations representing different states of RAS proteins
and RAS-RBDCRD complexes. The DL model ingests this
complex and multimodal inputs and projects them into a 9-
dimensional latent space that allows comparison of the patches
using Euclidean distances. Using this pretrained DL model
through online inference, MuMMI can evaluate all patches in
this latent space and select the most diverse ones (defined as
most distant) in real time. Through this approach, our
multiscale simulation selected 34,523 patches (out of over
6.8 million) that were deemed to be most diverse and spawned
the corresponding CG simulations. Figure 4 illustrates this
diversity in sampling by comparing the proportions of the 14
lipid species for all patches with those for only the patches
selected for CG simulations using parallel coordinates (Figure
4A,B), where opacity is used to visualize the distribution along
the corresponding axes�darker colors indicate more patches
at a given lipid composition. For reference, the average 8-lipid
type PM composition74 is shown as a black line through these
parallel coordinates’ axes. The plots also show the most
common and two rare compositions (green and red,
respectively) that were explored by the macro simulation.
We note that the trends shown by the two red lines (rare
compositions) are starkly different both from the black (8-lipid
type membrane composition) and the green (common
composition) as well as from each other, indicating the large
differences in the membrane compositions explored by the
macro model. Through diversity sampling, MuMMI focuses on
capturing such rare compositions as well as preventing the
selection of redundant configurations.
Whereas Figure 4A,B shows the sampling in the space of

lipid compositions, the sampling also accounts for protein
compositions and is performed in the 9-dimensional latent
space generated through DL. Figure 4C illustrates the sampling
directly in this latent space by visualizing the marginal
distributions in each latent dimension. The figure compares
the distribution of all patches explored by the continuum
model (pink-shaded region) against those selected for CG
(black line) and demonstrates that MuMMI’s sampling
suppresses the modes (common configurations) and provides
a wide coverage (infrequent configurations).

Figure 3. RAS-RBDCRD multiscale simulation campaign. MuMMI enabled a large three-scale simulation to resolve RAS and RAS-RBDCRD
dynamics on an eight-lipid component plasma membrane mimetic. A cellular-scale continuum simulation (1 × 1 mm2) with 300 proteins was
simulated for over 20.5 ms. (A) From the running continuum simulation, 34,523 CG simulations were selected, set up, and simulated up to 5 ms.
(B) From the running CG simulations, 9623 snapshots were selected, set up, and run at the AA level for up to 50 ns. (C) At the CG scale, the
patches were selected based on an ML-enabled diversity sampling, tuned to sample a diversity of protein configurations while keeping a given ratio
of simulation in each bin (×4 colors in figure).
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Finally, Figure 4D visualizes three continuum patches (the
green and red lines from Figure 4A,B) to further highlight the
spatial variability captured by MuMMI’s sampling. Whereas
the top row (the most common patch) contains a single RAS-
RAF complex with a small lipid fingerprint around the
proteins, the middle and bottom rows (two rare patches)
show highly specific signatures of proteins that the sampling
deems diverse enough to be simulated at the CG scales.

3.2.2. Shorter Equilibration of Continuum Patches at CG
Resolution. An additional benefit of the continuum-to-CG
coupling is the reduction in equilibrium time needed to
capture each proposed continuum configuration at the CG
resolution by informing the initial placement of proteins and
lipids. MuMMI creates each CG simulation from a continuum
patch using the Createsims module (Figure 5A); for method

details, see SI Section S1.3. Proteins in relevant conformational
states are sampled from input libraries and placed according to
the continuum specifications, and the lipid density fields are
probabilistically sampled to place lipid molecules. Figure 5B,C
shows representative continuum-to-CG lipid placement of
inner leaflet lipids for a patch with two RAS-RBDCRD
(center) and on RAS-only (top) in B and one RAS-only
(center) and one RAS-RBDCRD (bottom right) in C,
respectively; see SI Figure S4 for additional details. The
continuous lipid densities show the high lipid resolution in the
continuum model resolved at a 0.81 × 0.81 nm2 grid size.
Examples of typical lipid dynamics can also be seen such as in
plane lipid lateral heterogeneity, seen in local accumulation of
more saturated lipids and cholesterol vs more unsaturated
lipids, as well as the protein−local lipid fingerprints, most

Figure 4. Illustration of the diverse sampling of continuum configurations in MuMMI. (A, B) Using parallel coordinates plot, the lipid proportions
(per leaflet) of all patches explored by the macro model were compared with those selected for CG. Each horizontal axis shows a particular lipid,
and opacity represents the distribution along the corresponding axes (darker color indicates a larger number of patches). Notice that darker shades
of orange have a wider span along horizontal axes in B as compared to A (note as specific examples inner CHOL and PIP2), highlighting that a
wider range of concentrations is sampled using ML. The figures also visualize the 8-lipid type PM composition74 (black line) as well as the most
common, i.e., the one with the highest weight, (green line) and two very uncommon, i.e., two of the many patches with a weight of 1, (red lines)
patches found by the sampling algorithm. (D) Visualization of these patches (top row: most common; middle and bottom rows: uncommon). The
patches with a weight of 1 (bottom two rows) show more extreme examples: the bottom has many proteins, so the sampling captures high
aggregation; and the middle shows high CHOL outer and high PIP2 even for a 1-complex system, and hence, is found to be diverse. RAF
continuum model bead represents the CRD domain of RAF1 in the RAS-RBDCRD complex. (C) DL latent space to compare the patches explored
(pink) and the patches sampled (black) demonstrates that the sampling prevents redundancy (suppresses the modes) and captures uncommon
compositions (wider and flatter distributions).
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noticeably is the increased PIP2 lipid density around the
proteins. The CG lipid placement is also shown both for a
single instance and the average of 1000 CG placements. The
single instance is a probabilistic sampling of the overall lipid
densities; the main trends can still be clearly seen, and by
averaging multiple samplings, the macro densities are recreated
(Figure 5B,C and SI Figure S4). Limited empirical assessment
indicates that the total lipid concentration per lipid type is
typically within 0.1−0.3% of that expected from the macro
model and of those checked always within 1%. By spatially
placing the lipids in the bilayer as dictated by the continuum
model, the CG simulation needs less simulation time to
equilibrate the different lipid features for the given patch. The

time saved will vary, depending on the lipid feature of interest.
To demonstrate the change in equilibrium time, eight
representative CG simulations (four with one RAS-only and
four with one RAS-RBDCRD) were selected, set up, and
simulated again but varied the initial lipid placement by
randomizing the location of all of the lipids in each leaflet.
Figure 5D shows the relative accumulation of inner leaflet PIP2
and POPC lipids close to the proteins as the simulation
progress. Note that 0 time in Figure 5D is after the initial 6.3
ns of pre-equilibrium done by Createsims as part of the patch
build. PIP2 lipids are strongly associated with the RAS-only
and RAS-RBDCRD proteins, and simulations starting from
continuum macro model placement (dark lines in Figure 5D)

Figure 5. Converting a continuum patch to a CG simulation. (A) Scheme demonstrating how a 30× 30 nm2 continuum patch is converted into a
CG simulation using the Createsims module. (B, C) Inner leaflet lipid densities from the continuum simulation, a single CG lipid placement, and
an average of 1000 CG lipid placements shown for a patch with two RAS-RBDCRD and one RAS-only (B) and one RAS-only and one RAS-
RBDCRD (C). Note that continuum macro model densities are in lipids per μm2 while the CG setup are counts and averaged counts per cell. (D)
Fraction of inner leaflet PIP2 (left) or POPC (right) lipids that are within 5 nm of the RAS farnesyl lipid anchor. The darker color lines show
simulations started with the MuMMI continuum-to-CG build routine, while the lighter color lines are the same continuum patches build with a
modified routine that randomizes the location of the lipids in each leaflet. Simulations from eight continuum patches are shown, all with one
protein, four with RAS-only, and four with RAS-RBDCRD, and starting from different protein conformational states.

Figure 6. MuMMI framework utilizes in situ analysis and dynamic ML-based sampling to facilitate an on-the-fly feedback loop. Given an initial
estimate of protein−lipid radial distribution functions (RDFs), shown as colored lines, the feedback gradually improves the estimate (shaded
regions) to achieve more accurate RDFs (black).
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start closer to the preferred protein−lipid placement than
starting with random placement (light lines in Figure 5D).
However, POPC lipids that have a much weaker protein
preference and higher inner leaflet concentration show little
change in accumulation.

3.2.3. In Situ Feedback from CG-to-Continuum. One of
the key inputs for the parameterization of the continuum
model is the collection of radial distribution functions (RDFs)
between lipids and proteins. The RDFs are gathered from an
initial set of CG simulations conducted prior to the presented
multiscale simulation. However, the nature of this campaign
provides an opportunity to improve the continuum model by
exploiting a substantially larger set of CG trajectories. Although
one could utilize the RDFs computed through this larger set of
CG to parameterize a future continuum model more
accurately, such post-hoc reparameterization would delay
new insights that could be drawn from an updated continuum
model. This multiscale simulation campaign leverages these
simulations through an on-the-fly feedback loop in which more
accurate estimates of RDFs are computed and fed into the
continuum model, thereby updating it while the multiscale
simulation campaign is running. The feedback loop is executed
every 10 minutes and computationally optimized to finish
within this time frame. Each feedback loop updates the RDFs
using all new CG snapshots created since the previous loop.
Figure 6 shows the final RDFs obtained after the simulation
campaign with respect to the initial RDF and indicates the
changes due to feedback. MuMMI allows a campaign to be
initiated with a coarsely defined or approximate initial
parametrization of the macro model, which is then steadily
refined as the campaign proceeds, allowing exploration of
continuum configurations that capture the CG scale with
increasing accuracy. In the multiscale simulation discussed
here, the sampling of RDFs is improved. However, the CG-to-
continuum feedback, i.e., the use of these updated RDFs to
update the lipid−protein interactions, failed to compensate for
multibody effects, which likely resulted in too-high lipid-
induced protein clustering in the continuum model. These
multibody effects can be avoided by only considering single
protein CG simulations for feedback. The implications for
including them in this campaign are currently being evaluated

as well as more sophisticated approaches that can deconvolve
the many-body effects.
3.3. Bridging CG and AA Resolutions. MuMMI’s

multiscale modeling capabilities extend beyond the continuum
and CG scales by reaching atomistic resolution and time scales.
The CG-to-AA coupling in MuMMI offers significant
advantages by enabling more accurate and environment-
specific models through AA simulations and overcoming the
limitations of the CG Martini model. Specifically, whereas the
secondary structures of proteins are fixed in the Martini
model,82 AA resolutions can resolve the dependence of the
secondary structures on the local environment. Through
dynamic sampling of local CG environments and their
investigation at the AA scale, MuMMI adapts the secondary
structure to a preferred membrane-bound conformation, rather
than being limited to the initial, solution-based model.

3.3.1. Dynamic Sampling of Diverse Protein Conforma-
tions from CG Scale. MuMMI employs a second, different
type of dynamic-sampling approach to select CG snapshots to
be promoted to the AA level. A total of 9,837,316 CG frames
were generated through all CG simulations, providing a
thorough exploration of the possible protein conformations.
As described earlier in Section 2.1.2, the dimensions of

variability that are of primary interest in this study are the
depth of CRD membrane insertion and the tilt and rotation
angles that describe the orientation of RAS G-domain.
MuMMI’s sampling framework was used to create 3D
histograms corresponding to these dimensions and was
dynamically evolved by capturing additional CG frames as
the simulations progressed. Spherical binning by angle was
used to create 302 equal-area bins in the space of tilt and
rotation, whereas five nonuniform bins were created to capture
the relevant range of CRD depth. When queried for a new
sample, the 3D histogram with 1510 total bins was evaluated
against a similar histogram for the samples previously selected,
and new samples were selected to satisfy a diversity factor of
20%. Figure 7 compares the distributions of the evaluated
frames and selected frames (for simple visualization, polar
coordinates are used rather than spherical binning) and
illustrates that while the sampling captured the modes of the

Figure 7. Illustration of the diversity sampling of CG snapshots in MuMMI; top row shows all CG snapshots, bottom row shows those selected for
AA simulations. CG snapshots were evaluated based on the depth of CRD membrane insertion and the tilt and rotation angles that describe the
orientation of RAS G-domain. Available snapshots were distributed into bins of a 3D histogram�5 bins for depth and 302 equal-area bins for
rotation and depth for each value of depth. These histograms were updated dynamically to accommodate new snapshots from running CG
simulations and were used to select snapshots from bins that allowed maintaining a prescribed balance between diversity and randomness.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01018
J. Chem. Theory Comput. 2023, 19, 2658−2675

2667

https://pubs.acs.org/doi/10.1021/acs.jctc.2c01018?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01018?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01018?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01018?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


distribution (due to low diversity factor), a considerable
amount of sampling was performed outside the dense areas.

3.3.2. Transformation of CG Frames into AA Config-
urations. The selected CG frames are then transformed to
initial atomistic structures for AA simulations by the MuMMI
Backmapping module and an updated CG-to-AA conversion
tool called sinceCG with ∼98% success rate per iterative
attempt.76 This tool, which is a modified version of the
backward method,34 converts selected snapshots from Martini
CG simulations to CHARMM36 AA model. Several changes
were made to reduce the numerical instability, have more
accurate stereochemistry via modified Hamiltonians and
improved structural integrity of converted structures.

3.3.3. In Situ Feedback from AA-to-CG. The AA-to-CG
feedback in MuMMI is used to address a known limitation of
the CG Martini model.32,82 Specifically, the secondary
structure of RAS is fixed in CG and does not change based
on the local membrane environment. By incorporating a
feedback loop, we can update the force field parameters in the
CG model based on the changes in secondary structures
observed in the AA simulations for specific protein regions of
RAS. This allowed us to adapt the CG secondary structure
based on the statistics obtained from a large ensemble of AA
simulations. Feedback updates the CG parameters that are
dependent on the conformation and secondary structure of the
protein such as backbone bead types, elastic bands, bonds,
angles, and dihedrals between backbone beads. We focused in
this campaign on RAS helix 5 (“HVR feedback”) and CRD
loop residues T145-N161 (“CRD feedback”). In the running
AA simulations, we cluster all secondary structure config-
urations in the HVR region and CRD region (separately),
keeping track of the prevalence of different structures. If a new
configuration is seen to reach a dominant level of prevalence,

we deem a “feedback event” to have occurred and modify the
appropriate CG parameters accordingly.
Two separate feedback events occurred for RAS-RBDCRD

during our multiscale simulation campaign. The first feedback
altered the termination of RAS helix 5 from residue K172 to
residue S171. (Note that this feedback does not affect RAS-
only complexes as their C-terminus of RAS helix 5 is initially
defined to end at residue S171.75) The second feedback
changed the secondary structures of residues T145-N161 from
ECCSCCCCTTTCSCCSE to EEEEEEECTTTCSEEEE, in-
creasing the lengths of β-strands in the CRD loops. More
details on the AA-to-CG feedback are presented in Loṕez et
al.76

To understand the effect of feedback events on the structural
properties of RAS-RBDCRD, the end-to-end distance of HVR
and the CRD depth are evaluated separately for the
simulations without any feedback, and the simulations with
HVR-only feedback or HVR+CRD feedback (feedback regions
are indicated in Figure 8A). CRD depth is defined as the
distance between the center of mass of hydrophobic/cationic
CRD loop residues and the center of mass of the bilayer along
the bilayer normal.
Figure 8D shows the effect of different types of feedback on

the probability distribution of CRD depth (defined as the
distance from the center of the membrane) in CG simulations.
The CRD depth distributions are very similar for CG
simulations without any feedback and CG simulations with
HVR feedback. On the other hand, the distribution shifts
toward smaller values of CRD depth in the CG simulations
with CRD feedback, showing that longer β-strands in the CRD
loops allow proteins to lie deeper toward the bilayer center. As
discussed in Section 3.3.1, novelty sampling is used to select
CG snapshots to be promoted to the AA level, and the same

Figure 8. AA-to-CG RAS-RBDCRD feedback. (A) Atomistic structure of RAS-RBDCRD interacting with a lipid bilayer. HVR and CRD feedback
regions are shown in purple and red, respectively. (B, C) Probability distribution of (B) CRD depth and (C) HVR length obtained from AA
simulations that are spawned from CG simulations with HVR feedback, HVR+CRD feedback (labeled CRD for the AA simulations and only
shown in B as only CRD feedback was taken into account in AA conversation), and without any feedback. (D) Probability distribution of CRD
depth (distance from membrane center) obtained from CG simulations with HVR feedback, HVR+CRD feedback, and without any feedback. (E,
F) Probability distribution of (E) CRD depth and (F) HVR length obtained from AA simulations that are spawned from CG simulations without
any feedback or with any type of feedback. The distributions for AA simulations are obtained at different time intervals corresponding to the first
16.7 ns of the simulations (early) and the rest of the simulations (late). The distributions are colored based on the type of feedback and simulation
time intervals used for the analysis.
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sampling approach is used before any feedback and after HVR
and CRD feedback events.
The CRD depth is further evaluated in AA simulations at

different time intervals (early and late) to understand how
various types of feedback in CG simulations and diversity of
CG-to-AA selection affect the behavior of RAS-RBDCRD at
AA scale. The first 16.7 ns of each AA simulation corresponds
to an early time interval, and the rest of the simulation
corresponds to the late time interval. AA simulations spawned
from CG simulations with CRD feedback have a CRD depth
distribution shifted toward smaller values in early times (Figure
8B), consistent with the trends observed in CG simulations.
This effect is found to disappear later in the AA simulations,
indicating that feedback on CRD depths has not converged.
CRD depth was also evaluated based on whether there was any
type of feedback (either HVR or CRD) or no feedback (Figure
8E). A slight shift is observed toward smaller values in CRD
depth distribution, but the shift is not as large as that observed
for CRD feedback alone, shown in Figure 8B, since HVR
feedback has no effect on the CRD depth distribution.
Moreover, the effect of feedback on the distribution of HVR
lengths in AA simulations is investigated, and it is found that
HVR feedback results in longer HVR lengths at AA scale
(Figure 8C,F). Overall, these results demonstrate that both
HVR and CRD feedbacks influence the behavior of RAS-
RBDCRD in the bilayer at CG and AA scales.
As detailed in an associated publication,76 our CG-to-AA

backmapping procedure builds the AA system constrained on a
given CG input structure. The resulting AA structures can be
energetically strained and deform and potentially not
equilibrate due to the limited length of the AA simulations
(50 ns is the current simulation campaign). If deformation is
prominent and asymmetric, it could become dominant in the
AA population, be selected for feedback to the CG, and then

further propagated as a new round of updated CG models get
selected to AA. For the two feedback regions used in the
current study, the RAF CRD loops region changes in β-strands
length upon membrane insertion, but the change stabilizes and
remains constant through the rest of the simulation campaign,
as shown in Loṕez et al.76 For the RAS HVR region, however,
the RAS helix 5 shrinks by an average of 2.2 residues before
feedback and 1.9 residues after�it does not exhibit a stable
single value during this simulation campaign (Figure S6). The
continued helix shortening is consistent with recent NMR
backbone chemical shifts experiments, indicating RAS helix 5
preference to end at residue 170.76 Nevertheless, as the helix
length has not stabilized in these simulations, we cannot rule
out a potential bias in the feedback-backmapping protocol.
Finally, the effect of feedback on lipid composition near

RAS-RBDCRD is examined by computing densities after
aligning the G-domain and CRD loop residues at the origin
and the positive x-axis, respectively.56 Figure 9 shows densities
of cholesterol and DIPE in the inner leaflet extracted from the
simulations without any feedback, and the simulations with
HVR-only feedback or HVR+CRD feedback. We observe that
the concentration of cholesterol depletes with CRD feedback,
while the concentration of DIPE enriches with HVR feedback
in certain regions, indicating that different types of feedback,
corresponding to either a shortening of RAS helix 5 or
increased lengths of β-strands in the CRD loops, influence the
local lipid composition around the protein.
3.4. AA Results Update the Continuum Model

through Double Feedback. To understand if there is any
effect of changes occurring at AA scale on the macro
simulations, the effect of atomistic feedback on lipid−protein
RDFs in CG simulations was investigated for RAF states “ma”
and “mb” by evaluating RDFs separately for the simulations
without any feedback, and the simulations with HVR-only

Figure 9. Effect of feedback-driven secondary structure changes on lipid densities around RAS-RBDCRD. Oriented two-dimensional (2D)
distributions of DIPE, PAP6, POPC lipids, and cholesterol near RAS-RBDCRD in CG simulations without any feedback (top row), with HVR
feedback (middle row), and HVR+CRD feedback (bottom row). Densities are computed after aligning the G-domain and CRD loop residues at
the origin and the positive x-axis, respectively.
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feedback or HVR+CRD feedback (Figure 9). For this
computation, the number of lipids of each type were counted
within each radial shell from the CRD region of the proteins
(additional details on the computation of RDF are provided in
the Method section). There is no significant difference
between RDFs obtained from the CG simulations without
any feedback and those obtained from the CG simulations with
HVR feedback. On the other hand, CRD feedback has a
significant impact on the RDFs at short distances, especially for
certain bilayer species such as DIPE, PIP2, and cholesterol
(CHOL). Figure 10 shows the CRD feedback for the RAS-
RBDCRD in ma and mb states for PIP2 and CHOL lipids.
These results demonstrate that feedback events affect the
resulting RDFs in CG simulations, which can in turn tune the
interaction potentials in macro simulations.

4. DISCUSSION AND CONCLUSIONS
The greatly extended three-scale MuMMI automatically
executes multiscale simulations at three resolution scales:
continuum, CG, and AA (Figure 1), using an ML-guided
pairwise coupling of adjacent scales in an ensemble-based
multiscaling approach paired with on-the-fly feedback. Pairwise
coupling of the three scales allows each to enhance the other.
The lower resolution, faster models provide enhanced
sampling, diversity of tested/assessed conditions, and starting
points closer to equilibrated systems. Concurrently, the higher-
resolution models gather more detailed information for the
systems at hand, and on-the-fly feedback improves the fidelity
of the lower-resolution models to more closely agree.
The blazingly fast continuum model samples a vast set of

local lipid environments and possible protein configurations
while continuously improving its protein−lipid interactions
through aggregated online analysis of all CG simulations
(Figure 6). MuMMI effectively utilizes available computational
resources by sampling local configurations (patches) from the
continuum model using a diversity-driven ML-guided
approach that focuses on the expensive, finer-scale simulations
on the most interesting or relevant areas. The resulting large
CG ensemble captures a diversity of protein stoichiometries
(Figure 3) as well as a diverse sampling of local lipid

compositions (Figure 4), allowing for lipid-dependent analysis
of protein dynamics, as well as recording simulation weights
marking the number of patches in the continuum model
distribution represented by each CG simulation. In addition,
by carefully constructing the CG simulations from the
continuum model patches, the CG simulation equilibrium
time is greatly reduced (Figure 5). The large and diverse
ensemble of CG Martini 2 simulation provides the necessary
resolution to resolve environmentally dependent lipid−lipid,
lipid−protein, protein orientation and protein−protein inter-
actions,13,14 although not without significant limitations such
as over-representing protein−protein affinity93 and fixed
secondary structure assignment.82 Upon environmental
change, some protein structures are altered, for the RAS-
RBDCRD system protein domains with suspected dynamic
secondary structures were selected for feedback; those are α-
helix 5 that connects to the disordered RAS HVR and the
region of the RAF1 CRD that inserts into the bilayer.
Additionally, due to limitations of CG modeling, reference AA
simulations for backing up and verifying specific interactions
are always desirable. In the RAS-RBDCRD multiscale
simulation, 20% of GPU resources were dedicated to AA
simulations. A large ensemble of AA simulations was built
(Figure 3B), sampling different RAS G-domain membrane
orientations at different RAF1 CRD membrane insertion
depths (Figure 7). As computational resources become
available, CG frames are selected from the pool of all so far
simulated CG based on apriority specific criteria of novelty vs
random (repeated sampling) and each selected CG frame is
carefully converted from CG to AA.76 MuMMI aggregates the
on-the-fly analysis of all AA simulations and updates the
current protein parameters for future CG simulations when the
population of observed secondary structures changes, adapting
the CG protein structure to the local environment more
commonly sampled. As the multiscale simulation progresses,
the different scales reinforce each other, the progressively
better sampled CG and AA simulations improve the accuracy
of continuum and CG, respectively, and as the different sub-
simulations are run concurrently, updates to the CG from the

Figure 10. Effect of feedback-driven changes in secondary structure on lipid−protein RDFs in the CG simulations shown for PIP2 (top row) and
cholesterol (bottom row) with two states of RAF1 (left and right). The figure shows the initial RDFs (black), RDFs after HVR feedback (red), and
RDFs after the subsequent CRD feedback�the shaded regions highlight the differences between the different stages. The figure highlights the
significant differences observed in RDFs after the CRD feedback, demonstrating the value that the on-the-fly feedback capabilities bring for
coupling all three scales together, i.e., updating the coarsest (continuum) scale by accounting for the dynamics at the finest (AA) scale through the
middle (CG) scale.
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AA are gradually passed into the continuum model (Figure
10).
Resolving protein−membrane interactions with MD simu-

lations requires significant sampling and more so when
considering complex membrane mixtures13,14 which can form
specific lipid−protein fingerprints.29 Specific proteins also
adapt their membrane orientation and dynamics based on the
local lipid compositions, shown for RAS in a previous two-scale
MuMMI multiscale simulation.56 When RAS binds the
RBDCRD domains of RAF1, the membrane orientation of
the RAS G-domain is significantly affected (Figure 2), and the
relative orientation of the CRD changes upon membrane
binding.75 The multiscale RAS-RBDCRD simulation shown
here was executed to both showcase the extended three-scale
MuMMI as well as to resolve the membrane dynamics of the
RAS-RBDCRD complex, for which detailed analysis, inter-
pretation, and experimental support are currently underway.
With increasing availability of highly parallel computational

resources, the types of simulations that can be performed are
changing. Already one-off simulations are rare�more often a
suite of different conditions is explored, often managed using
simulation workflow tools. Scanning of appropriate conditions
is very effective when the desired reaction coordinate or
relevant changes in environment to explore are known a priori.
MuMMI expands upon current workflow technology by
facilitating the use of a high-level macro model to enable
rapid system exploration coupled with a fully automated
conversion to finer-detailed CG and AA resolutions. In the
absence of predefined conditions to explore, MuMMI can
substitute valuable human resources with computational
resources to effectively create and sample an extraordinarily
wide range of correlated system configurations. The three-scale
MuMMI combines different resolution components to
significantly extend (see refs 75, 76, 78−80 and SI Section
S1) the previous version of MuMMI56 and demonstrate the
utility of running linked ensemble-based multiscale simu-
lations. MuMMI bidirectionally couples adjacent resolution
scales using ML-guided sampling and specific system-building
routines (going from coarse to fine) and aggregation of in situ
feedback (going from fine to coarse). MuMMI is designed to
be generalizable, as it is able to run other model systems by
tuning or reparametrizing the current simulation modules and/
or by switching out specific modules. MuMMI is also highly
scalable, running efficiently on systems ranging in size from a
handful of nodes to some of the world’s most powerful
computers77,78 and is anticipated to run on forthcoming
exascale machines as well. Looking ahead, we expect that the
cost of human resources will continue to outpace computa-
tional resources, and frameworks such as MuMMI will become
more common, allowing for fully automatic multiscale
campaigns sampling relevant system conditions.

■ ASSOCIATED CONTENT
Data Availability Statement
All simulation input and parameter files will be made available
at https://bbs.llnl.gov/. All simulation raw data ∼200 TB will
be hosted on the NIH MoDaC server (https://modac.cancer.
gov/). MuMMI is composed of numerous sub-components,
both freely available third-party applications and custom codes:
- ddcMD (github.com/LLNL/ddcMD), - ddcMDconverter
(github.com/LLNL/ddcMDconverter), - MDAnalysis modi-
fied to support ddcMD (github.com/XiaohuaZhangLLNL/
mdanalysis), - Maestro (github.com/LLNL/maestrowf), - Flux

(github.com/flux-framework), - Pytaridx (github.com/LLNL/
pytaridx), - dynIm (github.com/LLNL/dynim), - MuMMI-
core (github.com/mummi-framework/mummi-core), and -
MuMMI-ras (github.com/mummi-framework/mummi-ras).
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Methods describing the macro model parameterization
(Section 1.1), protein structure input libraries using
multiscale simulation (Section1.2), and description of
the updated MuMMI Createsims (Section 1.3) and CG
simulation and analysis (Section1.4) modules, additional
figures for converting continuum patch to CG (Figure
S4), full list of feedback RDFs (Figure S5), and RAS
helix 5 length distribution in AA simulations (Figure
S6); in Section S2 and a table with CG simulation
protein compositions (Table S1) in Section S3 (PDF)
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