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Abstract
Aim: To demonstrate the role of IL-6 and pSTAT3 in the inflammatory response to 
cerebral ischemia/reperfusion following folic acid deficiency (FD).
Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) model was es-
tablished in adult male Sprague-Dawley rats in vivo, and cultured primary astrocytes 
were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to emulate is-
chemia/reperfusion injury in vitro.
Results: Glial fibrillary acidic protein (GFAP) expression significantly increased in 
astrocytes of the brain cortex in the MCAO group compared to the SHAM group. 
Nevertheless, FD did not further promote GFAP expression in astrocytes of rat brain 
tissue after MCAO. This result was further confirmed in the OGD/R cellular model. In 
addition, FD did not promote the expressions of TNF-α and IL-1β but raised IL-6 (Peak 
at 12 h after MCAO) and pSTAT3 (Peak at 24 h after MCAO) levels in the affected 
cortices of MCAO rats. In the in vitro model, the levels of IL-6 and pSTAT3 in astro-
cytes were significantly reduced by treatment with Filgotinib (JAK-1 inhibitor) but not 
AG490 (JAK-2 inhibitor). Moreover, the suppression of IL-6 expression reduced FD-
induced increases in pSTAT3 and pJAK-1. In turn, inhibited pSTAT3 expression also 
depressed the FD-mediated increase in IL-6 expression.
Conclusions: FD led to the overproduction of IL-6 and subsequently increased pSTAT3 
levels via JAK-1 but not JAK-2, which further promoted increased IL-6 expression, 
thereby exacerbating the inflammatory response of primary astrocytes.
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1  |  INTRODUC TION

Cerebral ischemia/reperfusion (I/R), caused by the restoration of 
blood supply to ischemic brain tissue, is a pathological injury that oc-
curs during the treatment of ischemic stroke and is accompanied by 
high morbidity and mortality.1 There are no specific drugs available 
to treat I/R injury.2 Thus, in such a case, dietary supplements with 
low side effects may be considered to assist in promoting neurologi-
cal recovery if supported by substantial scientific evidence.3

Folic acid (FA), an essential nutrient in the regular human diet, is 
strongly associated with neuroinflammation.4,5 Research has shown 
that folic acid deficiency (FD) triggers the activation of the neuroin-
flammatory cascade in Alzheimer's disease (AD).6 In addition, Guest 
et al. observed a negative correlation between cerebrospinal fluid 
folate and levels of inflammation within the central nervous sys-
tem (CNS) in the healthy population.7 However, the exact mecha-
nisms underlying the effects of FD on neuroinflammation following 
cerebral ischemia-reperfusion have not been fully elucidated. Our 
previous work suggests that FD may enhance the expression of in-
flammatory mediators following cerebral hypoxia-ischemia by acti-
vating microglia.8 Although astrocytes and microglia are known to 
be critical regulators of the inflammatory response in the CNS,9 the 
mechanisms by which astrocytes are involved in the effects of FD on 
stroke recovery require further investigation.

Astrocytes, the most common glial cells in the brain, are key 
regulators of the inflammatory response in the CNS.10 For instance, 
in the early stages of AD, astrocytes become activated and release 
interleukins and nitric oxide, exacerbating the neuroinflammatory 
response.11 In experimental autoimmune encephalomyelitis mice, 
astrocytes produce lactosylceramide, which promotes transcrip-
tional levels of pro-inflammatory factors such as IL-1β and nitric 
oxide synthase in an autocrine manner.12 Additionally, astrocyte 
proliferation is an important pathological feature of stroke. Reactive 
astrocytes can release pro-inflammatory cytokines in response to 
acute ischemia, especially IL-6, thereby triggering the production of 
secondary mediators, which may lead to persistent and neurotoxic 
effects.13 Given that FD induces neuroinflammation in CNS disor-
ders, FD may promote inflammatory responses in astrocytes follow-
ing ischemia-reperfusion.

Interleukin-6 (IL-6)/signal transduction and transcription activa-
tor of 3 (STAT3) is an essential intracellular pathway that mediates 
inflammatory signaling and is a vital signaling component in reactive 
astrocytes.14 As a core upstream regulator of the inflammatory re-
sponse, IL-6 promotes inflammatory response waterfalls and simul-
taneously activates STAT3 via Janus kinases (JAKs). Subsequently, 
aberrant activation of STAT3 promotes transcriptions and expres-
sions of many genes encoding pro-inflammatory mediators.15 Here, 
we hypothesize that FD may exacerbate astrocyte injury through 
IL-6/pSTAT3 interactions.

In this present study, both the rat middle cerebral artery oc-
clusion/reperfusion (MCAO/R) model and oxygen-glucose depri-
vation/reoxygenation (OGD/R)-treated primary astrocytes were 
used to observe FD's effects on astrocytes and further explore the 

underlying molecular mechanisms. The study shows for the first 
time that FD triggers an inflammatory response in astrocytes after 
ischemia-reperfusion through the IL-6/JAK-1/pSTAT3 pathway and 
exacerbates inflammation through the interaction between IL-6 and 
pSTAT3. This work will provide new insights into how FD leads to 
astrocyte injury after ischemic stroke.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

SPF male Sprague-Dawley rats (weighing 160–180 g) were purchased 
from Peking Wei Tong Lihua Experimental Animal Technology Center 
(Beijing, China). All animal experiments described in this study were 
conducted by the Guide for the Care and Use of Laboratory Animals 
published by the National Institutes of Health (NIH publication no. 
80-23, revised 1996). The experimental animals were randomly 
divided into five groups: (1) sham-operated control group (SHAM, 
n = 10), (2) MCAO 12 h group (MCAO 12 h, n = 10), (3) MCAO 24 h 
group (MCAO 24 h, n = 10), (4) MCAO 12 h plus folic acid deficient 
diet group (MCAO 12 h + FD, n = 10), (5) MCAO 24 h plus folic acid 
deficient diet group (MCAO 24 h + FD, n = 10). The rats were pre-
treated with the standard (2  mg/kg) or folic acid deficient diets 
(<0.2 mg/kg) (Beijing Keao Xieli Feed Co., Ltd.) for 28 days prior to 
animal operation. All animal protocols were approved by the Animal 
Ethical and Welfare Committee of Tianjin Nankai Hospital.

2.2  |  Surgical procedures

The MCAO rats were induced by the intraluminal filament tech-
nique, as described previously.16 After 1 h of MCAO-induced focal 
cerebral ischemia, the line was carefully withdrawn to establish rep-
erfusion. The rats were then allowed to recover from anesthesia at 
37°C and were sacrificed at 12 h and 24 h after reperfusion for the 
following experiments.

2.3  |  Cell culture and treatment

Brain tissue was isolated from neonatal Sprague-Dawley rats 
(within 24 h) with careful removal of the meninges and subsequently 
washed three times in Dulbecco's modified eagle's medium (DMEM; 
Sigma, St. Louis, MO, USA). It was cut into small pieces and then dis-
sociated by incubation with 0.25% parenzyme and 0.02% EDTA for 
15 min. After centrifugation and resuspension, the mixed glial cell 
cultures were kept in T75 culture flasks and fed with DMEM supple-
mented with 10% fetal bovine serum (FBS). The media were changed 
twice a week. When cells reached ∼95% confluence, microglia and 
astrocytes were separated by gentle shaking for 16 h at room tem-
perature. By immunocytochemistry, 95% of cells are GFAP positive. 
Then, the cells were seeded into the culture flask with normal DMEM 
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(4 mg/L folic acid; Sigma). The model of folic acid deficient primary 
astrocytes was established through folic acid deficient Dulbecco's 
modified eagle's medium (0 mg folic acid; Sigma) supplemented with 
10% FBS. LMT-28 (IL-6 inhibitor, 30 μM),17 C188-9 (STAT3 inhibitor, 
30 μM),18 Filgotinib (a specific JAK-1 inhibitor, 10 nM), and AG490 (a 
specific JAK-2 inhibitor, 50 μM)19–21 were used to inhibit the expres-
sion of the corresponding proteins.

To imitate the cerebral I/R model in vivo, the cells were in-
duced by OGD/R. The normal medium (containing 10% FBS and 
4.5 g/L glucose) was replaced by glucose-free DMEM (Gibco). Then, 
the cells were exposed to a three-gas incubator at 37°C containing 
1.0% O2 to initiate hypoxia for 1 h, followed by 3 h re-oxygenation 
in a normoxia incubator. Normal control cells were incubated in a 
regular cell culture incubator under normoxic conditions.

2.4  |  Immunofluorescence

Immunofluorescence staining of the rat brain sections was per-
formed as previously described.22 In brief, the sections were de-
waxed and hydrated to dispose of 3% H2O2 for 10  min at room 
temperature, repaired by citric acid antigen, and blocked with goat 
serum for 1  h at 37°C. Then, they were incubated overnight 4°C 
with the primary antibodies (mouse anti-IL-6, rabbit anti-TNF-α, rab-
bit anti-IL-1β, rabbit anti-GFAP, 1:200, Abcam; mouse anti-GFAP, 
rabbit anti-pSTAT3, Cell Signaling Technology). The next day, the 
sections were washed in PBS and then incubated with the sec-
ondary antibodies (1:100, Zhongshan Gold bridge Biotechnology, 
China) for 1 h at room temperature. Then, they were mounted with 
DAPI (4′,6-diamidino-2-phenylindole) and ProLong Gold™ Antifade 
Reagent (catalog number P36931; Life Technologies, Carlsbad, CA) 
and subsequently examined in a fluorescence microscope (IX81; 
Olympus). The positive cells were counted by Image Pro Plus 6.0.

2.5  |  Western blot

Western blot was performed as previously described.22 Total pro-
teins (20 μg) were subjected to SDS-PAGE and then transferred onto 
a polyvinyl indene difluoride membrane (PVDF; Millipore, Billerica, 
MA, USA). Nonspecific binding was blocked with PBST (0.5% 
Tween 20 in PBS) containing 5% non-fat milk (Shandong Sparkjade 
Biotechnology Co., Ltd.) for 1  h at room temperature. The mem-
branes were then incubated overnight at 4°C with individual primary 
antibodies in PBST containing 1% non-fat milk (mouse anti-IL-6, rab-
bit anti-TNF-α, rabbit anti-IL-1β, rabbit anti-GFAP, 1:1000, Abcam; 
mouse anti-GFAP, rabbit anti-pSTAT3, mouse anti-STAT3, rabbit 
anti-JAK-1, rabbit anti-JAK-2, 1:1000, Cell Signaling Technology, 
rabbit anti-β-actin, Biosynthesis Biotechnology Inc., Beijing, China). 
Following three washes with PBST, the membranes were then in-
cubated with the secondary antibodies (HRP-linked anti-rabbit IgG; 
HRP-linked anti-mouse IgG; 1:2000; Cell Signaling Technology). 
Then, the proteins were detected by chemiluminescence reagents 

(Millipore) and observed using a ChemiDoc™ XRS+ Imaging System 
(Bio-RAD, Hercules, USA). The protein levels were quantified by 
densitometry using Image J 1.4.3.67.

2.6  |  Statistical analysis

SPSS V.20 and GraphPad Prism V.9.0 were used for the statistical 
analysis. All quantitative data were expressed as mean ± standard 
deviation (x±s). All data were tested for normality using the Shapiro-
Wilk test. One-way ANOVA was used to assess the statistical sig-
nificance of the differences among different experimental groups, 
followed by Student-Newman-Keuls multiple-range tests. p < 0.05 
was assumed statistically significant.

3  |  RESULTS

3.1  |  Folic acid deficiency does not further 
promote GFAP expression raised by ischemic injury in 
vitro and in vivo

Several lines of evidence support that in response to stroke, as-
trocytes convert to a reactive phenotype chiefly characterized by 
up-regulation of GFAP and cellular hypertrophy.23 To determine the 
effect of FD on the reactive astrocytes, GFAP protein expression 
was detected in the MCAO rat brain and cultured primary astrocytes 
by immunohistochemical staining and western blot. The results 
showed an evident increase of GFAP expression at 12 h of reperfu-
sion compared to the SHAM group, and further increased by 24 h 
(p < 0.05; Figure 1A, B). This result was further confirmed in in vitro 
OGD/R cellular model (p < 0.05; Figure 1C, D). However, FD did not 
significantly alter GFAP expression compared to the MCAO/R (or 
OGD/R) group.

3.2  |  Folic acid deficiency promotes IL-6 but not 
TNF-α  and IL-1β  expressions in astrocytes following 
ischemic injury

Astrocyte-derived neuroinflammation has been identified as a 
potential contributor to brain injury.24 To determine whether FD 
could modulate astrocyte-mediated neuroinflammation, three pro-
inflammatory cytokines, TNF-α, IL-1β, and IL-6, were detected by 
immunofluorescence double-labeling and western blot analysis. As 
shown in Figure 2, the number of GFAP/IL-6-positive cells were sig-
nificantly increased in the MCAO 12 h group compared to the SHAM 
group (p < 0.05) but reduced to almost the same level as in the SHAM 
group after 24 h of reperfusion. The number of GFAP/IL-6-positive 
cells was further raised by FD intervention compared to the MCAO 
group (p < 0.05). In line with what was observed in vivo, FD promoted 
IL-6, but not TNF-α or IL-1β levels in primary astrocytes exposed to 
OGD/R compared to the OGD/R alone (p < 0.05; Figure 2C, D).
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3.3  |  Folic acid deficiency results in an increase 
in pSTAT3 expression in the astrocytes following 
ischemic injury

Accumulated evidence suggested that activation of STAT3 plays an 
important role in IL-6-mediated inflammation.25 The effect of FD 
on pSTAT3 expression in astrocytes was examined. The results in-
dicated that pSTAT3 expression did not change significantly at 12 h 
after reperfusion but increased significantly after 24 h reperfusion 
compared to the SHAM group. FD further increased the number of 
GFAP/pSTAT3 double-positive cells in the ischemic brain compared 
with the MCAO/R group. Similarly, FD promoted pSTAT3 expression 
raised by OGD/R in primary astrocytes (p < 0.05; Figure 3 D-E).

3.4  |  Folic acid deficiency increases the level of 
pSTAT3 through JAK-1 but not JAK-2

In inflammatory diseases, STAT3 is usually activated by phosphoryla-
tion through the activation of non-receptor protein tyrosine kinases 
JAKs.15 To elucidate whether FD upregulated pSTAT3 expression in 
a JAK-dependent manner, the expression of pSTAT3 was detected. 
As shown in Figure 4, Filgotinib administration significantly reduced 

the levels of IL-6 and pSTAT3, but AG490 treatment did not reveal 
any significant changes in the expression of IL-6 or pSTAT3. Our re-
sults proved that FD increased the level of pSTAT3 through JAK-1 
instead of JAK-2.

3.5  |  Interaction between IL-6 and pSTAT3 in 
hypoxic and glucose-deficient astrocytes after folic 
acid deficiency

STAT3, a key transcription factor, is involved in mediating acute in-
flammatory response activities located downstream of IL-6.25 To 
explore the potential correlation between IL-6 and pJAK-1/pSTAT3, 
the cells were first treated with LMT-28. The Western blot results 
in Figure  5 showed that treatment with IL-6 inhibitor significantly 
inhibited both pSTAT3 and pJAK-1 expressions after OGD/R treat-
ment in astrocytes (p < 0.05; Figure 5A-H). Then, whether pSTAT3 
affected IL-6 expression was assessed by adding C188-9 to OGD/R-
treated astrocytes. As shown in Figure 5 I-M, the expression of IL-6 
was also inhibited after adding STAT3 inhibitor (p < 0.05). Briefly, the 
results showed that inhibiting IL-6 expression reduces pSTAT3 lev-
els, while pSTAT3 inhibition also decreases IL-6 expression, suggest-
ing a positive feedback loop between these factors.

F I G U R E  1  Effect of folic acid deficiency on GFAP expression in astrocytes. (A, B) Double labeling immunofluorescence of DAPI (blue) and 
GFAP (red) in SHAM, MCAO, and MCAO+FD group rats after 12 h and 24 h of reperfusion. Data shown are mean ± SEM (n = 4). ap <0.05: 
Compared to SHAM, bp <0.05: Compared to MCAO 12 h, cp <0.05: Compared to MCAO+FD 12 h. The cells were harvested after incubating 
with normal DMEM, normal DMEM and OGD/R, folic acid deficient DMEM and OGD/R. (C, D) Western blot analyses of GFAP and β-Actin. 
Data shown are mean ± SEM (n = 4). ap <0.05: Compared to Control.
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4  |  DISCUSSION

Inadequate levels of folic acid are associated with an increased 
risk of neurodegenerative diseases and cerebrovascular disease.26 

However, the exact mechanisms still need to be determined. Previous 
efforts have traditionally focused on the exploration of intrinsic neu-
ronal mechanisms. In recent years, some studies have discovered the 
critical role of astrocytes in ischemic lesions. For instance, reactive 

F I G U R E  2  Effect of folic acid deficiency on IL-6, IL-1β and TNF-α expressions in astrocytes. (A, B) Double labeling immunofluorescence 
of IL-6 (red) and GFAP (green) in SHAM, MCAO, and MCAO+FD group rats after 12 h and 24 h of reperfusion. Data shown are mean ± SEM 
(n = 4). ap <0.05: Compared to SHAM, bp <0.05: Compared to MCAO 12 h. (C) Western blot analyses of IL-6, IL-1β, TNF-α and β-Actin. (D-F) 
Bar chart showing the IL-6/β-Actin, TNF-α/β-Actin and IL-1/β-Actin ratio from the western blot analysis. Data shown are mean ± SEM (n = 4). 
ap <0.05 compared to Control. bp <0.05: Compared to OGD/R group.

F I G U R E  3  Effect of folic acid deficiency on p-STAT3 expression in astrocytes. (A, B) Double labeling immunofluorescence of DAPI 
(blue), GFAP (red) and p-STAT3 (green) in SHAM, MCAO, and MCAO+FD group rats after12 h and 24 h of reperfusion. Data are shown as 
mean ± SEM (n = 4). ap <0.05: Compared to SHAM, bp <0.05: Compared to MCAO 24 h. (C) Western blot analyses of pSTAT3, STAT3, and 
β-Actin. (D) Representative ratios of pSTAT3 to STAT3. (E) Representative ratios of STAT3 to β-Actin. Data are shown as mean ± SEM (n = 4). 
ap <0.05: Compared to Control. bp <0.05: Compared to OGD/R group.
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F I G U R E  4  Folic acid deficiency regulates the expression of pSTAT3 in primary astrocytes exposed to hypoxia and glucose deficiency 
via the JAK-1 pathway. (A-E) The cells were harvested after incubating with Filgotinib (JAK-1 inhibitor). The protein expressions of IL-6 
(A), pSTAT3, and STAT3 (B) were detected by western blot. Bar graphs show the relative levels of IL-6 (normalized to β-Actin) (C), pSTAT3 
(normalized to STAT3) (D), and STAT3 (normalized to β-Actin) (E). (F-J) The cells were harvested after incubating with AG490 (JAK-2 inhibitor). 
The protein expressions of IL-6 (F), pSTAT3 and STAT3 (G) were detected by western blot. Bar graphs show the relative level of IL-6 
(normalized to β-Actin) (H), pSTAT3 (normalized to STAT3) (I) and STAT3 (normalized to β-Actin) (J). Data are shown as mean ± SEM (n = 4). 
ap <0.05: Compared to OGD/R group. bp <0.05: Compared to FD + OGD/R group.
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astrocytes produce and release pro-inflammatory mediators, which 
may lead to neuronal death and infarct progression.27 In the present 
study, we focused on astrocytes in order to gain insight into novel 
mechanisms by which FD affects neurological function. This is the 
first evidence that the IL-6/JAK-1/pSTAT3 pathway triggered the in-
flammatory response of astrocytes in the presence of FD. Notably, 
FD leads to the overproduction of IL-6 in the astrocytes, which next 
activates pSTAT3, leading to more IL-6 production and release. This 
interaction between IL-6 and pSTAT3 may amplify neuroinflamma-
tory responses, leading to secondary brain damage.

There is strong experimental evidence that folic acid affects in-
flammation in the central nervous system; it also suggests intricate 
mechanisms by which this occurs. For instance, folic acid reduces 
hippocampal myeloperoxidase activity to alleviate neuroinflam-
mation and improve memory impairment in sepsis-induced rats.28 
Another in vitro study indicated that lipopolysaccharide-activated 
microglia respond less inflammatory to folic acid because it inhibits 
the activation of NF-kB and JNK and upregulates p38 MAPK phos-
phorylation.4 Besides, our previous work has shown that FD en-
hanced microglia immune responses via the Notch1/nuclear factor 
kappa B p65 pathway to increase brain injury.8 The current study 
investigated the effect of FD on the astrocytes under ischemia-
reperfusion. We revealed that FD promoted the inflammatory re-
sponse of astrocytes by exacerbating the interaction between IL-6 
and JAK-1/pSTAT3. Multiple signaling molecules may be involved in 
FD's activation of neuroinflammation, which may vary depending on 
different cell types or disease conditions.

Both JAK1 and JAK2 have been proven to be associated with 
the IL-6 activation of STAT3 pathway.29 However, those two Janus 
kinases are known to each have different roles in different patho-
logical and physiological processes. For instance, Yang et al. demon-
strated that the release of IL-6 activated the JAK2/STAT3 pathway 
to aggravate neuronal degeneration in mice with Parkinson's dis-
ease.30 Whereas, increased IL-6 expression exacerbates the inflam-
matory response of macrophages through the JAK1/STAT3 pathway 
in mouse models of ulcerative colitis.31 To elucidate the exact path-
way by which FD upregulates pSTAT3 expression, we blocked the 
activation of JAK-1 and JAK-2 using Filgotinib and AG490, respec-
tively. The results demonstrate that FD-induced pSTAT3 expres-
sion was significantly inhibited in OGD/R-treated astrocytes after 
blocking the activation of JAK-1 but not JAK-2. Although different 
JAKs may have overlapping roles, each has an important role in me-
diating signaling. It has been shown that JAK1 is a central protein 
in the inflammatory response cytokine network and can produce 
pro-inflammatory activity.32 Nevertheless, JAK-2 is mainly involved 
in processes such as mitotic reorganization and histone modifica-
tion and is essential for bone marrow and platelet production.33 
These support our findings that FD exacerbates the inflammatory 
response in astrocytes via the IL-6/JAK-1/pSTAT3 pathway after 
ischemia-reperfusion.

There is a complex regulatory relationship between IL-6 and 
pSTAT3. As a transcription factor, STAT3 is involved in mediating the 
acute inflammatory response to the genes associated downstream of 

IL-6.34 Binding of IL-6 to its receptor activates the phosphorylation 
of STAT3. pSTAT3 then binds to DNA and increases the expression 
of cytokine genes, resulting in the production of more interleukins. 
This vicious cycle leads to persistent nervous system inflammation 
unless effectively controlled.35 This is consistent with our results 
that there may be an interaction between IL-6 and pSTAT3 expres-
sions in folic acid deficient OGD/R astrocytes and that the malignant 
feedback between them may play an essential role in FD-mediated 
astrocyte injury.

In general, STAT3 is a vital player in the proliferative response of 
reactive astrocytes.23 Also, STAT3 is one of the transcription factors 
of GFAP and the increase of GFAP expression tends to be accom-
panied by STAT3 activation.36 A noteworthy point to ponder is that 
FD promoted p-STAT3 expression but not GFAP activation in our 
study. This is possible because astrocyte activation is finely regu-
lated by many intracellular and extracellular signaling molecules, 
such as TGF-β, NF-κB, and STAT3.37–39 However, some regulatory 
factors, such as the FGF signaling pathway, inhibit the activation of 
astrocytes.40 Therefore, we speculate that, in the case of FD, the 
activation of some inhibitory factors may be involved and thus FD 
did not further activate GFAP.

Additionally, Takumi Takizawa et al. proved that abnormal meth-
ylation of the STAT3 binding element in the GFAP promoter in as-
trocytes prevents the binding of STAT3, thereby inhibiting GFAP 
transcription.41 Besides, the AP-1 transcription factor is essential for 
promoting the upregulation of GFAP genes in response to injury.42 
Folic acid is involved in DNA synthesis and methylation and thus 
plays a crucial role in maintaining genomic stability.43 Therefore, in 
the presence of FD, abnormal synthesis of key transcription factors 
and abnormal methylation of binding sites may be involved, failing to 
promote GFAP expression.

Nevertheless, there are two main limitations for consideration. 
Firstly, the present study focused on the early molecular changes 
caused by FD at the onset of cerebral infarction. Considering that 
post-stroke neuroinflammation is a highly dynamic and complex 
adaptive process,44 long-term FD intervention may be necessary 
for further behavioral observation and the exploration of molec-
ular mechanisms at the later stage of disease in the future study. 
Secondly, both astrocytes and microglia mediate inflammatory re-
sponses through related molecules in response to the stress of 
ischemic brain injury.45 Further evidence supported that there are 
reciprocal interactions between microglia and astrocytes during 
neuroinflammation.46 Our previous and present studies respectively 
verified that FD exacerbates the inflammatory response of microglia 
and astrocytes after ischemia-reperfusion.8 However, in the light of 
the existing experiment data, we are unable to determine whether 
microglia or astrocytes play a more critical role during the regulation 
of FD on neuroinflammation, and whether FD affects the interaction 
between the two types of glials or not.

In conclusion, this study found that in the context of ischemia-
reperfusion, folic acid deficiency may trigger astrocytes' inflamma-
tory response via the IL-6/JAK-1/pSTAT3 pathway. Furthermore, 
the interaction between IL-6 and pSTAT3 may amplify the 
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neuroinflammatory response, leading to secondary brain injury. 
Therefore, specific inhibition of the IL-6/JAK-1/pSTAT3 pathway in 
astrocytes is a potential therapeutic approach to alleviate the pro-
gression of ischemic stroke caused by folic acid deficiency. This also 
suggests that folic acid supplementation is a potential preventive 
and therapeutic strategy to reduce brain damage in ischemic stroke.
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