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1  |  INTRODUC TION

Multiple sclerosis (MS) is a chronic demyelinating condition of the 
central nervous system (CNS) caused by lymphocytic infiltration, 
damaging axons, and their associated myelin sheath.1,2 It is the lead-
ing cause of non-traumatic neurological disorders in young adults 
and causes significant disability, and high direct and indirect costs 
worldwide. Dysregulated immunity, genetic predisposition, and 

environmental variables interact in a complicated way to cause MS.1 
Vitamin D insufficiency, related to reduced exposure to ultraviolet 
type B light, is the main environmental factor. The risk of MS is higher 
for adolescent patients living in northern or southern latitudes than 
those in equatorial regions.3 Approximately 85% of MS cases begin 
with episodic neurological impairment involving the brainstem, optic 
nerve, and spinal cord, which resolves spontaneously, is termed 
relapsing–remitting MS (RRMS), and mainly affects individuals in early 

Received: 20 June 2022  | Revised: 1 March 2023  | Accepted: 2 March 2023

DOI: 10.1111/cns.14176  

R E V I E W

FGF/FGFR system in the central nervous system demyelinating 
disease: Recent progress and implications for multiple sclerosis

Qingxiang Zhang1  |   Zhiguo Chen2,3 |   Kaili Zhang4 |   Jie Zhu1,5 |   Tao Jin1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

1Neuroscience Center, Department of 
Neurology, The First Hospital of Jilin 
University, Changchun, China
2Cell Therapy Center, Beijing Institute 
of Geriatrics, National Clinical Research 
Center for Geriatric Diseases, Xuanwu 
Hospital, Capital Medical University, 
Beijing, China
3Key Laboratory of Neurodegenerative 
Diseases, Ministry of Education, Beijing, 
China
4Stomatology College of Inner Mongolia 
Medical University, Hohhot, China
5Department of Neurobiology, Care 
Sciences & Society, Karolinska Institute, 
Karolinska University Hospital Solna, 
Stockholm, Sweden

Correspondence
Tao Jin, Department of Neurology and 
Neuroscience Center, The First Hospital 
of Jilin University, Xinmin Street 1#, 
Changchun 130021, China.
Email: jin_tao@jlu.edu.cn

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 82171337

Background: With millions of victims worldwide, multiple sclerosis is the second most 
common cause of disability among young adults. Although formidable advancements 
have been made in understanding the disease, the neurodegeneration associated with 
multiple sclerosis is only partially counteracted by current treatments, and effective 
therapy for progressive multiple sclerosis remains an unmet need. Therefore, new 
approaches are required to delay demyelination and the resulting disability and to 
restore neural function by promoting remyelination and neuronal repair.
Aims: The article reviews the latest literature in this field.
Materials and methods: The fibroblast growth factor (FGF) signaling pathway is a 
promising target in progressive multiple sclerosis.
Discussion: FGF signal transduction contributes to establishing the oligodendrocyte 
lineage, neural stem cell proliferation and differentiation, and myelination of the cen-
tral nervous system. Furthermore, FGF signaling is implicated in the control of neu-
roinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) 
have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple 
sclerosis animal models moderately.
Conclusion: Here, we summarize the recent findings and investigate the role of FGF/
FGFR signaling in the onset and progression, discuss the potential therapeutic ad-
vances, and offer fresh insights into managing multiple sclerosis.
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adulthood.1 Approximately 20% of patients develop symptoms after 
age 40, and disability progression in the male population with late 
onset is faster than in young RRMS patients.4 In 50% to 60% of RRMS 
cases, the condition develops into secondary progressive MS (SPMS), 
characterized by an infrequent or completely terminated relapse after 
10–15 years with a slow progression of irreversible disabilities associ-
ated with neurodegeneration.5,6 Unidirectional progressive disability 
from the outset is observed in 15% of MS cases and is referred to 
as primary progressive MS (PPMS). For this patient cohort, the rapid 
onset of early neurodegeneration is the best predictor of long-term 
progression rates.6 In addition to experimental autoimmune encepha-
lomyelitis (EAE), the most frequently employed model,7 several demy-
elinating models have also been used in MS research. Both clinical and 
pathological characteristics of human MS are shared by the murine 
hepatitis virus (MHV) strain A59 that causes demyelination in ani-
mal models,8 and lysophosphatidylcholine has been used to induce 
inflammatory demyelination, in which the myelin structures, as well 
as the blood–brain barrier (BBB), are disrupted, but neuronal loss is 
absent.9 Moreover, the chronic cuprizone demyelination model leads 
to consistent demyelination followed by spontaneous remyelination 
within a short period.10 Thus, these models are valuable supplements 
to EAE research and are appropriate for studying the mechanisms of 
demyelination and therapeutic interventions for MS.

The fibroblast growth factor (FGF) family contains 23 members, 
including 18 protein ligands (the murine FGF15 and the human FGF19 
genes are orthologous) and four fibroblast homologous factors (FHFs). 
FGF ligands exercise their functions by binding with their high-affinity 
receptor family (FGFR1-4) and are involved in fundamental physio-
logical processes in adults, including wound repair, angiogenesis, and 
metabolism.11,12 The roles of FGF/FGFR signaling on essential cellular 
function control indicates the relevance of this axis in the pathogen-
esis of MS.13,14 Over the past few years, interventions targeting FGF/
FGFR have moderately ameliorated symptoms in animal models, and 
the conditional deletion of FGFR1 and FGFR2 has shown remarkable 
therapeutic promise.15,16 Furthermore, several FGF family members 
are strongly associated with the pathogenesis and course of MS.17–19 
Here, we summarize the latest relevant findings, discuss the function 
of FGF/FGFR signaling in MS pathogenesis, and describe potential 
therapeutic advances, providing fresh perspectives on MS therapy.

2  |  UNDERSTANDING THE 
PATHOGENESIS OF MS

2.1  |  Inflammation

Multiple sclerosis is a chronic inflammatory demyelinating and de-
generative condition of the CNS. Inflammation of the spinal cord 
and brain is invariably present in all phases of MS and declines with 
disease progression.20 A dominant aspect of the early pathology in 
RRMS patients is active inflammatory demyelinating lesions, which 
arise through inflammatory infiltrates associated with disrupted 
BBB.21 At this stage, lesions of relapsing MS have more plentiful 

macrophages than any type of progressive MS (PMS) to phagocy-
tose the myelin degradation products.22 In contrast, chronic le-
sions predominate in progressive disease. Lymphocyte infiltration 
is initially blocked in the leptomeninges and blood vessels behind 
an intact BBB.23 Here, T cells attract immune cells into the CNS by 
interacting with major histocompatibility complex class II+ micro-
glia24 and produce adhesion molecules, chemokines, and a variety 
of proinflammatory cytokines.20 Another type of inflammation is 
densely populated by B cells of the brain's connective tissue spaces 
adjacent to an intact BBB, where they may form aggregates or ter-
tiary lymph follicles.21,25 Interestingly, the inflammatory state of 
the CNS might provide a favorable environment for lymphocyte 
proliferation and expansion.20 Furthermore, mononuclear phago-
cytes (MPs), namely resident microglia and the macrophages differ-
entiated from infiltrating monocytes, also act as a significant part 
in the pathologic mechanisms of PMS. According to experimental 
and clinical studies, MPs present in demyelinating lesions secrete 
chemokines that induce lymphocytes to infiltrate the CNS and thus 
provide an inflammatory environment. They also generate reac-
tive oxygen and nitrogen species, which leads to oligodendrocyte 
and neuronal cell death.1,26,27 In addition, CNS glial cells may initi-
ate an immunological response in MS (particularly in PMS, as it is 
intimately linked to the chronic activation of the innate immune 
system).28 Some studies have pointed out that, at least in certain 
situations, MS may originate from a primary injury within the CNS, 
possibly associated with oligodendrocytes, followed by glial activa-
tion and ultimately by immune-mediated inflammatory activation as 
a secondary response.25

2.2  |  Demyelination and neurodegeneration

Demyelination leads to a reduction in axonal integrity and, over 
time, to neuronal dysfunction. Neurodegeneration is a charac-
teristic of MS and a major contributor to clinical impairment and 
decreased quality of life. Demyelinated axons become frangible 
and suffer damage from activated immunological and glial cells 
releasing cytokines, oxidative products, and free radicals. Even in 
the predominantly inflammatory demyelinating stage of the dis-
ease, transected axons are abundant, demonstrating that axonal 
loss occurs at disease onset and continues with time. In the initial 
phases of RRMS, the axonal loss has no immediate substantial clini-
cal impact. As lesions accumulate with time, however, the clinical 
aspects of MS become driven by axonal loss. Thus, it is believed that 
the brain's ability to adjust for further axonal loss exhausts before 
RRMS and SPMS shift. At this stage, MS lesions include remyelina-
tion, inflammation resolution without repair, or a “smoldering” state 
of coexistence of inflammation and myelin degeneration.29 In PMS, 
depletion of the myelination capacity by both oligodendrocyte pre-
cursor cells (OPCs) and residual oligodendrocytes is critical. Recent 
studies of MS using human single-nucleus RNAseq demonstrated 
that oligodendrocytes respond rapidly to oxidative stress, with 
the downregulation of homeostasis and myelin synthesis genes.30 
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Moreover, when the dynamics of oligodendrocyte generation in 
MS brain tissue were assessed by 14C methods, it was found that 
the demyelination is partly caused by the depletion of the myeli-
nation ability of the surviving oligodendrocytes rather than by an 
impairment in OPC differentiation.31 These results may impact the 
establishment of disease models and the development of myelin 
regeneration strategies for PMS. RRMS has become a pharma-
cologically treatable condition. However, PMS continues to face 
treatment challenges because of the persistent accumulation of 
neurological impairments and disabilities.

2.3  |  Remyelination failure

Demyelination can occur parallel to regeneration processes, which 
restore some of the destroyed myelin-generating cells and rebuild 
the myelin sheath around axons. This is accomplished by the activa-
tion, migration, and polarization of resident OPCs and neural stem 
cells (NSCs) into myelin cells, initiating an oligodendrocyte-driven re-
pair process known as remyelination. The identity of cells that cause 
remyelination in the CNS of MS patients has been a subject of de-
bate. OPCs and mature oligodendrocytes that have survived are two 
potential candidates. This discussion is crucial because therapeutic 
approaches to enhance remyelination may differ depending on the 
specific cellular pathways involved. Lineage tracing experiments re-
vealed that newly generated oligodendrocytes derived from OPCs 
form new myelin sheaths in demyelinated regions.32 However, it has 
also been found that surviving oligodendrocytes can expand and 
remyelinate axons in MS.31 Moreover, myelin sheaths derived from 
OPCs are thinner and less functional than those generated by the 
surviving oligodendrocytes. Myelin cells in the adult CNS can also 
differentiate from NSCs in the subventricular region. The microen-
vironment of the demyelinating lesions substantially impacts OPC 
and NSC homeostasis, in addition to uncontrollable factors such as 
gender and age and may also be the target of future remyelination 
treatment strategies. Other glial cells, like microglia, are momen-
tous to remyelination and aid in removing myelin debris and releas-
ing neurotrophic factors that support OPC functions.33,34 Among 
them, CX3CR1, a fractalkine receptor that is abundantly expressed 
on microglia, has been shown to affect the ability of these cells to 
phagocytose. Reduced microglial phagocytosis in cuprizone-treated 
CX3CR1-deficient animals causes a continuous accumulation of 
myelin debris, inhibiting remyelination due to insufficient OPC re-
cruitment.35 Additionally, the disequilibrium of pro-regeneration and 
inhibitory elements limits the remyelination capacity of OPCs and 
oligodendrocytes. OPC RNA sequencing revealed that the mTOR 
pathway plays a substantial role in remyelination failure. This path-
way can be manipulated by caloric restriction or by administration of 
the AMPK-agonist metformin to reverse the decline in OPC differ-
entiation and restore their ability to remyelinate axons.5 Moreover, 
multiple OPC differentiation inhibitors, including PSA-NCAM, 
Lingo-1, Jagged, and Galectin-4, appear relatively overexpressed. 
Additionally, IFN-γ, Gli1, and Sirt1 inhibited the proliferation and 

differentiation of NSCs in demyelinating lesions.34 Remyelination 
failure leads to axonal loss and neurodegenerative changes over 
time. Therefore, specific targeting of this pathological process is ex-
pected to deliver a breakthrough in MS treatment in the future.

3  |  FGF/FGFR SYSTEM

3.1  |  FGFs, FGFRs, and co-receptors

The 18 FGFs cluster into six subfamilies, with the FGF1, FGF4, 
FGF7, FGF8, and FGF9 subfamilies functioning in a paracrine man-
ner and the FGF19 subfamily members operating as endocrine fac-
tors.11 FGFRs contain a single transmembrane helix (termed TM), 
three extracellular immunoglobulin-like domains (termed D1-3), and 
two intracellular tyrosine kinase domains (termed TK1-2). An eight-
residue acid box, a hallmark of FGFRs, is located between D1 and 
D2 and, together with the D1 loop, plays an autoinhibitory role in 
receptor activation.36 The FGF-binding region is in D2 and inter-
acts with D3 providing specificity. Two alternative splice sites (D3b 
and D3c) of the D3 protein show distinct FGF binding specificities 
(Figure 1A). The FGFR D3b isoform is commonly seen in epithelial 
cells, whereas the FGFR D3c isoform is typically found in mesenchy-
mal cells. Although FGFR1-3 exhibits frequent alternative splicing, 
there is no isoform due to the absence of alternative splicing exons 
in FGFR4.36,37 Depending on the combination with co-receptors, 
which include heparin sulfate (HS)/proteoglycans (HSPGs) and 
Klotho proteins, can FGFs-FGFRs binding elicit a signal. Most of 
FGFs feature HS binding domains, and HSPGs are widely distrib-
uted in the extracellular matrix. Their different affinities determine 
whether they work in a paracrine, autocrine, or endocrine way.11,38 
Not only can HSPGs tether FGFs and enable them to function in an 
autocrine or paracrine way, but they also enhance FGFS signaling by 
forming FGF/FGFR/HSPG complexes.39 In contrast, the endocrine 
FGF subclass ligands (FGF19, FGF21, and FGF23), with a weak af-
finity for HSPGs, utilize Klotho proteins as co-receptors for binding 
to their respective FGFRs37,40 (Figure 1B). However, they exhibit a 
strong affinity for FGFR/Klotho complexes but a limited affinity for 
individual FGFRs or Klotho proteins.41 Klotho proteins are a class of 
transmembrane proteins consisting of the α-, β-, and γ-Klotho subu-
nits. α-Klotho is necessary for the activity of FGF23, and the biologi-
cal effects of FGF19 and FGF21 need β-Klotho (Table 1).

3.2  |  FGF/FGFR signaling

Upon ligand binding, FGFRs dimerize and cause the phosphorylation 
and activation of intracellular tyrosine kinases.42 FGFR substrate 2 
(FRS2), a key adaptor protein, is phosphorylated by activated FGFRs, 
which causes the activation of four intracellular pathways: the phos-
pholipase Cγ (PLCγ) signal; signal transducer and activator of tran-
scription (STAT) signal; phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (AKT) signal; and mitogen-activated protein kinase (MAPK) 
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signal.43–45 Moreover, FGFR-like 1 (FGFRL1),46 SPRY, CBL, SEF, 
MAPK phosphatase 3 (MKP3), and MKP1 can also negatively regu-
late FGF/FGFR signaling to varying extents. These regulatory factors 
modulate intracellular signaling or ligand binding42 (Figure 1C).

4  |  ROLE OF FGF/FGFR SIGNALING IN 
CNS

FGF/FGFR signaling not only plays a crucial role in CNS formation 
during development but also has a broad function in the adult CNS. 
A prototype member, FGF1, is expressed by neurons in adult neural 

tissue and acts as a mitogen in neurodevelopmental processes.47–49 
FGF1 stimulated NSC cell expansion and neurite outgrowth in 
neurons.50,51 In vitro and in vivo, FGF2 controls NSC proliferation. 
Under the induction of FGF2, it has been discovered that undiffer-
entiated precursor cells in the adult mouse proliferated and differ-
entiated into various CNS cells, such as neurons, oligodendrocytes, 
and astrocytes.52 Several studies have shown that FGF2 is also cru-
cial for NSC proliferation in vivo. Granule precursor neuron prolif-
eration was four times higher after subcutaneous injection of FGF2 
and had a 250% increase in the subventricular zone of the lateral 
ventricles. Furthermore, a 68% and 50% increase in DNA synthesis 
in hippocampal and whole cerebellar homogenates were observed 

F I G U R E  1  The FGF/FGFR signaling system. (A) FGFR monomer structures: FGFR is a form of the extracellular domains and intracellular 
catalytic domains linked by a single pass transmembrane domain. Except for FGFR4, the other three FGFR coding genes generate two major 
splice variants in D3, termed as D3b and D3c, which are essential determinants of ligand binding specificity. (B) The relative orientation 
of the FGF/FGFR/co-receptor complex. (C) The downstream pathways of FGF/FGFR signaling: binding of FGFs triggers the dimerization 
and activation of FGFRs. Activated FGFRs phosphorylate FRS2, which binds to SH2 domain-containing adaptor GRB2 and GRB2 will 
subsequently bind to SOS and GAB1 to activate RAS/RAF/MAPKs pathway, including ERK, p38 and JNK, as well as the PI3K/AKT pathway. 
Independent of the FRS2 binding, FGF signals also activate STATs and PLCγ. Activated PLCγ hydrolyzes PIP2 to DAG and PIP3, which 
stimulates calcium release from the endoplasmic reticulum and activation of calcium/calmodulin dependent protein kinases. FGFRL1 and 
SEF are transmembrane proteins and can interact directly with FGFRs to negatively regulate it. Phosphorylation of the MAPK/ERK cascade 
can be negatively regulated by SEF. SPRY acts at the level of Grb2 to attenuate FGF/FGFR signaling. MKP3 functions as a negative regulator 
by affecting the phosphorylation of the ERK. AKT, protein kinase B (AKT); DAG, diacylglycerol; ERK, extracellular signal regulated kinase; 
FRS2, FGFR substrate 2; GAB1, GRB2 associated binding protein 1; JNK, c-Jun N-terminal kinase; MAPK, mitogen activated protein kinase; 
PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLCγ, phospholipase Cγ; SOS, son of seven.
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following in vivo FGF2 treatment.53 Moreover, the generation and 
dendritic development of new dentate granule cells was also en-
hanced after intracerebroventricular FGF2 infusion.54 However, the 
positive regulatory effect of FGF2 on neuronal proliferation was re-
versed after treatment with FGF2-specific neutralizing antibodies.55 
These results indicate that FGF2 is an important neurogenic factor 
that directly acts on the mitosis of NSCs to promote their prolif-
eration. Conversely, according to multiple studies, FGF2 is not nec-
essary to proliferate neuronal precursors, as FGF2-deficient mice 
show normal neural progenitor proliferation during development. 
However, these mice exhibited partial cerebral cortex loss, impaired 
neural stem cell differentiation, and increased CNS cell apoptosis, 
suggesting that FGF2 triggers neural progenitors to migrate and dif-
ferentiate.56,57 In addition, other FGFs, such as FGF4, FGF8, FGF9, 
FGF10, and FGF21, regulate neuronal fate.58–62

The CNS myelin-producing cells, oligodendrocytes, play a central 
role in generating and preserving the pace and the power of axonal 
electrical impulses. Neurological deficits in MS result from myelin 
damage or insufficient remyelination. Understanding the signals in-
volved in developing oligodendrocyte-driven myelination may shed 
light on demyelinating disease prevention and treatment. OPCs 
migrate to various brain regions during development, transforming 
into myelin-producing cells.63,64 Several growth factors, including 
FGFs, control the development of oligodendrocytes.65 However, 

the effect of FGF/FGFR signaling on oligodendrocyte development 
is regulated by the differential expression of FGFRs. Early and late 
OPCs express FGFR3, FGFR2 is expressed in mature oligodendro-
cytes, and both express FGFR1 but not FGFR4.66,67 Each FGFR has 
different roles and focuses during the development and maturation 
of oligodendrocytes. FGFR1 may transduce signals that stimulate 
early OPCs proliferation and migration, while FGFR3 signaling pri-
marily controls the late OPCs transformation to oligodendrocytes, 
and FGFR2 is mainly involved in modulating oligodendrocyte differ-
entiation and myelination.65 FGFR1 and FGFR2 in CNS myelination 
are crucial since they initiate myelination, regulate myelin thickness 
independently of oligodendrocyte differentiation, and contribute to 
the remyelination of chronically demyelinated lesions.68 Insufficient 
myelin protein production by oligodendrocytes in FGFR1/FGFR2-
double knockout mice prevents myelination from reaching average 
levels of myelin thickness.68,69

Furthermore, ERK1/2 and PI3K/AKT/mTOR, the downstream 
mediators of these FGFR signaling pathways, sequentially regulate 
myelination by affecting distinct stages of the oligodendrocyte lin-
eage. ERK1/2 signaling regulates both the transition from early to 
late OPCs and subsequent immature oligodendrocyte stages. The 
mTOR signaling pathway is necessary to transform from immature 
to mature oligodendrocytes.67,68 There are many members of the 
FGF family, each with distinct roles in myelination. FGF2 promotes 

TA B L E  1  Classification of FGF ligands and their corresponding receptors.

Function manner FGF subfamily FGFs FGFRs Co-receptors

Paracrine FGFs FGF1 FGF1 (aFGF) All FGFRs HSPGs

FGF2 (bFGF) FGFR1b, FGFR1c, FGFR2c, FGFR3c, FGF4

FGF4 FGF4 FGFR1c, FGFR2c, FGFR3c, FGF4

FGF5 FGFR1c, FGFR2c

FGF6 FGFR1c, FGFR2c, FGFR3c, FGF4

FGF7 FGF3 FGFR1b, FGFR2b

FGF7 (KGF) FGFR1b, FGFR2b

FGF10 FGFR1b, FGFR2b

FGF22 FGFR1b, FGFR2b

FGF8 FGF8 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

FGF17 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

FGF18 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

FGF9 FGF9 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

FGF16 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

FGF20 FGFR1c, FGF2c, FGFR3b, FGFR3c, FGFR4

Endocrine FGFs FGF19 FGF15/19 FGFR1c, FGF2c, FGFR3c, FGFR4 β-Klotho

FGF21 FGFR1c, FGFR3c

FGF23 FGFR1c, FGFR3c, FGFR4 α-Klotho

Intracellular FGFs FHFs FGF11

FGF12

FGF13

FGF14

Abbreviations: FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; HSPGs, heparin sulfate (HS)/proteoglycans.
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OPC migration and proliferation but prevents them from differen-
tiating at the terminal stage. FGF2 also affects mature, post-mitotic 
oligodendrocytes and causes increased process elongation through 
FGFR2 stimulation and decreased re-entry into the cell cycle and 
myelin proteins via FGFR1.65,70 FGF8 and its related subfamily 
member FGF17 target OPCs and selectively activate FGFR3 to in-
hibit their differentiation. However, FGF9 stimulates myelination 
through the specific activation of FGFR2 in differentiated oligo-
dendrocytes.71 FGF18 exerts corresponding functions by activating 
FGFR3 and FGFR2 in OPCs and differentiated oligodendrocytes, 
respectively.70 Circulating FGF21 has been shown to enhance OPC 
proliferation in both in vivo and in vitro studies, and this was reliant 
on β-Klotho presence.9,62 However, under normal circumstances, 
FGF21 transport into the CNS is limited, as the amount of FGF21 in 
healthy individuals' cerebrospinal fluid (CSF) is approximately 60% 
lower than that in the peripheral circulation.72 Nonetheless, when 
the BBB is damaged, FGF21 penetrates the CNS to directly promote 
myelination. Moreover, FGF21 also regulates the expression of the 
VEGF2 receptor, which modulates OPC migration and indirectly af-
fects oligodendrocyte development and remyelination.9

Immunity is continually regulated by FGF signaling, which is, 
in turn, modified by immune cells during inflammation and tissue 
healing. FGF signaling cascades are important in CNS inflamma-
tory responses by modulating immune homeostasis and host de-
fense. FGF1 reduces the inflammatory response associated with 
neuropathic pain by inducing the production of the Th2 cytokine 
IL-4, upregulating arginase-I (Arg-I), and suppressing the activation 
of microglia and astrocytes.73 In a study conducted by Forouzanfar 
et al.,73 FGF1 treatment reduced the ratios of Bcl2, cleaved caspase 
3, MMP-2, IL-1β, and Iba1 in model animals of chronic sciatic nerve 
contractile injury, and modulated apoptosis and neuroinflamma-
tion during treatment of neuropathic pain. Both the production of 
FGF2 protein and the phosphorylation of downstream molecule ERK 
were restrained in a neuroinflammation-induced depression model. 
However, exogenous infusion of FGF2 not only prevented the re-
duction in ERK1/2 phosphorylation in neuroinflammatory states but 
also inhibited the expression of proinflammatory cytokines like IL-1β, 
IL-6, and TNFα while increasing the amount of the anti-inflammatory 
cytokine IL-10. These responsive changes reversed depressive-like 
behaviors and neuroinflammation-induced impairment of hippocam-
pal neurogenesis and were blocked by FGFR inhibitors.74,75 Notably, 
FGF2 signaling has demonstrated immune regulatory actions in the 
aging brain by re-establishing the balance of proinflammatory cyto-
kines.74 Furthermore, FGF2 supplementation attenuated various in-
flammatory parameters in spontaneous epileptic lesions, with IL-1β, 
whose expression was almost entirely blocked, appearing to have the 
greatest effect.76 FGF9, another member of the FGF family, recruits 
macrophages. Studies have elucidated that FGF9 signaling promoted 
inflammation and neuronal apoptosis by affecting the stimulation of 
M1-type macrophages and the ERK signaling pathway. In contrast, 
knockdown of the FGF9 gene inhibited macrophage recruitment, 
thereby attenuating nerve damage.77 Controlling inflammatory re-
sponses is thought to be a viable therapeutic approach for stroke. 

Like other FGFs, after a stroke, recombinant human FGF21 has 
anti-inflammatory properties that attenuate inflammatory cell po-
larization and the infiltration of peripheral immune cells, showing its 
potential as an anti-inflammatory agent in stroke.78 Taken together, 
FGF/FGFR signaling presumably exerts a pivotal role in neural tissue 
regeneration, remyelination, and neuroinflammation.

5  |  E XPLOR ATION OF FGF/FGFR IN MS

5.1  |  FGF1 subfamily

In MS, FGF1 is predominantly expressed in remyelinated lesions, 
with its production being lower in the demyelinated lesion core than 
in the remyelinated rim.79 In cerebellar slice cultures, FGF1 promoted 
remyelination and directly accelerated myelination. Furthermore, by 
inducing the upregulation of the leukemia inhibitory factor (LIF) and 
the chemokine CXCL8 in human astrocytes, which are involved in 
the recruitment of oligodendrocytes, FGF1 indirectly promoted the 
induction of remyelination.79 LIF has been demonstrated to sup-
port oligodendrocyte development and survival,80–82 in addition to 
promoting myelination.83 In EAE, it has also been proven to prevent 
oligodendrocyte death84 and promote remyelination.85 Astrocytes 
at the edges of active MS lesions secrete high levels of CXCL8, 
thereby recruiting OPCs into the lesions and participating in their 
regeneration.86,87

How FGF2 affects oligodendrocyte responses during demyelin-
ation and remyelination in MS is debatable. On one hand, FGF2 is 
regarded as a neuroprotective agent that promotes remyelination in 
MS.17 FGF2 has mainly been detected in microglial and macrophages 
of active, chronic-active, and chronic-inactive lesions in MS.88 An in-
crease in serum FGF2 levels was also found in gadolinium-enhanced 
lesions in RRMS and disability progression of SPMS.89 However, 
FGF2 peaked in the initial stage of remyelination.90 Consistently, 
ciliary neurotrophic factor (CNTF) expression was induced around 
remyelination lesions of MHV-A59-infected model mice, and FGF2 
and its receptor were induced in spinal cord astrocytes after CNTF 
injection, suggesting that CNTF acts through the FGF2/FGFR path-
way.91 Endogenous FGF2 activity was tested in glial cultures purified 
from demyelinated lesions of MHV-A59-infected mice, and these 
experiments demonstrated its ability to act as an effective mito-
gen related to the OPC proliferative response in demyelinating and 
remyelinating tissues.92 FGF2 null EAE presented intensive clinical 
symptoms compared to normal EAE,17 and FGF2 gene therapy re-
verted this phenomenon93 and significantly reduced the infiltration 
of myelotoxic cells into the CNS. Moreover, mice overexpressing the 
FGF2 gene showed increased OPCs and myelin-forming numbers in 
demyelinating regions.93 Indeed, FGF2 null mice had noticeably more 
degenerative nerve fibers and axonal loss. Concurrently, there was a 
considerable reduction in the quantity of remyelinated axons.17 On 
the other hand, it has been suggested that FGF2 is a negative fac-
tor in both the myelination processes and remyelination failure. In 
the cuprizone-induced mouse model, FGF2 expression levels were 
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increased,94 and high FGF2 levels induced marked destruction of 
mature oligodendrocytes and severe myelin loss in the CNS.95 FGF2 
knockout promoted oligodendrocyte regeneration by spontaneously 
enhancing the proliferation of OPCs in vivo during the lesion recov-
ery phase, thereby promoting remyelination94 and reducing axonal 
atrophy in demyelinating lesions.96 Stimulation of lesion-derived glial 
cells in MHV-A59-infected mice showed that high concentrations of 
FGF2 promoted OPC proliferation. In contrast, OPC development 
into oligodendrocytes was favored in vitro by attenuating endoge-
nous FGF2 via neutralizing antibody.97 Indeed, these outcomes align 
with the improved OPC differentiation observed in FGF2−/− animals. 
The role of FGF2 is variable since chronically high FGF2 levels in the 
CSF reverse the positive benefits, and the secretion of FGF2 by im-
mune cells increases with disease progression in MS/EAE.

5.2  |  FGF8 subfamily

FGF8, FGF17, and FGF18 belong to the FGF8 subfamily. They share 
60 to 80 percent of amino acid sequence similarity and have com-
parable receptor binding features.98 FGF8 is an original factor that, 
consistent with FGF2 roles, induces OPC activation, migration, and 
proliferation but does not hamper differentiation. In the FGF8-
treated medium, a remarkable increase in the number of OPCs was 
detected, and they displayed both immature and mature oligoden-
drocyte markers. Therefore, it appears that FGF8 stimulates OPC 
proliferation without inhibiting differentiation, ultimately producing 
more mature oligodendrocytes. It was observed that FGF8 bound 
to FGFRs could attract OPCs and induce their migration, which was 
also recapitulated in animal models for demyelination.99 When a 
demyelinating lesion arises, OPCs that are present throughout life 
in the CNS are prepared to differentiate into mature oligodendro-
cytes.100 However, dysfunction of OPC activation in MS affects re-
myelination processes.101 A reduced capacity for myelination may be 
caused in part by the attenuation of OPC migration and differentia-
tion, positioning FGF8 as a potential therapeutic target.

5.3  |  FGF9 subfamily

The cascade of pathogenic events in MS eventually leads to the 
loss of neurons and axons, which can be measured by reduced brain 
volume on volumetric magnetic resonance imaging (MRI) in vivo. 
Between 0.5% and 1.5% of MS patients develop brain atrophy each 
year, and during the progressive stages of the disease, the deep 
gray matter structures display a higher rate of degeneration.2 It was 
shown that plasma FGF9 levels are strongly associated with brain 
volume loss in MS patients, and the annual percentage of brain vol-
ume change was inversely related to these levels.102 FGF9 was high 
in early active lesions and was upregulated in ongoing lesions of MS 
patients with longstanding progressive disease. However, FGF9 lev-
els were remarkably lower in healthy white matter and almost non-
existent in chronically demyelinated inactive lesions.18 Furthermore, 

GFAP+ astrocytes and OLIG2+ and NOGO-A+ oligodendrocytes 
were shown to produce FGF9. This suggests that FGF9 was induced 
by a localized glial response toward ongoing tissue damage in MS. 
Although FGF9 was discovered to prevent OPCs from developing 
into mature oligodendrocytes, the authors did not agree that this 
direct effect was responsible for the inhibition of remyelination. 
Rather, FGF9 still serves as an OPC stimulant and contributes to the 
generation of proteolipid protein+ (PLP+) oligodendrocytes in the 
complex cellular environment.18 However, this proliferation is of lit-
tle importance since FGF9 inhibited the differentiation of precursor 
oligodendrocytes into mature myelination-competent oligodendro-
cytes through an astrocyte-dependent mechanism. Furthermore, 
FGF9 also enhanced the expression of chemokines CCL2 and 
CCL7,18 which are known to be expressed in MS lesions and recruit 
macrophages and microglia to initiate the inflammation of MS. The 
dual pathogenic role of FGF9 in MS, which involves both triggering a 
proinflammatory response and inhibiting remyelination, has signifi-
cant implications for the etiology of the disease.

5.4  |  FGF19 subfamily

The endocrine FGF subclass ligands (FGF19, FGF21, and FGF23) 
are also known as the FGF19 subfamily. FGF21, mainly released by 
the skeletal muscle, pancreas, liver, kidney, and adipose tissue, ex-
erts pleiotropic effects in regulating glucose, lipid, and energy ho-
meostasis.103 Apart from metabolic regulation, it has been recently 
discovered that FGF21 is secreted by neurons and exhibits neuro-
protective functions.104 FGF21 was dramatically downregulated 
after cerebral ischemia, and the upregulation could restore brain 
function by reducing cerebral infarction and ameliorating neuronal 
cell death.105 Moreover, FGF21 promoted remyelination after trau-
matic brain injury.103 In the lysophosphatidylcholine-induced de-
myelination model, treatment with a neutralizing antibody against 
FGF21 or gene knockout abolished these positive effects on OPCs.9 
The effect of FGF21 on OPCs seems to be limited to promoting 
proliferation without affecting their differentiation or apoptosis. 
Furthermore, FGF21 did not modulate the cell fate of astrocytes, 
and Kuroda et al. detected no significant proliferation of OPCs cul-
tured in astrocyte supernatant with FGF21 pre-treatment, indicating 
that FGF21 acts directly as an OPC mitogen. Interestingly, FGF21-
mediated proliferation of human OPCs in autopsy samples from MS 
patients has been observed.9 Therefore, we can infer that FGF21-
mediated OPC proliferation and consequent remyelination are con-
served in CNS demyelinating models.

FGF23 was first identified in the ventrolateral thalamic nucleus 
of the mouse brain, and its physiological role has recently attracted 
significant attention.106 The FGF23 protein is present in three dis-
tinct forms in the bloodstream: a full-length mature form and two 
inactive (C- and N-terminal) fragments.107 It is generally accepted 
that intact FGF23 is a bioactive factor that controls the metabolism 
of phosphate and vitamin D. In contrast, high levels of the inactive 
FGF23 forms have been demonstrated to inhibit these effects.108 
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Considered a bone-derived hormone, FGF23 is primarily released 
by osteocytes and osteoblasts in the skeleton. It is a component 
of the novel hormonal bone–parathyroid–kidney axis, which in-
teracts to form hormonal homeostasis.109,110 Several studies have 
shown that serum FGF23 concentrations were elevated in RRMS 
patients. However, calcitriol levels were reduced, indicating that el-
evated FGF23 levels in MS may disrupt the FGF23-PTH-vitamin D 
axis, resulting in pathological effects.19,111 However, in a study that 
measured plasma levels of FGF23 in 91 MS patients and 92 healthy 
controls, no difference was observed.112 Similar results were ob-
tained in a study by Alagha et al.113 In addition, they also found that 
the secretion of FGF23 in the CSF of MS patients was comparable to 
that of the healthy population. There are several reasons for these 
diverging results: (1) The study of elevated FGF23 was conducted 
in RRMS, and the latter two studies were the result of a mixture 
of all clinical subtypes of MS. Furthermore, the pathogenesis of 
MS subtypes differs, which can lead to different outcomes; (2) As 
mentioned earlier, FGF23 exists in two forms, an intact active form, 
and an incomplete form. Of the studies that concluded that FGF23 
was elevated, intact FGF23 was measure, while the other studies 
measured all forms of FGF23, which may have biased the results; 

(3) The experimental samples and methods used in these studies 
differed slightly, which may also cause inconsistent results. The ele-
vated FGF23 in MS patients inhibited 1-α-hydroxylase and upregu-
lated 24-α-hydroxylase to eliminate 1,25-(OH)2D3 levels.111 Previous 
studies have demonstrated that vitamin D has an immunomodula-
tory effect and promotes the multiplication of NSCs and their dif-
ferentiation into mature neurons and oligodendrocytes.114 FGF23 
might be involved in immune responses via suppression of vitamin 
D production and direct interaction with immune cells such as mac-
rophages and dendritic cells (DCs). Under the stimulation of LPS/
IFN-γ, activated DCs and macrophages contribute to the increased 
serum FGF23 levels, mediated by the nuclear factor-κB and the 
JAK/STAT1 signaling pathways.115 Compelling studies suggest that 
FGF23 targets macrophages, which express FGFR1 along with DCs, 
and exhibit increased α-Klotho expression upon inflammatory stim-
ulation.116 The interaction of FGF23 with the FGFR1/α-Klotho com-
plex affects the polarization of macrophages to the M1 phenotype, 
blocks the transition to the M2 phenotype and induces M1-type 
macrophages to secrete TNFα and suppress Arg-I expression in M2 
macrophages, resulting in sustained inflammation.115,116 However, 
1,25-(OH)2D3 has been reported to have the opposite effect on 

F I G U R E  2  Role of oligodendrocyte-
specific deletion of FGFR1 and FGFR2. 
Pro-remyelination and anti-inflammatory 
mechanisms of oligodendrocyte-specific 
deletion of FGFR1 and FGFR2 in EAE. 
BDNF, brain derived neurotrophic 
factor; CNPase, 2′,3′-cyclic-nucleotide 
3′-phosphodiesterase; EAE, experimental 
autoimmune encephalomyelitis; PLP, 
Proteolipid protein; SEMA3A, Semaphorin 
3A.
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cytokine secretion of macrophages.116 FGF23 has a proinflamma-
tory function and counters the regulatory action of 1,25-(OH)2D3 
on immune responses. Accordingly, it is conceivable that elevated 
FGF23 levels contribute to MS by promoting inflammation.

5.5  |  Fibroblast growth factor receptors

To characterize the role of FGFRs in oligodendrocytes in vitro, 
researchers used the multi-kinase inhibitor and FGFR1-3 in-
hibitor to block FGFR signaling. The application of inhibitors in-
creased the expression of the myelin-associated proteins PLP 
and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. Furthermore, 
upregulation of neurotrophic factor BDNF/TrkB signaling and de-
creased expression of the remyelination inhibitor semaphorin 3A 
were observed. These effects may be related to the reduction in 
downstream molecules of the FGF/FGFR signaling pathway, such as 
ERK and AKT phosphorylation, in oligodendrocytes.117 These find-
ings have been confirmed in vivo. Conditional ablation of FGFR1 
or FGFR2 in oligodendrocytes alleviated the symptoms of motor 
deficits in MOG35-55-induced EAE.14,16,118 In the spinal cord of 
FGFR1ind−/− and FGFR2ind−/− animals, myelin, axonal loss, and the in-
filtration of inflammatory cells were decreased in the chronic phase 
of EAE without causing any alterations in the acute phase. The pro-
tective effects of the oligodendrocyte-specific deletion of FGFR1 

and FGFR2 on EAE are mainly manifested in two aspects. First, the 
knockdown of FGFRs can regulate the inflammatory environment in 
the CNS. T cells and B cells, as well as macrophages and activated 
microglia, were significantly reduced in the spinal cord and cerebel-
lum of FGFR1ind−/− mice, along with the decreased expression of the 
proinflammatory cytokines TNFα, IL-1β, and IL-6, and the chemokine 
CX3Cl1 and its receptor CXC3R1.14,118 Furthermore, FGFR2ind−/− 
mice showed a similar phenotype,16 and this low-inflammatory en-
vironment facilitates remyelination and tissue repair of EAE lesions. 
Second, the deletion of FGFR1 and FGFR2 exhibited robust pro-
remyelination activity. Although the depletion of FGFR1 and FGFR2 
did not affect the numbers of cells from the oligodendrocyte lineage, 
the high expression of pERK, pAKT, BDNF, and TrkB, and the low 
level of Lingo-1 in the spinal cord was caused by specific knockdown 
of FGFR1.14,118 The phenotype of FGFR2ind−/− mice varied slightly, 
with an increase in PLP-positive cells in the spinal cord and a de-
crease in the expression of SEMA3A. At the same time, there were no 
significant increases in pERK or TrkB,16 indicating that the two FGFR 
receptors in the EAE model mediate different effects (Figure 2). In 
the cuprizone demyelination model, acute-phase demyelination and 
myelin recovery were not affected by oligodendrocyte-specific de-
letions of FGFR1 and FGFR2. However, in the chronic period, dou-
ble knockout of FGFR1 and FGFR2 caused remyelination failure.119 
Additionally, single deletion of FGFR1 promoted remyelination and 
functional recovery in the chronic phase.15 Therefore, these data 

TA B L E  2  Variety actions of FGFs in MS.

FGFs Concentration in MS Roles in remyelination Roles in neuroinflammation

FGF1 Predominantly expressed 
in remyelinated 
lesions; lower in the 
demyelinated lesion 
core compared to the 
remyelinated rim

Upregulates expression of LIF and 
CXCL8 in astrocytes to support 
oligodendrocyte maturation, 
differentiation, and survival

Reduces the inflammatory response via inducing the 
expression of IL-4, Arg-I and inhibiting the activation 
of microglia and astrocytes

FGF2 Mainly detected in active 
lesions and ambitus of 
chronic-active as well as 
chronic-inactive lesions

Enhances the proliferation and survival 
of OPCs in the early stage, and 
inhibits their differentiation into 
oligodendrocytes after prolonged 
stimulation

Prevents the expression of proinflammatory cytokines 
such as IL-1β, IL-6, and TNFα and increases the anti-
inflammatory cytokine IL-10 levels

FGF8 Not detected Induces OPCs' activation and migration Not yet identified

FGF9 Highly expressed in early 
active lesions, and 
upregulated in ongoing 
lesions; strongly 
associated to loss of 
brain volume in MS 
patients

Inhibits the differentiation of isolated 
OPC into mature oligodendrocytes

Enhances the expression of proinflammatory genes, 
such as chemokines CCL2 and CCL7

FGF21 Not detected Mediates OPCs proliferation and leads 
remyelination

Attenuates inflammatory cell polarization and 
infiltration of peripheral immune cells into CNS

FGF23 Serum concentration 
elevates; no significant 
increasement in CSF

Not yet identified Counters the regulatory action of 1,25-(OH)2D3 on 
immune responses; affects the polarization of 
macrophages to the M1 phenotype and induces 
the secretion of TNFα, blocks the transition to M2 
macrophages and the expression of Arg-I

Abbreviations: CSF, cerebrospinal fluid; FGF, fibroblast growth factor; LIF, leukemia inhibitory factor; MS, Multiple sclerosis; OPC, oligodendrocyte 
precursor cell.
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suggest that FGFR signaling inhibits regenerative processes, particu-
larly chronic demyelination.

6  |  SUMMARY

Current MS treatments have achieved near complete control over 
RRMS and focal neuroinflammation. However, no effective treat-
ment strategies are available concerning neurodegeneration and 
disability. FGF signal transduction is involved in the development 
of the CNS, enhances the proliferation and axonal growth of NSCs 
in adults, and promotes their differentiation into various CNS 
cells, such as neurons and oligodendrocytes. Furthermore, the 
development of oligodendrocytes is inseparably linked to FGFs, 
and distinct FGFRs are expressed at different stages of their 
development; therefore, FGFs play pivotal roles at each stage. 
Surprisingly, several studies have shown that neuroinflammation 
is regulated partly by FGF signaling, as FGF1, FGF2, and FGF21 
have anti-inflammatory functions, while FGF9 induces neuroin-
flammation. These results all emphasize the importance of FGF/
FGFR signaling in the pathogenesis of MS. Some FGFs are mainly 
expressed in acute demyelinating lesions and mediate disease 
progression. Others display high concentrations in remyelinating 
lesions in the chronic phase of MS and promote the life cycle of 
OPCs and the maturation of oligodendrocytes, which helps to en-
hance tissue repair and restore motor function (Table 2). However, 
due to the large size of the FGF family and their far-spanning ac-
tions, coupled with their ambiguous roles in MS and their evo-
lution through disease progression, it is difficult to explore their 
current therapeutic utility for MS. Furthermore, before FGFs be-
come relevant biomarkers for monitoring MS disease course and 
disease identification, various conditions need to be met: the role 
of other members of the FGF family in MS and the correlation 

between FGFs and clinical data, including MS subtypes, clinical 
features, and disease stages, require further investigation.120 
In addition, more research is needed to detect the sensitivity, 
specificity, and stability of FGFs as biomarkers and they must be 
compared with existing oligoclonal bands and IgG to clarify their 
characteristics.121

In contrast, FGFRs have shown promising therapeutic potential. 
FGFRs are widely expressed in CNS and immune cells (Table 3) and 
may be involved in many aspects of MS pathogenesis; therefore, 
therapies targeting FGFRs can exert multiple effects. Furthermore, 
conditional deletion of FGFR1 and FGFR2 has improved EAE symp-
toms, especially in the chronic phase, leading to amelioration of the 
inflammatory microenvironment, less demyelination, and greater 
axonal density. The underlying mechanisms may be changes in 
the levels of ERK and AKT phosphorylation, and the expression of 
BDNF and several remyelination inhibitors. The increase in BDNF 
expression is particularly interesting since glatiramer acetate and 
fingolimod, both currently available MS treatments, have been re-
ported to upregulate BDNF expression; this upregulation may be 
associated with their therapeutic efficacy.122 Based on the findings 
described here, targeting FGFRs is a promising strategy for treating 
MS patients.
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FGFRs Cell type References

FGFR1 Macrophage
T lymphocyte
B lymphocyte
NK cell

Neuron
Microglia
Astrocyte
OPC
Oligodendrocyte

118,123–132

FGFR2 Macrophage
NK cell

Neuron
Microglia
Astrocyte
OPC
Oligodendrocyte

123,129,132–134

FGFR3 Macrophage
B lymphocyte

Neuron
Microglia
Astrocyte
OPC
Oligodendrocyte

90,123,132,135–137

FGFR4 Macrophage Neuron
Microglia
Astrocyte
OPC

123,132,138

Abbreviations: FGFR, fibroblast growth factor receptor; OPC, oligodendrocyte precursor cell.

TA B L E  3  Cell expression of FGFRs.
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