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Abstract
BACKGROUND 
Fibroblast plays a major role in tendon-bone healing. Exosomes derived from 
bone marrow mesenchymal stem cells (BMSCs) can activate fibroblasts and 
promote tendon-bone healing via the contained microRNAs (miRNAs). However, 
the underlying mechanism is not comprehensively understood. Herein, this study 
aimed to identify overlapped BMSC-derived exosomal miRNAs in three GSE 
datasets, and to verify their effects as well as mechanisms on fibroblasts.

AIM 
To identify overlapped BMSC-derived exosomal miRNAs in three GSE datasets 
and verify their effects as well as mechanisms on fibroblasts.

METHODS 
BMSC-derived exosomal miRNAs data (GSE71241, GSE153752, and GSE85341) 
were downloaded from the Gene Expression Omnibus (GEO) database. The 
candidate miRNAs were obtained by the intersection of three data sets. 
TargetScan was used to predict potential target genes for the candidate miRNAs. 
Functional and pathway analyses were conducted using the Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively, 
by processing data with the Metascape. Highly interconnected genes in the 
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protein-protein interaction (PPI) network were analyzed using Cytoscape software. Bromodeoxy-
uridine, wound healing assay, collagen contraction assay and the expression of COL I and α-
smooth muscle actin positive were applied to investigate the cell proliferation, migration and 
collagen synthesis. Quantitative real-time reverse transcription polymerase chain reaction was 
applied to determine the cell fibroblastic, tenogenic, and chondrogenic potential.

RESULTS 
Bioinformatics analyses found two BMSC-derived exosomal miRNAs, has-miR-144-3p and has-
miR-23b-3p, were overlapped in three GSE datasets. PPI network analysis and functional 
enrichment analyses in the GO and KEGG databases indicated that both miRNAs regulated the 
PI3K/Akt signaling pathway by targeting phosphatase and tensin homolog (PTEN). In vitro 
experiments confirmed that miR-144-3p and miR-23b-3p stimulated proliferation, migration and 
collagen synthesis of NIH3T3 fibroblasts. Interfering with PTEN affected the phosphorylation of 
Akt and thus activated fibroblasts. Inhibition of PTEN also promoted the fibroblastic, tenogenic, 
and chondrogenic potential of NIH3T3 fibroblasts.

CONCLUSION 
BMSC-derived exosomes promote fibroblast activation possibly through the PTEN and PI3K/Akt 
signaling pathways, which may serve as potential targets to further promote tendon-bone healing.
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Core Tip: Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can activate fibroblasts 
and promote tendon-bone healing via the contained microRNAs (miRNAs). Supported by bioinformatics 
tools, this study identified two BMSC-derived exosomal miRNAs, has-miR-144-3p and has-miR-23b-3p, 
were overlapped in three GSE datasets. Bioinformatic analysis revealed that both miRNAs regulated the 
PI3K/Akt signaling pathway by targeting phosphatase and tensin homolog (PTEN). Experiments in vitro 
confirmed that interfering with PTEN can affect the phosphorylation of Akt and thus the activation of 
fibroblasts. These results suggested a potential mechanism by which BMSC-derived exosomes promote 
tendon-bone healing.

Citation: Li FQ, Chen WB, Luo ZW, Chen YS, Sun YY, Su XP, Sun JM, Chen SY. Bone marrow mesenchymal 
stem cell-derived exosomal microRNAs target PI3K/Akt signaling pathway to promote the activation of 
fibroblasts. World J Stem Cells 2023; 15(4): 248-267
URL: https://www.wjgnet.com/1948-0210/full/v15/i4/248.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i4.248

INTRODUCTION
Tendon-bone insertion (TBI) injury, such as rotator cuff tears and anterior cruciate ligament injuries, is 
one of the common injuries in daily life and sports. Thus, how to promote tendon-bone healing becomes 
an important issue in research and clinical practice. The normal TBI has a transitional structure 
consisting of four gradated layers including bone, mineralized fibrocartilage layer, non-mineralized 
fibrocartilage layer and tendon[1,2]. This complex structure can disperse force from bone to tendon, 
preventing stress concentration[3]. However, current therapeutic strategies cannot restore this structure, 
hence raising the risk of re-injury.

Fibroblasts play a key role in tendon-bone healing. In the early stages of TBI injury, α-smooth muscle 
actin positive (α-SMA+) fibroblasts help form Sharpey-like fibers to withstand strength at TBI and 
participate in early ligament remodeling by producing collagen and restoring in situ tension[4,5]. 
Mesenchymal stem cells (MSCs) are a kind of stem cells with strong proliferation capacity and 
multilineage differentiation potential, which can differentiate into myoblasts, osteoblasts, adipocytes 
and chondroblast[6]. MSCs can be extracted from bone, adipose tissue, blood, and amniotic membrane
[7]. They have multiple functions including immunomodulatory, anti-inflammatory, anti-apoptotic, and 
angiogenesis promotion, making them ideal candidate cells for tissue engineering research[8]. Recent 
evidence indicates that conditioned medium, primarily containing exosomes of MSCs, can stimulate the 
activation of fibroblasts, thereby promoting tendon-bone healing[9-12]. However, the underlying 
mechanism is not comprehensively understood.

https://www.wjgnet.com/1948-0210/full/v15/i4/248.htm
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Bioinformatics has played an important role in exploring disease mechanisms by allowing parallel 
processing of large volumes of high-throughput sequencing data. To identify key bone marrow MSC 
(BMSC)-derived exosome microRNAs (miRNAs), three Gene Expression Omnibus (GEO) datasets were 
interrogated using bioinformatics tools in this study. TargetScan, a software designed to predict miRNA 
binding sites, is often used to analyze target genes of miRNAs[13]. Metascape, a powerful gene 
functional annotation analysis tool, enables pathway enrichment and biological process (BP) annotation
[14]. STRING database allows for assessing the functional associations among target genes[15]. 
Cytoscape software enables visualization of miRNA-target gene pairs.

Therefore, using the above database tools, this study aimed to identify overlapped BMSC-derived 
exosomal miRNAs in three GSE datasets and verify their effects as well as mechanisms on fibroblasts, so 
as to facilitate further studies to verify the role of exosomal miRNAs and their potential in promoting 
tendon-bone healing.

MATERIALS AND METHODS
The workflow of this study was described (Figure 1).

Data collection
Three BMSC-derived exosomal miRNA expression microarray datasets (GSE71241, GSE153752, and 
GSE85341) were retrieved from the GEO repository on 20 April 2022. (https://www.ncbi.nlm.nih.gov/
geo). GSE71241[16], GSE153752[17], and GSE85341[18] included nine, four and one BMSC-derived 
exosome samples respectively. The above datasets were produced independently using the GPL18743, 
GPL16791, and GPL22300 platforms, respectively.

Venn diagram analysis and prediction of target genes
After obtaining the top 100 BMSC-derived exosomal miRNAs in each dataset, Venn diagram analysis 
was used to identify overlapped miRNAs in the three datasets through online tool Venny (version 2.1) (
https://bioinfogp.cnb.csic.es/tools/venny). The overlapped miRNAs were considered as candidate 
miRNAs. Potential target genes for the candidate miRNAs were predicted by TargetScan, an experi-
mentally validated database of miRNA-target interactions[13].

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses
Functional and pathway analyses of the predicted target genes were conducted using the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively, by 
processing data with the Metascape[14].

Construction of target gene-protein-protein interaction and miRNA-gene networks
Target gene data was uploaded to the STRING database[15] to assess the functional associations among 
the target genes of candidate miRNAs. Highly interconnected (hub) genes in the protein-protein 
interaction (PPI) network were analyzed using Cytoscape software (version 3.9.1). After candidate 
exosomal miRNAs and their hub target genes were identified, Cytoscape was used to visualize the 
resulting miRNA-gene network.

Cell culture and treatment
The NIH3T3 fibroblast (Shanghai Institutes for Biological Sciences) was used as a model in vitro to 
further determine the effect of SF1670 [a specific phosphatase and tensin homolog (PTEN) inhibitor] on 
fibroblasts[19]. Cells were cultured in DMEM supplemented with 10% fetal bovine serum (Gibco), 100 
U/mL penicillin, and 100 mg/mL streptomycin and maintained at 37 °C in a humidified atmosphere 
containing 5% CO2. When the cells reached 80% confluence, they were digested with 0.25% trypsin and 
sub-cultured 1:3. To determine the effect of SF1670, NIH3T3 cells were starved for 24 h with DMEM 
containing 0.5% FBS and then treated with or without SF1670 2 μM for the indicated time. NIH3T3 
fibroblast was seeded and cultured into six-well plate.

Western blot assay
Protein was extracted and analyzed using an established method[20]. Anti-phosphorylated Akt (p-Akt) 
(CST, United States, 1:1000) and anti-Akt (CST, United States, 1:1000) were used as primary antibodies. 
Each group contains 3 protein samples for calculation.

Quantitative real-time reverse transcription polymerase chain reaction
RNA was extracted and analyzed using the previous method[21]. Total RNA was obtained by the Trizol 
reagent (Invitrogen, Carlsbad, CA) and quantified by Nanodrop. RNA was then reversely transcribed 
by the PrimeScript RT reagent kit (Takara Bio). Specific primers used in the experiment are from 
PrimerBank (Table 1). The operation was performed on the ABI7900 Real-Time PCR System (Applied 
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Table 1 Primers used in the experiment

Genes Primers (5’ - 3’)

F: TCAGCCGTTACCTGTGTGTGPTEN

R: TCCTTGTCATTATCTGCACGC

F: GACAATGGCTCTGGGCTCTGTAAα-SMA

R: CTGTGCTTCGTCACCCACGTA

F: GACGCCATCAACACCGAGTTVimentin

R: CTTTGTCGTTGGTTAGCTGGT

F: CCATGCTGGATGAGAGAGGTTTenomodulin

R: CCGTCCTCCTTGGTAGCAGT

F: CCCGGGTTTCAGAGACAACTTCCol I

R: TCCACATGCTTTATTCCAGCAATC

F: GAGCCGGATCTGAAGAGGGASox 9

R: GCTTGACGTGTGGCTTGTTC

F: GGGAATGTCCTCTGCGATGACCol II

R: GAAGGGGATCTCGGGGTTG

F: ACTCCACTCACGGCAAATTCGAPDH

R: TCTCCATGGTGGTGAAGACA

PTEN: Phosphatase and tensin homolog; α-SMA: α-smooth muscle actin positive.

Figure 1 The flowchart of this study. miRNAs: MicroRNAs.

Biosystems). The expression of mRNAs relative to the expression of GAPDH was calculated and 
normalized to the control group.

Luciferase reporter assay
Validation of miR-144 and miR-23b binding to 3’-UTR was performed using Dual-Glo Luciferase assay 
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system (Promega) as recommended by the manufacturer. The relative luciferase activities were 
determined by calculating the ratio of firefly luciferase activities over Renilla luciferase activities. All 
experiments were repeated three times in triplicate. Two constructs of pmirGLO luciferase reporter 
plasmid were generated: MUT-PTEN (with mutation of part of miRNA binding site sequence) and WT-
PTEN [containing the wild-type (WT) miRNA binding site sequence]. 500 ng of the pmirGLO luciferase 
reporter plasmid and appropriate miRNA plasmid were co-transfected with lipofectamine 3000 
(Invitrogen) into NIH3T3 cells. 48 h after transfection, the luciferase expression was determined using 
the Dual-Glo Luciferase Reporter Assay Kit (Promega) according to the manufacturer’s protocol. The 
pRL-TK vector (Promega) containing Renilla luciferase was also co-transfected for normalization in all 
relevant experiments.

Bromodeoxyuridine assays
The Bromodeoxyuridine (BrdU) incorporation assay was performed using Cell Proliferation ELISA kits 
(1647229; Roche Applied Science, Mannheim, Germany). Briefly, NIH3T3 cells were plated at 5000 cells/
well in 96-well culture plates in complete media. After attaining 70% confluence, cells were treated with 
media containing 10% FBS. BrdU solution (10 μM) was added after intervention. The cells were dried 
and fixed, and cellular DNA was denatured with FixDenat solution (Roche Applied Science) for 30 min 
at room temperature. A peroxidase-conjugated mouse anti-BrdU monoclonal antibody (Roche Applied 
Science) was added to the culture plates and cells were incubated for 90 min at room temperature. 
Tetramethyl-benzidine substrate was added and the plates were incubated for 15 min at room 
temperature. The absorbance of samples was measured using a microplate reader at 450-620 nm.

Wound healing assay
Cells at logarithmic growth stage were taken and placed in a six-well plate with a cell density of 5 × 105/
well. Three multiple wells were set for each group. When the cells were adherent to the wall in a single 
layer, a pipetting tip was used to vertically scratch the six-well plate to avoid tilting. The suspension 
cells were cleaned and removed with PBS and cultured in an incubator with 5% CO2 at 37 °C. 
Photographs were taken at 0 and 24 h under the microscope. The wound healing area was measured 
using ImageJ[22].

Collagen gel contraction assay
Cell contraction was determined using a kit from Cell Biolabs (San Diego, CA). Briefly, cells were 
seeded in collagen solution according to the manufacturer’s instructions and release from the plates 
with a sterile spatula. Gel images were taken after release and the surface area of each gel was measured 
using ImageJ[22].

Immunofluorescence
NIH3T3 cells were cultured in a 24-well plate. The cells were fixed with 4% paraformaldehyde and 
incubated with 0.5% Triton X-100 (Sigma) and then blocked with goat serum (Biyuntian Company, 
China) for 1 h. The cells were then incubated overnight at 4 °C with the primary antibody. The 
secondary antibody was applied, and the cells were incubated for 1 h in the dark. Finally, the nuclei 
were counterstained with DAPI for 15 min. The stained cells were photographed using a fluorescence 
microscope.

Statistical analysis
All experiments were performed at least three times. Data were analyzed with GraphPad Prism 7.0 
(GraphPad Software, La Jolla, United States) and were presented by mean ± SD. Significance was 
typically analyzed by student’s t-test, one-way ANOVA followed by post hoc LSD test, and two-way 
ANOVA followed by multiple t-tests. P < 0.05 was regarded as significant.

RESULTS
Identification of candidate exosomal miRNAs and target genes
Three independent BMSC-derived exosomal miRNA expression microarray datasets (GSE71241, 
GSE153752, and GSE85341)[16-18] were downloaded from the GEO database. Subsequently, top 100 
BMSC-derived exosomal miRNAs in each dataset were obtained. The Venn diagram analysis 
demonstrated two miRNAs in the intersection of the three datasets (Figure 2). The target gene 
interactions of two candidate miRNAs, hsa-miR-144-3p and hsa-miR-23b-3p, were assessed by the 
TargetScan[13]. In total, 1048 and 105 potential target genes were identified for miR-144-3p and miR-
23b-3p, respectively.

Functional enrichment analysis of miRNAs’ target genes
GO functional annotation analysis revealed that the most enriched terms for the target genes of miR-



Li FQ et al. BMSC-Exos promote tendon-bone healing

WJSC https://www.wjgnet.com 253 April 26, 2023 Volume 15 Issue 4

Figure 2 Identification of candidate microRNAs by intersecting three exosome microRNA expression microarray datasets. A: Venn diagram 
analysis showing the top 100 exosome microRNAs (miRNAs) in the three Gene Expression Omnibus (GEO) datasets; B: Identification of two miRNAs overlapping 
between the three GEO datasets. miRNAs: MicroRNAs.

144-3p were ‘head development’ and ‘regulation of kinase activity’ in the BP, ‘postsynapse’ in the 
cellular component (CC), and ‘transcription factor binding’ and ‘kinase activity’ in the molecular 
function (MF) (Figures 3A-D). On the other hand, the target genes of miR-23b-3p were mostly enriched 
in ‘phospholipid metabolic process’ in the BP, ‘nuclear speck’ and ‘centrosome’ in the CC, and 
‘chromatin binding’ in the MF (Figures 4A-D). KEGG pathway analysis revealed that most of target 
genes of miR-144-3p enriched in ‘pathways in cancer’ and ‘PI3K-AKT signaling pathway’ (Figure 3E); 
most of target genes of miR-23b-3p enriched in ‘pathways in cancer’ (Figure 4E).

Construction of target gene-PPI and miRNA-hub gene networks
A PPI network was constructed through the STRING database[15]. Interactions with an overall score of 
more than 0.4 were considered significant. Further processing was carried out using Cytoscape 
software. Then, the cytoHubba plugin was used to determine the top 10 hub genes based on the Degree 
algorithm. The top 10 predicted hub genes of miR-144-3p and miR-23b-3p were presented (Figures 5A 
and B). GO and KEGG analysis revealed that these hub genes were mostly enriched in ‘regulation of 
MAPK cascade’, ‘regulation of phosphatidylinositol 3-kinase signaling’ and ‘negative regulation of cell 
differentiation’ in the BP (Figure 5C, Table 2), ‘fibrillar center’ and ‘focal adhesion’ in the CC (Figure 5D, 
Table 3), and ‘protein kinase activity’ and ‘transcription factor binding’ in the MF (Figure 5E, Table 4). 
Most of these genes were mainly enriched in PI3K-Akt signaling pathway (Figure 5F, Table 5). Interac-
tional analysis showed that PTEN and sonic hedgehog (SHH) are potentially co-regulated by miR-144-
3p and miR-23b-3p (Figure 5G).

PTEN is verified as the targets of miR-144-3p and miR-23b-3p
The phosphatase and tensin homolog deleted on chromosome ten (PTEN), was predicted as the hub 
gene of miR-144-3p and miR-23b-3p (Figures 6A and B). To further validate the putative binding sites, 
WT and mutated 3’-UTR of PTEN were cloned into the pmirGLO vector. The transcripts of the target 
gene were then evaluated by dual luciferase reporter assays. Compared with the control group, 
luciferase reporter assays showed that miR-144-3p mimics and miR-23b-3p mimics significantly 
decreased the luciferase activity of WT-PTEN but did not show a significant effect on the luciferase 
activity of MUT-PTEN (Figures 6C and D). In addition, miR-144-3p mimic significantly down-regulated 
the mRNA levels of PTEN, while miR-144-3p inhibitor up-regulated the mRNA levels of PTEN 
(Figure 6E). Similarly, miR-23b-3p mimic down-regulated the mRNA level of PTEN, while miR-23b-3p 
inhibitor up-regulated the mRNA level of PTEN (Figure 6F). These results indicated that miR-144-3p 
and miR-23b-3p repressed the expression of PTEN by specifically binding with and subsequently 
inducing the degradation of mRNA.

miR-144-3p and miR-23b-3p regulate the proliferation, migration, and collagen synthesis of NIH3T3 
fibroblasts
To evaluate the effect of the identified miRNAs on fibroblast biology and activation, analysis of prolif-
eration and migration was then performed 24 h after transfection of miR-144-3p and miR-23b-3p 
respectively. Compared with the control group, proliferation and migration capacity of NIH3T3 cells in 
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Table 2 Top 10 clusters with Gene Ontology Biological Processes analysis of hub-gene targets

Term Description LogP Log(q-value) Count

GO:0048732 Gland development -12.279 -7.927 9

GO:0048608 Reproductive structure development -10.269 -6.495 8

GO:0061458 Reproductive system development -10.245 -6.495 8

GO:0030900 Forebrain development -8.922 -5.472 7

GO:0043408 Regulation of MAPK cascade -8.603 -5.240 8

GO:0045596 Negative regulation of cell differentiation -8.549 -5.238 8

GO:0022612 Gland morphogenesis -8.482 -5.208 5

GO:0014066 Regulation of phosphatidylinositol 3-kinase signaling -8.316 -5.077 5

GO:0060322 Head development -8.138 -4.931 8

GO:0060284 Regulation of cell development -8.045 -4.868 7

Table 3 Top 10 clusters with Gene Ontology Cellular Components analysis of hub-gene targets

Term Description LogP Log(q-value) Count

GO:0045121 Membrane raft -4.441 -2.311 4

GO:0098857 Membrane microdomain -4.436 -2.310 4

GO:0001650 Fibrillar center -4.076 -2.035 3

GO:0009898 Cytoplasmic side of plasma membrane -3.849 -1.860 3

GO:0098562 Cytoplasmic side of membrane -3.638 -1.688 3

GO:0005770 Late endosome -3.205 -1.308 3

GO:0005788 Endoplasmic reticulum lumen -3.103 -1.227 3

GO:0031983 Vesicle lumen -3.041 -1.174 3

GO:0005925 Focal adhesion -2.726 -0.896 3

GO:0030055 Cell-substrate junction -2.699 -0.873 3

Table 4 Top 10 clusters with Gene Ontology Molecular Functions analysis of hub-gene targets

Term Description LogP Log(q-value) Count

GO:0002020 Protease binding -5.941 -3.326 4

GO:0004712 Protein serine/threonine /tyrosine kinase activity -5.299 -2.910 5

GO:0004672 Protein kinase activity -4.802 -2.546 5

GO:0003682 Chromatin binding -4.726 -2.507 5

GO:0008134 Transcription factor binding -4.694 -2.487 5

GO:0031490 Chromatin DNA binding -4.457 -2.319 3

GO:0016773 Phosphotransferase activity, alcohol group as acceptor -4.435 -2.310 5

GO:0019904 Protein domain specific binding -4.395 -2.280 5

GO:0061629 RNA polymerase II-specific DNA-binding transcription factor binding -4.331 -2.228 4

GO:0016301 Kinase activity -4.267 -2.193 5

transfection groups were significantly increased (Figures 7A and B). Furthermore, overexpression of 
miR-144-3p or miR-23b-3p upregulated the expression of Col I and a-SMA in NIH3T3 cells (Figure 7C). 
These in vitro transfection data indicated that increment in intracellular miR-144-3p or miR-23b-3p 
stimulated NIH3T3 fibroblast proliferation and migration, and promoted fibroblast-myofibroblast 
differentiation and collagen synthesis.
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Table 5 Top 10 clusters with Kyoto Encyclopedia of Genes and Genomes Pathway analysis of hub-gene targets

Term Description LogP Log(q-value) Count

hsa04510 Focal adhesion -10.807 -6.755 7

hsa05200 Pathways in cancer -9.488 -5.834 8

hsa04151 PI3K-Akt signaling pathway -9.088 -5.538 7

hsa01521 EGFR tyrosine kinase inhibitor resistance -9.046 -5.538 5

hsa05215 Prostate cancer -8.593 -5.240 5

hsa05224 Breast cancer -7.682 -4.608 5

hsa05165 Human papillomavirus infection -7.560 -4.511 6

hsa05213 Endometrial cancer -7.435 -4.444 4

hsa05225 Hepatocellular carcinoma -7.392 -4.437 5

hsa05230 Central carbon metabolism in cancer -7.102 -4.181 4

EGFR: Epidermal growth factor receptor.

Inhibition of PTEN promote cell proliferation, migration, collagen synthesis and change the gene 
expression of fibroblastic-, tenogenic-, and chondrogenic-related factors in NIH3T3 cells
To explore whether BMSC-derived exosome promoted tendon bone healing by directly targeting PTEN 
in fibroblasts, SF1670, a specific PTEN inhibitor that binds to the active site of PTEN and increases 
cellular PtdIns(3,4,5)P3 levels and phosphorylation of Akt in vitro[19], was used to examine the effect of 
PTEN inhibition on NIH3T3 cells. The results showed that SF1670 significantly increased the 
phosphorylation level of Akt compared with DMSO group (Figure 8A). Moreover, BrdU and wound 
healing assays showed that SF1670 significantly increased proliferation (Figure 8B) and migration 
(Figure 8C) of NIH3T3 cells. Collagen contraction assays indicated that SF1670 significantly enhanced 
the contractility of NIH3T3 cells (Figure 8D). Finally, the properties necessary for tendon-bone healing 
was examined by quantitative real-time reverse transcription polymerase chain reaction. The results 
showed that the mRNA level of fibroblast-related genes (α-SMA and vimentin), tenogenic-related genes 
(TNMD and Col I), and chondrogenic-related genes (SOX-9 and Col II) were significantly up-regulated 
by SF1670 (Figure 9).

DISCUSSION
Tendon-bone healing has always been an important challenge in orthopedics and sports medicine 
research and clinical practice. Fibroblasts play a key role in early ligament remodeling and a large 
number of studies have verified the effective role of MSC-derived exosomes in tendon-bone healing[9-
12]. However, because the status of MSCs may be influenced by their generations or donors, the 
expression of exosomal miRNAs may be more or less different. This presents difficulties in identifying 
the roles associated with MSC-derived exosomal miRNAs. On ground of this, three GEO datasets were 
interrogated through bioinformatics tools to determine key BMSC-derived exosomal miRNAs. Two 
candidate miRNAs (miRNA-144 and miRNA-23b) were obtained by intersecting the top 100 exosomal 
miRNAs in each dataset (Figure 2). Their target genes and hub genes were obtained subsequently. GO 
annotation and KEGG pathway enrichment analysis suggested that these genes were involved in 
multiple cellular processes (e.g., regulation of kinase activity, transcription factor binding, and 
phospholipid metabolic process) and signaling cascades (e.g., focal adhesion, and PI3K-Akt pathways). 
A miRNA-target gene interaction network indicated that PTEN was co-regulated by miRNA-144 and 
miRNA-23b (Figure 5G).

PTEN functions primarily via dephosphorylation of PIP3 to PIP2, resulting in negative regulation of 
the PI3K/Akt activity[23]. The PTEN/PI3K/Akt nexus participates in various physiological and 
pathological conditions, and plays an important role in regulating cell growth, apoptosis, metabolism 
and other processes[24]. Being the direct target of PTEN, PI3K/Akt is also involved in activation of 
fibroblasts[25,26]. In this study, the effect of PTEN on fibroblasts was also demonstrated. The results 
showed that inhibition of PTEN increased the level of Akt phosphorylation and promoted the prolif-
eration and migration of fibroblasts (Figure 8), which suggest that PTEN plays an important role in the 
activation of fibroblasts.
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Figure 3 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of genes targeted by hsa-miR-144-3p. A-D: Top 10 Gene 
Ontology biological process, cellular component, and molecular function terms enriched in target genes of hsa-miR-144-3p; E: Top 10 Kyoto Encyclopedia of Genes 
and Genomes pathways enriched in target genes of hsa-miR-144-3p. BP: Biological process; CC: Cellular component; MF: Molecular function; GO: Gene Ontology; 
KEEG: Kyoto Encyclopedia of Genes and Genomes.

Normal TBI has a transitional structure consisting of four graduated layers including bone tissue, 
mineralized fibrocartilage layer, non-mineralized fibrocartilage layer and tendon tissue[27], which 
means that fibrogenesis, tenogenesis and chondrogenesis are key characteristics of tendon-bone healing. 
As the markers of fibrogenesis, α-SMA and vimentin are expressed in activated fibroblasts[28]. 
Similarly, tenomodulin (TNMD) and collagen I, collagen II and Sox-9 are well-acknowledged indicators 
for representing the activation of tenogenic and chondrogenic process[29,30]. By inhibiting PTEN, the 
results showed increased expression of fibroblastic, tenogenic and chondrogenic markers in fibroblasts 
(Figure 9), implying that PTEN and PI3K/Akt pathway may be targets for promoting tendon-bone 
healing.

In addition, this study found that SHH was also regulated by both miRNA-144 and miRNA-23b 
(Figure 5G). HH signaling pathway is a highly conserved pathway involved in embryonic development, 
tissue homeostasis and stem cell maintenance[31]. HH signaling is also involved in regulating prolif-
eration of MSCs in adult tissues and plays critical roles in promoting tendon-bone healing[32-34]. SHH, 
one of three HH family members in mammals, acts in the early stages of development to regulate 
patterning and growth[35], and plays a crucial role in bone healing[36]. These evidences suggested that 
MSC-derived exosomal miRNAs may promote tendon-bone healing in more than one way.

The outcomes of the current study were guaranteed by several factors. In this study, three BMSC-
derived exosomal miRNA expression microarray datasets were searched from the GEO repository to 
avoid batch differences. Moreover, due to the costs, technical challenges, and lack of biomarkers suitable 
for specific exosomes, it is difficult to isolate large number of pure and specific exosomes from mixtures 
of different vesicle types in a large volume of solution[37]. Therefore, this study identified the key 
pathway of exosomal miRNA through comprehensive analysis, providing a theoretical basis for 
developing methods to stably regulate the activation of fibroblasts and thus promote tendon-bone 
healing.
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Figure 4 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of genes targeted by hsa-miR-23b-3p. A-D: Top 10 Gene 
Ontology biological process, cellular component, and molecular function terms enriched in target genes of hsa-miR-23b-3p; E: Top 10 Kyoto Encyclopedia of Genes 
and Genomes pathways enriched in target genes of hsa-miR-23b-3p. BP: Biological process; CC: Cellular component; MF: Molecular function; GO: Gene Ontology; 
KEEG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 5 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of hub-gene targets. A: Top 10 hub-gene targets for hsa-miR-
144-3p; B: Top 10 hub-gene targets for hsa-miR-23b-3p; C-E: Top 10 Gene Ontology biological process, cellular component, and molecular function terms enriched in 
the top 20 hub-gene targets; F: Top 10 Kyoto Encyclopedia of Genes and Genomes pathways enriched in the 20 hub-gene targets; G: Interaction network of the two 
microRNAs and their hub-gene targets.
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Figure 6 Phosphatase and tensin homolog is verified as the targets of miR-144-3p and miR-23b-3p. A: Human and mouse sequence of 
phosphatase and tensin homolog (PTEN) for miR-144-3p binding site; B: Human and mouse sequence of PTEN for miR-23b-3p binding site; C: The relative luciferase 
activity was tested after co-transfection of WT/MUT pmirGLO-PTEN-3’UTR and miR-144-3p mimics or their control groups in NIH3T3 cells; D: The relative luciferase 
activity was tested after co-transfection of WT/MUT pmirGLO-PTEN-3’UTR and miR-23b-3p mimics or their control groups in NIH3T3 cells; E: The mRNA levels of 
PTEN in NIH3T3 cells transfected with miR-144-3p mimics or miR-144-3p inhibitors; F: The mRNA levels of PTEN in NIH3T3 cells transfected with miR-23b-3p 
mimics or miR-23b-3p inhibitors; G: Western blot showing the PTEN expression levels after transfected with miR-144-3p mimics and miR-23b-3p mimics. n = 3 per 
groups. Data are shown as mean ± SD. aP < 0.05, bP < 0.01.

However, the outcomes should also be interpreted with caution. The biological functions of exosomal 
miRNAs are diverse, but this study only took the overlapped target gene, i.e., PTEN, for analysis. Thus, 
further exploration is needed to pinpoint the specific functions of each miRNA. In addition, this study 
only used murine NIH3T3 cells in vitro. Experiments in vivo is needed to verify the reconstruction of the 
natural gradient structure of TBI.

CONCLUSION
BMSC-derived exosomes promote fibroblast activation possibly through the PTEN and PI3K/Akt 
signaling pathways, which may serve as potential targets to further promote tendon-bone healing.
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Figure 7 MiR-144-3p and miR-23b-3p regulate the proliferation, migration and collagen synthesis of NIH3T3 fibroblasts. A: 
Bromodeoxyuridine assay was performed to measure the proliferation ability; B: Wound healing assay was performed to measure the migratory capability; C: 
Immunofluorescence was performed to determine the effects of miR-144-3p and miR-23b-3p on COL I and α-smooth muscle actin expression. n = 3 per groups. Data 
are shown as mean ± SD. aP < 0.05, bP < 0.01. α-SMA: α-smooth muscle actin.



Li FQ et al. BMSC-Exos promote tendon-bone healing

WJSC https://www.wjgnet.com 263 April 26, 2023 Volume 15 Issue 4



Li FQ et al. BMSC-Exos promote tendon-bone healing

WJSC https://www.wjgnet.com 264 April 26, 2023 Volume 15 Issue 4

Figure 8 Inhibition of phosphatase and tensin homolog promoted cell proliferation, migration, and collagen synthesis. A: The protein levels 
of p-Akt and Akt in NIH3T3 cells were determined by western blot; B: Bromodeoxyuridine assay was performed to measure the proliferation ability; C: Wound healing 
assay was performed to measure the migratory capability; D: Collagen contraction assay was performed to evaluate the cell contractility. n = 3 per groups. Data are 
shown as mean ± SD. aP < 0.05, bP < 0.01.

Figure 9 Inhibition of phosphatase and tensin homolog change the gene expression of fibroblastic-, tenogenic-, and chondrogenic-
related factors in NIH3T3 cells. The mRNA level of α-smooth muscle actin, vimentin, TNMD, Col I, Sox-9, and Col II in NIH3T3 cells treated with or without 
SF1670 was determined by quantitative real-time reverse transcription polymerase chain reaction. Data are shown as mean ± SD. aP < 0.05, bP < 0.01. α-SMA: α-
smooth muscle actin.
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ARTICLE HIGHLIGHTS
Research background
The normal tendon-bone insertion has a transitional structure consisting of four gradated layers 
including bone, mineralized fibrocartilage layer, non-mineralized fibrocartilage layer and tendon. This 
complex structure can disperse force from bone to tendon, preventing stress concentration. However, 
current therapeutic strategies cannot restore this structure, hence raising the risk of re-injury.

Research motivation
Recent evidence indicates that conditioned medium, primarily contains exosomes of mesenchymal stem 
cells (MSCs), can stimulate the activation of fibroblasts, thereby promoting tendon-bone healing. 
However, the underlying mechanism is not comprehensively understood. Moreover, the expression of 
exosome microRNA (miRNA) may vary depending on the status of MSCs, which presents difficulties in 
identifying the roles associated with MSC-derived exosomal miRNAs.

Research objectives
To identify overlapped bone marrow MSC (BMSC)-derived exosomal miRNAs in three GSE datasets 
and verify their effects as well as mechanisms on fibroblasts.

Research methods
BMSC-derived exosomal miRNAs data were downloaded from the Gene Expression Omnibus database. 
The candidate miRNAs were obtained by the intersection of different datasets. TargetScan was used to 
predict potential target genes. Functional and pathway analyses were conducted using the Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Hub genes in the protein-protein 
interaction (PPI) network were analyzed using Cytoscape software. The transcripts of the target gene 
were assessed by dual luciferase reporter assays. BrdU, wound healing assay, collagen contraction assay 
and the expression of COL I and α-smooth muscle actin positive were applied to investigate the cell 
proliferation, migration and collagen synthesis.

Research results
Bioinformatics analyses showed two BMSC-derived exosomal miRNAs, has-miR-144-3p and has-miR-
23b-3p, were overlapped in three GSE datasets. PPI network analysis and functional enrichment 
analyses indicated that both miRNAs regulated the PI3K/Akt signaling pathway by targeting 
phosphatase and tensin homolog (PTEN). In vitro experiments confirmed that both miRNAs stimulated 
proliferation, migration and collagen synthesis of NIH3T3 fibroblasts. Interfering with PTEN affected 
the phosphorylation of Akt and thus activated fibroblasts.

Research conclusions
BMSC-derived exosomes promote fibroblast activation possibly through the PTEN and PI3K/Akt 
signaling pathways, which may serve as potential targets to further promote tendon-bone healing.

Research perspectives
Further exploration is needed to pinpoint the specific functions of exosomal miRNAs. In vivo studies 
may better reveal the effect of exosomal miRNAs on tendon-bone healing.
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