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Abstract

Adolescence is a vulnerable time for the acquisition of substance use disorders, potentially 

relating to ongoing development of neural circuits supporting instrumental learning. Striatal-

cortical circuits undergo dynamic changes during instrumental learning and are implicated in 

contemporary addiction theory. Human studies have not yet investigated these dynamic changes in 

relation to adolescent substance use. Here, functional magnetic resonance imaging was used while 

135 adolescents without (AUD-CUDLow) and with significant alcohol- (AUDHigh) or cannabis-

use-disorder symptoms (CUDHigh) performed an instrumental learning task. We assessed how 

cumulative experience with instrumental cues altered cue-selection preferences and functional 

connectivity strength between reward-sensitive striatal and cortical regions. Adolescents in 

AUDHigh and CUDHigh groups were slower in learning to select optimal instrumental cues relative 

to AUD-CUDLow adolescents. The relatively fast learning observed for AUD-CUDLow adolescents 

coincided with stronger functional connectivity between striatal and frontoparietal regions during 

early relative to later periods of task experience, whereas the slower learning for the CUDHigh 

group coincided with the opposite pattern. The AUDHigh group not only exhibited slower learning, 

but also produced more instrumental choice errors relative to AUD-CUDLow adolescents. For the 

AUDHigh group, Bayesian analyses evidenced moderate support for no experience-related changes 

in striatal-frontoparietal connectivity strength during the task. Findings suggest that adolescent 

cannabis use is related to slowed instrumental learning and delays in peak functional connectivity 

strength between the striatal-frontoparietal regions that support this learning, whereas adolescent 
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alcohol use may be more closely linked to broader impairments in instrumental learning and a 

general depression of the neural circuits supporting it.
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Alcohol and cannabis use disorders are the most prevalent substance disorders afflicting US 

adolescents.1 Considerable effort has been devoted to examining reward-related processes in 

striatal basal ganglia associated with adolescent alcohol and cannabis use.2–6 The striatum 

and broader basal ganglia have established roles in reward processing and instrumental 

learning7,8—the strengthening of associations among predictive cues, actions, and outcomes 

which impact the likelihood of reproducing actions. Striatal function and instrumental 

learning also have implications for understanding and treating substance use disorders.9–12 

For instance, several behavioral therapies for substance-use disorders capitalize upon 

instrumental learning to promote abstinence (e.g., motivational enhancement, contingency 

management).12 Importantly, striatal regions are thought to function in concert with a 

network of cortical regions when influencing both instrumental learning13 and addictive 

behaviors.11 Yet, there is no evidence available from human developmental research 

indicating how functional relationships between the striatum and cortex may relate to altered 

instrumental learning associated with substance use.

Adolescent alcohol and cannabis use are associated with alterations in striatal and 

frontoparietal (i.e., dorsolateral prefrontal cortex [dlPFC] and parietal cortex) functions, 

which may have implications for instrumental learning.13 Indeed, adolescent alcohol and 

cannabis use have been linked to performance deficits on tasks that permit learning 

through reward and punishment feedback.14,15 Functional magnetic resonance imaging 

(fMRI) studies have also demonstrated altered activations in striatum during tasks that 

feature reward and punishment events associated with adolescent alcohol or cannabis 

use.2–6 For example, adolescents who binge-drink show decreased striatal activation during 

reward anticipation, relative to non-binge-drinking adolescents6 and greater adolescent 

cannabis-use-disorder symptoms are related to decreased striatal activations during 

punishment feedback.2 Regarding frontoparietal regions, fMRI findings have indicated 

reduced representation of reward prediction error (RPE) and expected value signals (covert 

factors of reinforcement-learning models) by brain activations in these regions during 

instrumental learning associated with adolescent alcohol and/or cannabis use.4,15 A recent 

meta-analysis has also indicated that substance use more broadly is characterized by reduced 

representation of a range of prediction-error signals (covert factors of learning) in both 

striatal and lateral prefrontal regions.16

To our knowledge, only one study has examined functional relationships among striatal 

and cortical regions during instrumental learning in the context of substance use.17 There, 

adults with alcohol use disorder demonstrated weaker functional connectivity between 

ventral striatal and dlPFC regions during an instrumental learning task, as well as behavior 

consistent with slower learning of instrumental contingencies (i.e., cue-action-outcome 
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associations) relative to adults without this disorder. These findings highlighted possible 

links amongst adult substance use, striatal-frontoparietal functional connectivity, and slowed 

instrumental learning. It is not known, however, whether adolescent substance use is 

related to altered striatal-frontoparietal functional connectivity during instrumental learning. 

Further, no study has characterized how striatal-frontoparietal functional connectivity 

changes over the course of adolescents’ instrumental learning or whether such experience-

related changes in functional connectivity might be altered in the context of substance 

use. Yet, examining experience-related changes is critical for investigating the neural 

correlates of learning, as functional connections among striatal and cortical regions evolve 

as participants gain experience and become more proficient in performing instrumental 

learning tasks.18

The present study addressed these gaps by examining how adolescents’ functional 

connectivity between striatum and frontoparietal regions changed with cumulative 

experience on an instrumental learning task, and whether potential impairments in 

learning for adolescents with significant alcohol- (AUDHigh) or cannabis-use-disorder 

symptoms (CUDHigh) coincided with altered functional connectivity between these regions. 

Instrumental learning was examined using a passive avoidance task (PAT). This task is 

sensitive to performance deficits associated with adolescent alcohol and/or cannabis use and 

has demonstrated reduced representation of RPE and expected-value signals in striatal and 

frontoparietal regions related to adolescent use of these substances.15 Consistent with the 

slower learning of instrumental contingencies observed in an adult substance use disorder,17 

we first predicted that adolescents in the AUDHigh and CUDHigh groups would exhibit a 

slower rate of decline in instrumental choice errors over the course of the PAT, relative to 

adolescents not presenting with these symptoms (AUD-CUDLow). Instrumental choice errors 

were defined as failures to choose cues associated with high reward probabilities and failures 

to avoid choosing cues associated with high punishment probabilities.4,18,15 We examined 

these errors because they encompassed instrumental learning in the context of both positive 

reinforcement and negative punishment contingencies.

Second, we examined whether experience on the PAT differentially altered AUDHigh and 

CUDHigh adolescents’ functional connectivity between striatum and frontoparietal regions, 

relative to adolescents in the AUD-CUDLow group. Experience effects were investigated 

by examining changes in functional connectivity strength across the first and second 

halves of the PAT (i.e., early- and late-experience phases).19 Coordinated activation among 

basal ganglia and, task-relevant prefrontal and posterior cortical regions is hypothesized to 

support the initial learning of instrumental contingencies.20 However, after contingencies 

are sufficiently learned through experience, coordinated activation among basal ganglia 

and these cortical regions may no longer be needed to support instrumental behaviors.20 

Consistent with this hypothesis, we predicted that relatively fast learning of instrumental 

contingencies by adolescents in the AUD-CUDLow group would be accompanied by strong 

functional connectivity (our operationalized measure of coordinated activity) between 

reward-sensitive striatum and frontoparietal regions during the early-experience phase of 

the PAT, followed by a decrease in strength during the late-experience phase. For adolescents 

in the AUDHigh and CUDHigh groups, however, we predicted that slower learning of 

instrumental contingencies would be accompanied by a relative delay in peak striatal-
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frontoparietal connectivity strength. Specifically, we predicted functional connectivity 

among these regions may be relatively weak during the early-experience phase and increase 

for the late phase of the PAT. Alternatively, it is possible that compromised learning in these 

groups may be accompanied by minimal experience-related changes in striatal-frontoparietal 

connectivity strength.

Method

Participants and Procedure

This article presents novel tests of behavioral and neural predictions using previously 

described data.3 Adolescents (ages 14 to 18 years) were recruited from a residential 

treatment program and the surrounding Omaha, Nebraska community as part of a broader 

study examining youth behavioral and emotional problems (including substance use).21,2,3 

Procedures were approved by the Boys Town National Research Hospital Institutional 

Review Board. Parental informed consent and adolescent assent was obtained. Exclusion 

criteria: scores on the Wechsler Abbreviated Scale of Intelligence Full-scale IQ<75 

(FS-IQ)22 pregnancy; non-psychiatric conditions requiring the use of medication with 

potential psychoactive effects (e.g., beta blockers, steroids); current psychosis; pervasive 

developmental disorders; Tourette’s disorder; neurological disorders; metallic objects in the 

body; and claustrophobia. Current psychiatric conditions (other than psychotic disorders 

or pervasive developmental disorders) and medication for psychiatric conditions were not 

exclusionary. Participants taking stimulant medication were asked to withhold use of this 

medication on the day of scanning. Psychiatric diagnoses were established via clinical 

interview of adolescents and their parents/caregivers administered by licensed and board-

certified child and adolescent psychiatrists. Diagnoses were assigned according to DSM-V 

criteria.

Structural and functional magnetic resonance imaging (MRI) data were available from 142 

participants. Data were retained for 135 adolescents after quality assurance procedures, 

wherein: one dataset was discarded due to failed functional-structural registration, four 

datasets were discarded due to duplicate fMRI sessions (e.g., participant needed to restart 

task), and two datasets were discarded due to missing PAT behavioral data.

Characterization of Alcohol and Cannabis Use

Adolescent alcohol- and cannabis-use-disorder symptoms were characterized via the 

Alcohol Use Disorder Identification Test (AUDIT)23 and Cannabis Use Disorder 

Identification Test (CUDIT)24. These assessed the quantity and frequency of alcohol or 

cannabis use, as well as the psychosocial consequences experienced due to use in the 

past 1 year or 6 months. AUDHigh status was characterized using the alcohol-use-disorder 

clinical threshold suggested for the AUDIT (≥4)25. CUDHigh status was characterized 

using the cannabis-use-disorder clinical threshold suggested for the CUDIT (≥8)24. Group 

characterization was based solely upon AUDIT and CUDIT scores, not clinical diagnoses. 

Approximately 24% (32/135) of participants reached both AUDIT and CUDIT thresholds, 

these participants were included in analyses for both AUDHigh and CUDHigh groups. 
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Adolescents failing to reach thresholds on both the AUDIT and CUDIT were assigned to the 

control group (AUD-CUDLow).

Passive Avoidance Task (PAT)

The PAT is an fMRI-adapted instrumental learning paradigm presenting cues that, if acted 

upon, offer a chance to win or lose virtual money (see Figure 1A)3,15. One of four cue 

shapes was presented per trial (1500 ms). Participants chose whether to respond to the 

cue. The cue was then removed, and a fixation period occurred (jittered: 0–4000 ms). If 

participants chose not to respond to the cue, a blank screen was presented (1500 ms). If 

they chose to respond, feedback was presented informing them that their choice resulted 

in winning or losing money (1500 ms). Feedback followed a probabilistic reinforcement 

schedule: two shapes (high reward probability cues) were associated with an 80% chance of 

a reward (+$1 or +$5), and a 20% chance of punishment (-$1 or -$5); and two shapes (high 

punishment probability cues) were associated with an 80% chance of a punishment (-$1 or 

-$5), and a 20% chance of reward (+$1 or +$5). After choice-feedback or the no-choice 

blank screens, a fixation period preceded a subsequent trial (jittered: 0–4000 ms).

A brief practice PAT was administered outside of the scanner to familiarize participants 

with performing a PAT. The practice PAT utilized different cues and reinforcement schedules 

than the actual PAT (see Supporting Information). During the actual PAT, responses were 

registered via button boxes. Four cue types were presented 27 times each, in random order 

(108 total trials). The target behavioral measure was instrumental choice errors, which 

indexed a failure to choose a cue associated with high reward probability or a failure to avoid 

choosing a cue associated with high punishment probability.4,18,15

Image Acquisition and Processing

Acquisition.—Images were acquired from a Siemens 3-Tesla MAGNETOM Skyra 

MRI scanner with a 20-channel head coil. A T1-weighted magnetization-prepared rapid 

gradient echo (MPRAGE) sequence acquired whole-brain (176 axial slices), high-resolution 

anatomical images using the following parameters: TR=2200 ms, TE=2.48 ms, FoV=200 

mm, Flip Angle=8°, 256×208 matrix, 0.9×0.9×1 mm3 voxel size. A T2*-weighted gradient-

recalled echo planar imaging sequence acquired whole-brain (43 axial slices) blood-oxygen-

level dependent (BOLD) signals during the PAT task using the following parameters: 

TR=2500 ms, TE=27 ms, FoV=240 mm, Flip Angle=90°, 94×94 matrix, 2.6×2.6×2.5 mm3 

voxel size.

Processing.—Images were preprocessed using a standardized fmriprep processing 

workflow (v.20.2.1) including: T1w bias-field correction, brain extraction, normalization to 

the ICBM-152 Nonlinear Asymmetrical template, compartmental segmentation, and motion 

correction and quantification procedures.26 Preprocessed functional volumes were spatially 

smoothed (6 mm Gaussian kernel). Motion outliers were defined via a Euclidean-norm 

approach with a head-displacement threshold comparable to previous youth fMRI studies 

(.7 mm)27,28. An a priori threshold was set to discard a participant’s data if 20% or more 

of their functional volumes were deemed motion outliers29; this threshold excluded zero 

participants. Analysis of Functional Neuroimages (AFNI) software31 was used to build 
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generalized linear models (GLMs) estimating BOLD activations during the PAT while: (1) 

controlling for three translation and three rotation head-motion estimates and frame-wise 

displacement 30; (2) employing an automatic polynomial (high-pass) filter to minimize 

additional temporal trends (e.g., signal drift); and (3) preventing the volumes deemed motion 

outliers (see above) from influencing the GLM output (via 3dDeconvolve -censor).

Localization of Reward-sensitive Nodes.—Striatal and cortical regions differentially 

responsive to PAT instrumental contingencies were localized functionally. BOLD time series 

and stimulus timings for high reward and high punishment probability cues were convolved 

with double-gamma impulse response functions using the aforementioned GLM procedures. 

Beta weights were aggregated across all participants and subjected to a sample-wide, whole-

brain t-test contrasting weights derived from high reward and high punishment probability 

cues (HighReward > HighPunish). Clusters of significant activation (z ≥ 3.94; k-faces-touching 

voxels > 49; FWER-corrected p < .001) were transformed into 13, non-overlapping nodes of 

equal volume via a 7 mm sphere placed at each cluster’s peak voxel28; hereafter, described 

as reward-sensitive nodes. These nodes were used in subsequent analyses.

Functional Connectivity between Reward-sensitive Nodes.—Analyses evaluated 

functional connectivity strength between the reward-sensitive striatal node (RSStriatum) and 

the remaining 12 reward-sensitive nodes across the early and later experience phases of the 

PAT. The first 54 trials were operationalized as the early experience phase, the last 54 trials 

comprised the late phase.19 For the entire sample, the averaged rate of change in choice 

error probabilities (see Statistical Analysis below) reached an approximate asymptote during 

the early phase, indicating instrumental choice performance approached an approximate 

steady state for many adolescents by the late phase (Figure 1B–C). Equal division of trials 

was necessary to ensure similar statistical power was afforded to both experience phase 

conditions.

Trial-by-trial BOLD activations during early- and late-experience phases for HighReward and 

HighPunish cues were modeled as separate regressors via convolution with double-gamma 

impulse response functions using the aforementioned GLM procedures (see also Supporting 

Information). Beta weights for each trial of these four conditions were averaged spatially 

across voxels within each reward-sensitive node, providing a single beta-series per node.27 

Pearson correlations were computed using these beta-series between RSStriatum and the 

remaining 12 reward-sensitive nodes, producing functional connectivity coefficients with 

RSStriatum for all four conditions.32 This approach produced a connectivity matrix for each 

condition (four conditions total) from which functional connectivity strength with RSStriatum 

could be examined.

Bidirectional functional connectivity strength with RSStriatum was computed on each of the 

four matrices using Brain Connectivity Toolbox.33 We did not have specific hypotheses 

regarding functional connections between the striatum and individual reward-sensitive 

frontoparietal nodes, as lateral DLPFC and parietal regions are implicated in shared 

cognitive processes during reinforcement learning.13 Therefore, the strength of functional 

connections with RSStriatum was calculated amongst the positive connections aggregated 

across the four reward-sensitive frontoparietal nodes to limit family-wise error and aid 
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in interpretations (hereafter, RSFP nodes)27. This same procedure was performed to 

estimate the strength of functional connectivity between RSStriatum and all other reward-

sensitive nodes excluding the frontoparietal nodes (hereafter, RSOther nodes). See Supporting 

Information for expanded description.

Statistical Analyses

Substance-use-disorder Groups and Dimensions.—We tested whether AUDHigh 

and CUDHigh groups differed from the AUD-CUDLow group on instrumental choice 

behaviors and functional connectivity. For functional connectivity analyses, AUDIT and 

CUDIT scores were additionally rankit transformed and z-standardized2–4 providing a 

dimensional covariate to investigate the specificity of substance-use-disorder-group effects. 

That is, for significant group-level effects (e.g., CUDHigh versus AUD-CUDLow status), 

the extent of participants’ symptoms related to the other substance (e.g., zAUDIT score) 

were covaried to examine whether effects were specific to a particular form of substance-

use-disorder symptomology. This approach was used in lieu of directly comparing AUDHigh 

versus CUDHigh groups because of non-exclusivity and co-use between these groups. The 

continuous measures also allowed us to evaluate specific dimensional effects of alcohol- 

or cannabis-use-disorder symptoms on functional connectivity. Combined results from 

AUDHigh and CUDHigh versus AUD-CUDLow status are provided in Supporting Information.

Instrumental Learning Rate.—Instrumental choice errors were obtained from each PAT 

trial for each participant. Instrumental choice error probabilities were used for group-level 

tests and were calculated as the proportion of group members committing an instrumental 

choice error on each trial. Instrumental learning rates were investigated using a single-term, 

power series regression (Figure 1B–C), consistent with power-law relationships observed 

between task experience and associative learning/memory performance.34,35 Power-series 

regression models estimated the decrease of instrumental choice error probabilities with 

accumulating experience on the PAT. More negative decay rate parameters (xb) were 

operationalized to reflect faster learning of instrumental contingencies.

Between-groups effects on learning rate were assessed using bootstrap aggregation to 

generate unbiased distributions of xb parameters. Therein, group members were randomly 

resampled with replacement and a new power-series model was fit to the resampled 

instrumental choice error probabilities (B=5000). One-tailed, percentile bootstrap tests 

examined overlap between the original xb parameter estimates for each group and the upper-
bound of the 95% confidence limit derived from the bootstrap xb parameter distribution of 

the non-dependent group (AUD-CUDLow). The same approach was used to test whether 

the original xb parameter estimate for the AUD-CUDLow group surpassed the lower-bound 

of the 95% confidence limit derived from bootstrap xb parameter distributions from the 

substance-use-disorder groups.

Overall Instrumental Choice Errors.—Mann-Whitney U-tests were used to examine 

between-group differences in the average probability of an instrumental choice error across 

all trials of the PAT. Rank-biserial correlations (rrb) provided effect sizes. Non-parametric 

tests were chosen because average choice error probabilities were non-normally distributed.
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Experience-related Functional Connectivity Changes.—Repeated-measures 

ANOVAs tested Experience Phase (Early, Late), Cue (HighReward, HighPunish), and 

substance-use-disorder Group effects on functional connectivity strength. Primary 

hypothesis tests examined whether group status was related to differential changes in the 

strength of functional connectivity between RSStriatum and RSFP nodes across experience 

phases (i.e., Experience Phase × Group interactions). Additional repeated-measures ANOVA 

models were used to rule-out broader functional connectivity effects by examining 

functional connections between RSStriatum and RSOther nodes27.

Potential Confounding Factors.—Covariates were examined to assess whether their 

inclusion into the repeated-measures ANOVA influenced the significance of Experience 

Phase × Group effects. Demographic/clinical covariates included: Age, binary Sex, FS-IQ 

(Wechsler Abbreviated Scale of Intelligence Full-scale IQ)22, In-Patient Status (i.e., in-

patient vs. community-dwelling), the absence or presence of any non-substance-dependence 

DSM-5 diagnosis (Any Diagnosis), and the current use of any psychiatric medication (Any 

Medication) were tested as covariates. DSM-5 Diagnoses with a sample-wide incidence of at 

least 20 cases were also evaluated: ADHD (n = 69), Conduct Disorder (n = 61), Generalized 

Anxiety Disorder (n = 36), Oppositional Defiant Disorder (n = 73), and Social Anxiety 

Disorder (n = 28). The same criterion was use for psychiatric medications, including: 

Antidepressants (n = 25) and Stimulants (n = 20). The influence of cigarette smoking 

(ranging from 0 [never] to 4 [current, regular use]) obtained from the Monitoring the Future 

Survey36 was also tested. Imaging-related covariates included head motion estimates via 

the average framewise displacement values after motion censoring27, the number of motion 

censored frames, averaged BOLD activation changes in RSStriatum and RSFP across PAT 

phases in response to HighReward and HighPunishment. Changes in functional connectivity 

strength between RSStriatum and RSOther nodes for HighReward and HighPunishment cues 

across PAT Phases were also tested as covariates to evaluate potential broader effects of 

RSStriatum functional connectivity changes.27,28

Results

Group Characteristics.

Demographic, clinical, and other characteristics of the retained sample (N = 135) may 

be found in Table 1. Statistical tests contrasting group characteristics may be found in 

Supporting Tables 1–2.

Instrumental Learning Rate.

Parametric 95% confidence intervals for each group’s xb parameter estimate did not 

contain zero, indicating significant power-law relationships characterizing task experience 

and instrumental choice error probabilities (ps < .05; Figure 2A). AUDHigh and CUDHigh 

groups’ xb parameter estimates were less negative and did not surpass the upper-bound 

of the 95% bootstrap confidence limit of the AUD-CUDLow group (Figure 2B). The AUD-

CUDLow group’s xb parameter was more negative and did not surpass the lower-bound of 

the 95% bootstrap confidence limits of the AUDHigh and CUDHigh groups (Figure 2B). In 

sum, all groups demonstrated significant power-law relationships between task experience 
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and instrumental choice error probabilities, and AUDHigh and CUDHigh groups exhibited 

significantly slower declines in these errors relative to the AUD-CUDLow group.

Overall Instrumental Choice Errors.

Between-groups analyses failed to indicate a significant difference between CUDHigh and 

AUD-CUDLow groups on the average probability of choice errors, W = 1708.00, p = .118, 

rrb = −.161. However, a significant difference was observed between AUDHigh compared to 

AUD-CUDLow groups, indicating greater average choice error probabilities for the AUDHigh 

group, W = 1003.00, p = .029, rrb = −.255 (also see Supporting Information).

Localization of Reward-sensitive Nodes.

Figure 3A illustrates voxel clusters with significant HighReward > HighPunish activation (z ≥ 

3.94; k-faces-touching voxels > 49; FWER-corrected p < .001). Figure 3B illustrates the 13 

non-overlapping reward-sensitive nodes (see Table 2).

CUDHigh and Experience Effects on Functional Connectivity.

A repeated-measures ANOVA using CUDHigh versus AUD-CUDLow as the Group factor 

demonstrated a significant Experience Phase × Group interaction effect on functional 

connectivity strength between RSStriatum and RSFP nodes, F(1,126) = 12.50, p < .001, 

ηp
2 = .090 (Figure 4A). The significant Experience Phase × Group interaction effect was 

retained after including zAUDIT score into the model, F(1,125) = 14.20, p < .001, ηp
2 = 

.102—indicating CUDHigh effects remained significant independent of alcohol-use-disorder 

symptoms. None of the 22 covariates altered the significance of the Experience Phase 

× Group interaction effect on functional connectivity strength between RSStriatum and 

RSFP nodes (Effect Range: ηp
2 = .031 – .135, p = <.001 – .048). Simple main effects 

analyses of Group confirmed that both the AUD-CUDLow (F(1,126) = 5.23, p = .025) and 

CUDHigh (F(1,126) = 6.96, p = .011) groups exhibited significant Experience Phase-related 

changes in functional connectivity strength between RSStriatum and RSFP nodes, albeit, with 

opposite directionality. As predicted, the AUD-CUDLow group’s functional connectivity 

was significantly stronger during the Early relative to Late Experience Phase, whereas the 

CUDHigh group’s functional connectivity was significantly stronger during the Late relative 

to Early Experience Phase (Figure 4A).

We failed to observe a significant Experience Phase × Group interaction effect on functional 

connectivity strength between RSStriatum and RSOther nodes, F(1,126) = .004, p = .952, ηp
2 < 

.001. Analyses of simple main effects also failed to find significant Experience Phase-related 

changes in functional connectivity strength between RSStriatum and RSOther nodes for either 

group (ps > .05).

AUDHigh and Experience Effects on Functional Connectivity.

A repeated-measures ANOVA using AUDHigh versus AUD-CUDLow as the Group factor 

demonstrated a trending, but non-significant, Experience Phase × Group interaction effect 

on functional connectivity strength between RSStriatum and RSFP nodes, F(1,106) = 3.69, p 
= .057, ηp

2 = .034 (Figure 4B). However, in contrast to all other groups, analyses of simple 
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main effects for AUDHigh failed to indicate significant Experience Phase-related changes 

in functional connectivity strength between RSStriatum and RSFP (p > .05; see Supporting 

Information for Bayesian analyses). Additionally, no significant Experience Phase × Group 

interaction effect was observed on functional connectivity strength between RSStriatum and 

RSOther nodes, F(1,106) = .014, p = .907, ηp
2 < .001. Analyses of simple main effects for 

AUDHigh failed to find significant Phase-related changes in functional connectivity strength 

between RSStriatum and RSOther nodes (p > .05).

Symptom Dimensions and Experience Effects on Functional Connectivity.

An Experience Phase × Cue repeated measures ANCOVA was constructed with zAUDIT 

and zCUDIT scores as covariates to explore dimensional effects of alcohol- or cannabis-use-

disorder symptoms. Similar to group-level results, a significant Experience Phase × zCUDIT 

score interaction was observed on functional connectivity strength between RSStriatum and 

RSFP nodes, despite controlling for zAUDIT scores; F(1,132) = 7.92, p = .006, ηp
2 = .057. 

A partial correlation confirmed the direction of this interaction effect, by demonstrating that 

greater zCUDIT scores were related to weaker Early compared to Late Phase (Early – Late) 

functional connectivity while controlling for zAUDIT, rX|Y = −.238, p = .006. None of the 

22 covariates altered the significance of the Experience Phase × zCUDIT interaction effect 

on functional connectivity strength between RSStriatum and RSFP nodes (Effect Range: ηp
2

= .041 – .095, p = <.001 – .020). Also consistent with Group-level results, we failed to 

observe a significant interaction between Experience Phase × zAUDIT scores on functional 

connectivity strength between RSStriatum and RSFP nodes, F(1,132) = 1.14, p = .287, ηp
2 = 

.009.

Discussion

This study examined experience-related changes in adolescents’ instrumental choice errors 

and functional connectivity among reward-sensitive striatal and frontoparietal regions. In 

support of our prediction, AUDHigh and CUDHigh groups exhibited significantly slower 

declines (i.e., decay rate) of instrumental choice error probabilities relative to the AUD-

CUDLow group. These findings were comparable to those observed in adult alcohol 

use disorder,17 and evidenced that adolescents with significant alcohol- and cannabis-use-

disorder symptoms were slower to learn instrumental contingencies than adolescents without 

these symptoms. The AUDHigh group additionally exhibited significantly increased average 

choice error probabilities relative to AUD-CUDLow adolescents, whereas comparable effects 

were not observed for the CUDHigh group. These findings were consistent with a previous 

study examining continuous effects of adolescent AUD and CUD symptoms on instrumental 

choice performance4 and intimate that AUD-related deficits in instrumental learning extend 

beyond slowed acquisition of instrumental contingencies.14,37

In support of our prediction for AUD-CUDLow adolescents, results showed that connectivity 

strength among reward-sensitive striatal and frontoparietal regions was strongest during the 

early phase of the PAT, wherein these adolescents exhibited a steep, experience-related 

decline in instrumental choice errors. During the late phase of the PAT, wherein these 

errors had a shallower decline, a significant reduction in functional connectivity strength 
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was observed between reward-sensitive striatal and frontoparietal regions. The coinciding 

experience-related changes observed for instrumental choice errors and connectivity strength 

correspond with hypotheses regarding the role of coordinated activation among the 

broader basal ganglia and task-relevant cortical areas during learning.20 During the initial 

learning of instrumental contingencies, dopamine-related RPEs are posited to induce or 

enhance coordinated activation among basal ganglia and, task-relevant prefrontal and 

posterior cortical regions (e.g., parietal cortex). Once instrumental contingencies are 

sufficiently learned, instrumental errors and RPEs should approximate a local minimum8; 

concomitantly, coordinated activation among basal ganglia and these cortical regions should 

also be reduced.

Relatedly, we predicted that slower learning of instrumental contingencies for adolescents 

in the AUDHigh and CUDHigh groups would coincide with a relative delay in peak striatal-

frontoparietal connectivity strength. Results supported this prediction for the CUDHigh, 

but not AUDHigh group. Compared to AUD-CUDLow adolescents, the CUDHigh group 

exhibited both a slower decay in choice errors and a later peak in their connectivity strength 

among reward-sensitive striatal and frontoparietal regions. The group by experience-phase 

interaction effect on functional connectivity among these regions retained significance 

despite covarying for AUD symptoms, as well as other potential confounds (e.g., psychiatric 

disorders). This effect also retained significance despite covarying for average activation in 

reward-sensitive striatal and frontoparietal regions and experience-related changes in striatal 

connectivity strength with other reward-sensitive regions. Together, these findings newly 

demonstrated a relative delay in peak functional connectivity strength: (1) coinciding with 

slowed instrumental learning; (2) specific to adolescent cannabis use; and (3) localized 

within striatal-frontoparietal connections.

The precise mechanisms influencing slower learning and a putative delay in coordinated 

activity among striatal and frontoparietal regions in CUDHigh adolescents are unclear. 

On one hand, these findings could relate to alterations in the ability of ascending (i.e., 

bottom-up) dopaminergic signals to modulate striatal and cortical regions. For instance, 

cannabis use is linked to diminished release of striatal dopamine during amphetamine 

challenge38 and, decreased metabolic responses within the striatum and diffuse cortical 

regions during methylphenidate challenge39—suggesting a cannabis-use-related “blunting” 

of striatal and cortical responsivity to dopamine.40 On another hand, adolescent cannabis 

use has also been linked to altered activation in lateral prefrontal and parietal regions 

across various fMRI paradigms,41 as well as deficits in cognitive processes supported 

by these regions (e.g., goal-directed attention)42. Thus, attention deficits or alterations 

to descending, top-down signaling processes might have also contributed to the present 

results. It is also possible that cannabis-related deficits in instrumental learning and delayed 

coordinated activation among striatal-cortical regions emerge from dysfunction within the 

recurrent interactions between striatal and frontoparietal regions, and the bottom-up and 

top-down process these regions support.43 Indeed, cannabis use disorder is also linked 

to reduced fractional anisotropy within striatal, peri-striatal, and cortical association (i.e., 

superior longitudinal fasciculi) white matter fibers44—suggesting the potential for inefficient 

or otherwise altered information transmission throughout striatal-frontoparietal structural 

circuits. Clearly, future research is needed to determine whether these or other mechanisms 
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give rise to the slowed learning and relatively delayed increases in striatal-frontoparietal 

connectivity strength associated with adolescent cannabis use.

We failed to observe significant experience-related changes within the AUDHigh group’s 

striatal-frontoparietal connectivity. Bayesian analyses indicated that these findings were 

approximately 4.6 times more likely to have occurred under the null hypothesis (i.e., 

no experience-related change) compared to the alternative hypothesis (i.e., an experience-

related change), evidencing moderate support45 for the null hypothesis in the AUDHigh 

group (see Supporting Information). One explanation for these findings relates to greater 

impairments in instrumental learning and a general depression of the striatal-frontoparietal 

functions that support it for the AUDHigh group. This explanation was partially supported 

by our observation that the AUDHigh, but not the CUDHigh group, demonstrated increased 

probabilities of choice errors relative to the AUD-CUDLow group. Indeed, like the AUDHigh 

effects observed here, one study of typical adults demonstrated that fewer dynamic 

changes in striatal-cortical functional connections during learning were also related to 

increased probabilities of producing instrumental choice errors.18 Although comparable 

findings are not available in adolescent substance use disorders, imaging studies contrasting 

adolescent AUD and CUD symptoms do demonstrate AUD-specific reductions of striatal 

and frontoparietal functions during instrumental learning.3,4 For instance, in the same 

sample used here, increased AUD symptoms were related to reduced differentiation between 

reward and punishment feedback by activations within striatal and parietal regions.3 In a 

separate sample and a different instrumental task, increased adolescent AUD symptoms were 

also shown to be related to reduced modulation of striatal, dlPFC, and parietal regions by 

RPEs.4 Effects from both studies were observed despite controlling for CUD symptoms. In 

the context of the present and extant findings, we speculate that while adolescent CUD is 

characterized by slowed instrumental learning and relatively delayed increases in functional 

connectivity strength between brain regions supporting this learning; adolescent AUD may 

be better characterized in relation to a broader impairment in instrumental learning and 

a more general functional depression of the striatal-frontoparietal systems that support it. 

Although this speculation requires additional confirmation, it underscores an intriguing 

possibility for distinct behavioral and neural phenomena differentially characterizing 

instrumental, or potentially broader reinforcement learning, in the two most prevalent 

adolescent substance use disorders.

Limitations and Future Directions

The present results should be considered in the context of several limitations. First, 

although 94% of adolescents within the AUDHigh and CUDHigh groups were residents 

of a supervised treatment facility and subject to random drug screening for at least four 

weeks prior to scanning, biological confirmation of abstinence was not available the day 

of scanning. Second, following adolescent epidemiological trends,46 alcohol and cannabis 

co-use was high in the present sample. While the use of AUDIT and CUDIT dimensional 

covariates provided support for the specificity of our functional connectivity effects, 

participant-overlap precluded AUDHigh and CUDHigh group comparisons. Future work 

should consider directly contrasting single- and co-use groups to disentangle substance-use-

disorder effects more definitively. Third, although we examined the impact of 22 covariates 

Hubbard et al. Page 12

Addict Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on significant functional connectivity effects, covariate interactions were not examined. 

Fourth, AUDIT and CUDIT scores assayed recent substance-use-disorder symptoms, 

however, comprehensive substance-use histories (e.g., age of first use, duration of use) were 

not available. As these histories have been shown to relate to altered striatal-frontoparietal, 

resting-state functional connectivity,47 future research is warranted to evaluate the influence 

of such factors on functional connectivity during instrumental learning. Finally, given the 

paucity of studies examining task-based functional connectivity related to adolescent alcohol 

or cannabis use, future research should examine the extent to which the present findings 

generalize to the broader population.

Conclusions

Adolescents with significant alcohol- or cannabis-use-disorder symptoms learned 

instrumental contingencies slower than adolescents without these symptoms. In adolescents 

without significant alcohol- or cannabis-use-disorder symptoms, their relatively fast learning 

coincided with stronger functional connectivity between striatal and frontoparietal regions 

early during experience with instrumental cues relative to later. For adolescents with 

significant cannabis-use-disorder symptoms, their relatively slow learning coincided with 

stronger striatal-frontoparietal connectivity during later experience relative to earlier. 

Adolescents with significant alcohol-use-disorder symptoms failed to exhibit significant 

changes in striatal-frontoparietal connectivity strength across experience phases, which 

may have related to a reduced overall capacity for instrumental learning and a general 

depression of the striatal and frontoparietal functions that support it. Research is needed 

to realize the translational potential of the present findings. However, because several 

therapies for substance use disorders rely upon learning novel instrumental associations,12 

an understanding of specific substance-related limitations in this learning and dysfunctions 

in associated neural circuits may prove fruitful for optimizing these or related treatments for 

adolescent alcohol- or cannabis-use disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Illustration of reward, punishment and no-feedback scenarios of passive avoidance 

task (PAT). (B) Power-series regression curve of choice error probability computed across 

entire sample for operationalized early- and late-experience phases. Adjusted coefficient 

of determination (Radj
2) and decay coefficient (xb) derived from power-series regression 

model. Brackets contain parametric, 95% confidence limits of xb. Colour shading illustrates 

operationalization of early- and late-experience phases. (C) Linear regression curves for log 

choice error probabilities from early (blue) and late (grey) phase trials. Radj
2 and regression 

slope estimates (β) derived from linear regressions fit to log trial by log choice error 

probability. Brackets contain parametric, 95% confidence limits of β. † denotes parametric, 

95% confidence interval of xb coefficient (B) or log–log regression β (C) did not contain 0. 

Panel A adapted from Aloi and colleagues3
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Figure 2. 
(A) Power-series regression curves and model fit estimates by group across passive 

avoidance task (PAT) trials. Adjusted coefficient of determination (Radj
2) and decay-rate 

coefficient (xb) derived from each group’s power-series regression model. Brackets contain 

parametric, 95% confidence limits of xb. (B) Smoothed frequency distributions (kernel 

density) of xb coefficient derived from bootstrapped-resampling procedure for adolescents 

meeting the criteria for significant cannabis (CUDHigh [green]) or alcohol use disorder 

symptoms (AUDHigh [orange]), compared with adolescents not meeting these criteria (AUD-

CUDLow [blue]). Solid vertical lines and associated text reflect parametric xb derived from 

each group’s power-series regression. Dashed vertical lines reflect 95th percentile limits of 

bootstrap distribution. † denotes parametric, 95% confidence interval of xb did not contain 

0. * denotes CUDHigh or AUDHigh group’s parametric xb did not surpass the upper bound 

of the AUD-CUDLow group’s 95% confidence limit (95% UCL = −.126). ** denotes AUD-

CUDLow group’s parametric xb did not surpass the lower bound of the CUDHigh (95% LCL 

= −.167) or AUDHigh (95% LCL = −.153) 95% confidence limits
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Figure 3. 
(A) Sample-wide, voxel clusters exhibiting significant activation during high-reward 

probability cues relative to high-punishment probability cues (HighReward > HighPunish 

activation; z ≥ 3.94; k-faces-touching voxels > 49; FWER-corrected p < 0.001). (B) 

Illustration of the 13 non-overlapping reward-sensitive nodes. Colours reflect reward-

sensitive node grouping. See Table 2 for anatomical and node labels, as well as LPI 

coordinates.
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Figure 4. 
Striatal–frontoparietal marginal mean functional connectivity strength by substance use 

dependence group. Error bars reflect 1 standard error of the mean. ηp2, partial eta-squared 

group by experience phase effect size. *** denotes p < 0.001.
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Table 1.

Quality Assured Sample Characteristics by Substance-use-disorder Group (N = 135)

AUDHigh CUDHigh AUD-CUDLow

N
a 39 59 69

Percent Male 56.4 66.1 59.4

Percent In-patient 92.3* 94.9* 55.1

Mean Age (SEM) 16.9 (.16)* 16.5 (.13)* 16.5 (.14)

Mean AUDIT (SEM) 10.2 (1.2)* 06.5 (.96)* 00.5 (.10)

Mean CUDIT (SEM) 16.2 (1.3)* 17.7 (.88)* 01.1 (0.3)

Median Smoking (MAD) 03.0 (0.5)* 03.0 (1.0)* 00.5 (0.1)

Mean FS-IQ (SEM) 99.7 (1.8) 100.1 (1.4) 99.5 (1.2)

Mean FD (SEM) 0.14 (.01) 0.13 (.01) 0.14 (.01)

Mean Censored (SEM) 2.95 (.65) 2.51. (.49) 2.13 (.44)

Percent Psych. Med.

 Any 41.0 39.0 24.6

 Antidepressant 33.3* 28.9* 08.7

 Stimulant 12.8 15.3 15.9

 Other 05.1 08.5 11.6

Percent DSM-5 Diagnosis

 Any 94.9* 94.9* 50.7

 ADHD 66.7* 69.5* 34.8

 Conduct Disorder 69.2* 69.5* 23.2

 Generalized Anxiety 48.7* 39.0* 15.9

 Major Depression 25.6 22.0 11.6

 ODD 71.8* 78.0* 33.3

 PTSD 25.6* 16.9 07.2

 Social Anxiety 35.9* 25.4 13.0

AUDHigh = significant alcohol-use-disorder symptom status; CUDHigh = significant cannabis-use-disorder symptom status; AUD-CUDLow = 

clinical threshold not met for AUD nor CUD; AUDIT = Alcohol Use Disorder Identification Test; CUDIT = Cannabis Use Disorder Identification 

Test; SEM = 1 standard error of mean; Smoking = cigarette use (0 [never] to 4 [current, regular use]) reported on Monitoring the Future Survey36; 

MAD = median absolute deviation; FS-IQ = full-scale intelligence quotient obtained from Weschler Abbreviated Scale of Intelligence22; FD = 
average framewise displacement after motion censoring; Censored = mean number of motion-censored frames; Other = non-stimulant attention 
deficit hyperactivity disorder medication, antipsychotic, or mood-stabilizer. ADHD = attention deficit hyperactivity disorder; ODD = oppositional 
defiant disorder; PTSD = post-traumatic stress disorder.

*
= significant group difference between substance-use group and AUD-CUDLow. For AUDHigh and CUDHigh between-groups statistical 

comparisons to AUD-CUDLow see Supporting Information Tables 1–2.

a
Note: AUDHigh and CUDHigh groups were not exclusive and could include participants meet threshold for AUDHigh and/or CUDHigh.
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Table 2.

Reward-sensitive Nodes, Anatomical Labels, and Coordinates

Anatomical Label (BAs) X Y Z Voxels Node Group

L Ventral Caudate −10 08 00 587 RSStriatum

L Superior Parietal Lobule (7) −30 −61 49 809 RSFP

L Inferior Frontal Gyrus (9,6,8) −48 05 36 366 RSFP

R Inferior Parietal Lobule (7,40) 31 −56 49 286 RSFP

R Middle Frontal Gyrus (46,10) 39 33 18 256 RSFP

L Inferior Occipital Gyrus (19,18) −38 −84 −12 806 RSOther

R Lingual Gyrus (18,17) 23 −89 −09 714 RSOther

R Lobule VI 18 −53 −24 280 RSOther

Cingulate Gyrus (23,31) 03 −30 27 182 RSOther

L Postcentral Gyrus (40,41,42) −58 −20 18 078 RSOther

L Insula (13,44) −38 −02 12 070 RSOther

R Inferior Frontal Gyrus/Insula (47,13) −33 21 −03 067 RSOther

L Inferior Frontal Gyrus/Insula (47,13) 39 18 −03 067 RSOther

Anatomical labels and coordinates reflect peak voxels within significant cluster in MNI space. Lateral distinctions are not made within 5 mm of 
midline. Significance evaluated at z ≥ 3.94; k-faces-touching voxels > 49; FWER-corrected p < .001. Brodmann’s Areas (BAs) within 5 mm of 

cluster peak voxel are listed in order of proximity for gyrus labels. Gyrus labels based upon Talairach-Tournoux atlas.48 Subcortical labels based 

Brainnetome 1.0 Atlas.49 Cerebellar labels derived from Eickhoff-Zilles cytoarchitechtonic atlas.50 RSFP = reward-sensitive frontoparietal node. 

RSStriatum = reward-sensitive striatal node. RSOther = reward-sensitive nodes not within striatum nor frontoparietal regions. Note: Data were 

extracted from these original cluster peak voxel using a 7 mm sphere from which each network node had an equivalent voxel count (nvox = 73).

Addict Biol. Author manuscript; available in PMC 2024 January 01.


	Abstract
	Method
	Participants and Procedure
	Characterization of Alcohol and Cannabis Use
	Passive Avoidance Task PAT
	Image Acquisition and Processing
	Acquisition.
	Processing.
	Localization of Reward-sensitive Nodes.
	Functional Connectivity between Reward-sensitive Nodes.

	Statistical Analyses
	Substance-use-disorder Groups and Dimensions.
	Instrumental Learning Rate.
	Overall Instrumental Choice Errors.
	Experience-related Functional Connectivity Changes.
	Potential Confounding Factors.


	Results
	Group Characteristics.
	Instrumental Learning Rate.
	Overall Instrumental Choice Errors.
	Localization of Reward-sensitive Nodes.
	CUDHigh and Experience Effects on Functional Connectivity.
	AUDHigh and Experience Effects on Functional Connectivity.
	Symptom Dimensions and Experience Effects on Functional Connectivity.

	Discussion
	Limitations and Future Directions
	Conclusions

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1.
	Table 2.

