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Abstract

Pd(II)-catalyzed non-directed C–H functionalization of heteroarenes is a significant challenge for 

the following reasons: poor reactivity of electron-deficient heterocycles and the un-productive 

coordination of the Lewis basic nitrogen atoms. Existing methodologies using palladium catalysis 

often employ a large excess of heterocycle substrates to overcome these hurdles. Despite recent 

advances in non-directed functionalization of arenes that allow them to be used as limiting reagent, 

the reaction conditions are incompatible with electron-deficient heteroarenes. Herein we report 

a dual-ligand catalyst that enables Pd(II)-catalyzed non-directed C–H olefination of heteroarenes 

without using a large excess of substrate. In general, the use of 1–2 equivalents of substrates 

was sufficient to obtain synthetically useful yields. The reactivity was rationalized by the synergy 

between two types of ligands: a bidentate pyridine-pyridone ligand promotes C–H cleavage; the 

monodentate heterocycle substrate acts as a second ligand to form a cationic Pd(II) complex that 

has high affinity for arenes. The proposed dual ligand cooperation is supported by a combination 

of X-ray, kinetics, and control experiments.
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1. Introduction

The development of selective C–H functionalization of heteroarenes is of great significance 

to the synthesis of pharmaceuticals, agrochemicals and natural products (Figure 1).1 

However, using heteroarenes as the substrate renders reaction development considerably 

more challenging than the analogous arenes, as heteroarenes are generally less reactive. 

Additionally, the Lewis basic nitrogen atoms often engage in unproductive coordination with 

the metal catalysts which results in suppression of catalytic activity (Figure 2A). This is 

exemplified by the stark contrast between the progress of C–H functionalization of arenes 

and heteroarenes, in which the former could be achieved through multiple directed and 

non-directed strategies with a broad scope of transformations,2–5 whereas the latter is still 

limited, requiring directing groups,6 and reversible bifunctional templates.7,8 Non-directed 

C–H functionalization of heteroarenes, complementary to the directed strategies, remains a 

significant challenge.9 In particular, the design of active catalysts to enable the use of the 

heteroarene substrate as a limiting reagent akin to arenes has been a major hurdle.

Two rational approaches via ligand design can be envisaged to arrive at a potential 

solution to this problem: attenuation of catalyst poisoning through enforcement of strong 

trans-effect; employment of an appropriate internal base to accelerate the C–H cleavage 

step. Both approaches have been individually demonstrated in previous studies: non-directed 

C–H activation of pyridines via the trans-effect of bipyridine ligands and the pyridone 

ligands as internal base at cleaving aryl C–H bonds.5a,9a,9b To combine these two design 

principles, we therefore examined a wide range of bidentate pyridine-pyridone ligands.6b,10 

Through extensive experimentation, we propose that the heteroarene substrate itself may 

cooperate with the bidentate pyridine-pyridone ligand as a secondary monodentate ligand,11 

for the assembly of a dual-ligand catalyst. This dual-ligand catalyst, in conjunction with 

our proposed σ to π coordination switch of the heteroarene substrate through the trans-

effect,9a,9b would allow the generation of a more reactive cationic palladium catalyst, and 

thus potentially enable the use of significantly lower equivalents of the heteroarene substrate 

(Figure 2B). Herein, we report a dual ligand catalytic system involving a bidentate pyridine-

pyridone ligand and a monodentate heteroarene ligand that enables a Pd(II)-catalyzed non-
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directed C–H olefination of heteroarenes using only 1–2 equivalents of heteroarene substrate 

with broad substrate scope, and wide functional group tolerance (Figure 2C).

2. Results and Discussion

We began our campaign with an investigation of ligand effects using simple pyridine 1a as 

the model substrate and ethyl acrylate as the olefination coupling partner. (Table 1). It was 

found that no desired olefination product was detected in the absence of ligand. Ligands 

L1-L4, previously reported monodentate pyridines and pyridones which accelerated C–H 

activation of simple arenes,11,12 were not effective for this reaction. The use of bidentate 

MPAA (monoprotected amino acid) ligand (L5),13 and several representative L,L-type 

bidentate ligands (L6–L7) only gave high efficiency with a large excess of substrate. The 

bidentate APAQ (acetyl-protected aminoethyl quinoline) ligand (L8), previously found to 

promote C(sp3)–H activation, gave trace product for this transformation.14

To our delight, we observed that ligand L9 and L10 provided the desired olefination 

product in 25% and 32% yields, respectively. However, further optimization of the reaction 

conditions with these two ligands was not fruitful. In our recent report, we discovered a 

tautomeric bidentate ligand which enabled C–H hydroxylation with broad substrate scope.6b 

Notably, by tuning the chelation ring size, these L, X-type ligands can precisely adapt the 

desired coordination modes in different catalytic steps. We therefore wondered whether this 

new type of ligand would also enable the desired C–H activation of heteroarenes. A series 

of six-membered chelating pyridine-pyridone bidentate ligands (L11–L18) were tested. 

Excitingly, the yield of the reaction was improved to 67% using ligand L11. Further ligand 

optimization by modulating their electronic (L12–L14) and steric (L15–L18) properties did 

not further enhance reaction efficiency. While the optimized temperature is 125 °C, 47% 

and 14% yield could be obtained at 115 °C and 105 °C, respectively. Notably, good yield 

(52%) was achieved when pyridine was reduced from 2.0 equiv. to 1.0 equiv., thus providing 

a promising method for late-stage functionalization of bio-active molecules (Table 2, 2a). 

The addition of 1-adamantanecarboxylic acid was found to slightly improve the reaction 

efficiency.15

With the optimized ligand and reaction conditions in hand, we evaluated a wide range 

of pyridine derivatives (Table 2). Using ethyl acrylate as the coupling partner, the 

corresponding olefination products of pyridines were obtained in moderate to good yields 

with good regioselectivity (2a-2o). Simple pyridine gave the desired product in 67% 

yield with high C-3 selectivity (13.5/1.0/0.4). Both electron-donating (2b–2d) and electron-

withdrawing (2e, 2f) substituents were tolerated, giving corresponding olefination products 

in good yields with high C-3 selectivity. A synthetically valuable halide substituent was 

also tolerated (2i), outcompeting the Heck reaction pathway. However, a substrate with C-4 

substitution (2j) gave lower yield most likely due to the increased steric hindrance. To our 

delight, other heterocycles including pyrimidine (2k), quinolines (2l–2n) and quinoxaline 

(2o) all provided moderate to good yields.

Considering the broad utility of biaryls in drug discovery, the potential application of this 

catalytic system in heterocyclic biaryls is appealing. Interestingly, when 4-phenylpyridine 
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(1p) was employed as the substrate in this reaction, we found that the olefination mainly 

occurred on the phenyl ring (Scheme 1), with only trace olefination (< 2%) on pyridine 

ring. The observed regioselectivity could be mainly due to electronic effect with the highly 

electrophilic cationic catalyst as the arenes are generally more electron-rich compared 

to the heteroarenes. This catalytic system could offer a promising solution to active the 

remote C–H bonds of heterocycle-containing arenes. With extensive investigation of ligands 

and reaction conditions (see SI for detailed information), the yield of this reaction was 

successfully improved to 74% with ligand L18. Furthermore, Cu(OPiv)2 (0.5 equiv.) was 

added as co-oxidant in addition to Ag2CO3 (0.5 equiv.).

With the optimized conditions in hand, a wide range of heterocyclic biaryls were examined 

(Table 3). Firstly, we evaluated 4-phenylpyridines and found that a range of derivatives 

were compatible (2p–2ad), affording moderate to good yields. Substrates 2r–2s showed 

lower reactivity due to the presence of steric hindrance next to the coordinative N-atom. 

In such cases, 3,5-lutidine (1.0 equiv.) was found to be a necessary additive for achieving 

moderate yields. It is worth noting that this reaction system is very sensitive to steric effect, 

which could help increase the regioselectivity for certain substrates (2t, 2w, 2y, 2z, 2ab), 

but it will also weaken the reactivity in other substrate (2ac). Interestingly, the preferential 

ortho-olefination of fluoro-containing substrates was observed and dominated the selectivity 

for substrates 2u, 2x and 2aa. As expected, we did not observe any non-directed C–H 

activation product of 2-phenylpyridine due to the favored ortho-directed palladation. Next, 

different types of heterocycle-containing arenes were investigated (2ae–2ao). Olefination 

of isoquinoline-, quinoxaline-, benzo[c][1,2,5]thiadiazole- and functionalized quinoline-

containing substrates gave the desired products with moderate to good yields (2ae–2ai). A 

substrate containing two pyridine rings (2aj) also gave good yield. Many pharmaceutically 

important heterocycles such as pyrimidines and pyrazoles were functionalized with good 

yields (2ak–2ao). To further extend this methodology beyond heterocyclic biaryls, we tested 

pyridine-containing arenes without biaryl bond (2ap–2av). The linkage between pyridine 

and arene can be an ether (2ap, 2at, 2av), ester (2as, 2au), amine (2aq) or alkyl chain (2ar). 

Overall, this method provides a rather general tool to functionalize previously inaccessible 

C–H bonds of heterocycle-containing substrates.

We next tested the scope of the olefin coupling partners using 4-phenyl pyridine as 

the model substrate (Table 4). A variety of acrylates (2p, 2aw–2az), were all installed 

in good yields. Acrylamide and vinyl phosphate were also well tolerated (2ba, 2bc). 

Unfortunately, less reactive styrenes and aliphatic alkenes only afforded trace products under 

our conditions, however, pentafluorostyrene successfully delivered the olefination product in 

50% yield (2bb).

Although palladium-catalyzed C–H bond activation has gained considerable attention as an 

efficient tool to construct molecules, expensive silver salts are generally used as oxidants. 

To further showcase the potential of our methodology, we successfully developed silver-free 

conditions for this transformation. We were pleased to find that by using 1.0 equivalent of 

Cu(OAc)2 as the sole oxidant, this reaction gave good yield (64%) for substrate 1p (Scheme 

2).
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3. Experimental Evidence for Dual Ligand Participation

The observation of the enhanced reactivity in the presence of a second equivalent of 3,5-

lutidine in substrate scope survey led to the proposal of dual ligand catalyst. Accordingly, 

we conducted several control experiments to probe whether the heterocycle substrate was 

acting as the second ligand in the catalytic system. First, we found that non-heterocyclic 

substrate benzene was not reactive under the standard conditions. Sterically hindered 

pyridyl-containing biaryl 1s did not give any olefination product either (Scheme 3a). 

Reactivity was restored in both cases by adding coordinative 3,5-lutidine as a second ligand, 

affording the olefination products in 30% and 44% yields respectively (Scheme 3b). These 

results indicate that the presence of a sterically accessible heterocyclic nitrogen is required 

for enabling the C–H olefination reaction. Second, we have obtained and characterized 

the proposed intermediate Int-II with the dual ligand bound to Pd(II) by X-ray. Finally, 

stoichiometric reaction of pyridine-catalyst complex Int-II (Scheme 4) was investigated. In 

the absence of 3,5-lutidine, Int-II did not undergo C–H olefination. However, when one 

equivalent of 3,5-lutidine was added, this intermediate was converted to olefination product 

in 56% yield. Ag2CO3 was found necessary to this stoichiometric reaction indicating its 

additional roles in addition to being the oxidant for Pd(0).16 3,5-Lutidine could displace the 

acetate to form cationic intermediate (Int III) which can then isomerize to the reactive Int 
IV (Scheme 5). A kinetic isotope effect of kH/kD = 2.35 was observed using Int-II and Int-
II-D5, which supports C–H cleavage being turnover-limiting (See SI for more information). 

The reaction order in monodentate 3,5-lutidine ligand was determined (Scheme 5), and 

visualizing these data using the Burés method with an x-axis that was normalized by ligand 

concentration showed that the reaction was first order in the 3,5-lutidine,17 which indicated 

the involvement of one molecule of 3,5-lutidine in the turnover-limiting step, in line with our 

hypothesis of a cationic mechanism where acetate is displaced by lutidine prior to the C–H 

cleavage step (See SI for more information).

Based on these mechanistic investigations, a possible catalytic cycle that is outlined in 

Scheme 6. First, the reactive Int-I is generated through coordination of Pd(OAc)2 with the 

bidentate ligand. In our previous report, we successfully prepared and characterized Int-I 
by NMR and X-ray, which exists as a dimer.6b Subsequent ligand exchange of Int-I with 

one molecule of pyridine is proposed to generate Int-II, which was prepared, isolated, and 

characterized by NMR spectroscopy and X-ray (See SI for detailed information). Further 

ligand exchange of Int-II with the second molecule of pyridine is proposed to generate 

cationic palladium species (Int-III). The strong trans-effect18 promotes the formation of the 

reactive precursor Int-IV, in which the pyridyl ring coordinates with Pd(II) via π interaction 

to trigger the C–H activation step.9a-9b

4. Conclusion

In summary, we have developed a dual ligand catalyst for Pd(II)-catalyzed non-directed 

C–H activation of heteroarenes, including heterocyclic biaryls. This reaction features broad 

substrate scope and good functional group tolerance. The cooperation of the L-X pyridine-

pyridone ligand and pyridine ligand provides an insight for further design of new ligands to 

achieve more efficient non-directed C–H activation reactions of heterocycles.
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5. Experimental Section

General procedure for non-directed C–H olefination of pyridine:

Pyridine (0.2 mmol), ethyl acrylate (0.1 mmol), Pd(OAc)2 (15 mol%), L11 (15 mol%), 

Ag2CO3 (1.0 equiv.), 1-adamantanecarboxylic acid (1.0 equiv.) and t-amyl-OH (0.25 ml) 

were added to a reaction vial (10 ml). The vial was capped and closed tightly. Then the 

reaction mixture was stirred at 125 °C for 20 hours. After cooling to room temperature, the 

mixture was filtered through a pad of celite with ethyl acetate as the eluent to remove the 

insoluble precipitate. The resulting solution was concentrated and purified by preparative 

thin-layer chromatography to afford the desired product.

General procedure for non-directed C–H olefination of heterocyclic biaryls:

4-phenylpyridine (0.1 mmol), ethyl acrylate (2.0 equiv.), Pd(OAc)2 (15 mol%), L18 (15 

mol%), Ag2CO3 (0.5 equiv.), Cu(OPiv)2 (0.5 equiv.), acetic acid (0.2 equiv.) and t-amyl-OH 

(0.4 ml) were added to a reaction vial (10 ml). The vial was capped and closed tightly. 

Then the reaction mixture was stirred at 140 °C for 20 hours. Upon completion, the reaction 

mixture was cooled to room temperature and saturated aqueous solution of sodium sulfide 

(0.5 ml) was added. The mixture was stirred at ambient temperature for 20 minutes and 

then extracted with ethyl acetate (5 ml x 3). The organic layers were combined and filtered 

through a pad of celite with ethyl acetate as the eluent. The resulting solution was dried with 

Na2SO4, concentrated, and purified by preparative thin-layer chromatography to afford the 

desired product.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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correlates with the σ-donation ability of the ligand in trans position. In our case, palladium 
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Meng et al. Page 9

J Am Chem Soc. Author manuscript; available in PMC 2024 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Heterocycle-Containing Bioactive Compounds
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Figure 2. Strategies for non-Directed C–H Functionalization of (Hetero)Arenes.
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Scheme 1. C–H Activation of 4-Phenylpyridine
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Scheme 2. Silver-Free Condition
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Scheme 3. Control Experiments
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Scheme 4. Ligand Effect on Int-II
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Scheme 5. Reaction Order in 3,5-Lutidine
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Scheme 6. Proposed Mechanism
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Table 1.

Evaluation of Ligands
a,b,c

a
conditions: 1a (0.2 mmol, 2.0 equiv.), ethyl acrylate (1.0 equiv.), Pd(OAc)2 (15 mol%), L (15 mol%), Ag2CO3 (1.0 equiv.), 1-

admantanecarboxylic acid (1.0 equiv.), t-amyl-OH (0.25 mL), 125 °C, under air, 20 h.

b1H NMR yields, using CH2Br2 as an internal standard.

c
1a as limiting reagent.
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Table 2.

C–H Activation of Pyridine Derivatives
a,b,c

a
conditions: 1 (0.2 mmol, 2.0 equiv.), ethyl acrylate (1.0 equiv.), Pd(OAc)2 (15 mol%), L11 (15 mol%), Ag2CO3 (1.0 equiv.), 1-

admantanecarboxylic acid (1.0 equiv.), t-amyl-OH (0.25 mL), 125 °C, under air, 20 h.

b
isolated yield,
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c
1a as limiting reagent.
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Table 3.

Scope of Heterocyclic Biaryls
a,b,c

a
conditions: 1 (0.1 mmol, 1.0 equiv.), ethyl acrylate (2.0 equiv.), Pd(OAc)2 (15 mol%), L18 (15 mol%), Ag2CO3 (0.5 equiv.), Cu(OPiv)2 (0.5 

equiv.), acetic acid (0.2 equiv.), t-amyl-OH (0.4 mL), 140 °C, under air, 20 h.

b
isolated yield.

c
3,5-lutidine (1.0 equiv.) was added.
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Table 4.

Scope of Olefin Partners
a,b

a
conditions: 1p (0.1 mmol, 1.0 equiv.), olefin (2.0 equiv.), Pd(OAc)2 (15 mol%), L18 (15 mol%), Ag2CO3 (0.5 equiv.), Cu(OPiv)2 (0.5 equiv.), 

acetic acid (0.2 equiv.), t-amyl-OH (0.4 mL), 140 °C, under air, 20 h.

b
isolated yield.
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