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Abstract

Our goal is to improve driver safety predictions in at-risk medical or aging populations from 

naturalistic driving video data. To meet this goal, we developed a novel model capable of detecting 

and tracking unsafe lane departure events (e.g., changes and incursions), which may occur more 

frequently in at-risk driver populations. The model detects and tracks roadway lane markings in 

challenging, low-resolution driving videos using a semantic lane detection pre-processor (Mask 

R-CNN) utilizing the driver’s forward lane region, demarking the convex hull that represents the 

driver’s lane. The hull centroid is tracked over time, improving lane tracking over approaches 

which detect lane markers from single video frames. The lane time series was denoised using a 

Fix-lag Kalman filter. Preliminary results show promise for robust lane departure event detection. 

Overall recall for detecting lane departure events was 81.82%. The F1 score was 75% (precision 

69.23%) and 70.59% (precision 62.07%) for left and right lane departures, respectively. Future 

investigations include exploring (1) horizontal offset as a means to detect lead vehicle proximity, 

even when image perspectives are known to have a chirp effect and (2) Long Short Term Memory 

(LSTM) models to detect peaks instead of a peak detection algorithm.

I. INTRODUCTION

Motor vehicle crashes are a leading cause of death and injury worldwide. According to 

the World Health Organization, nearly 1.2 million people worldwide die and 50 million 

are injured every year due to traffic-related crashes. Traffic crashes result in considerable 

economic cost, currently estimated at 1–2% of average gross national product ($518 billion 

globally per year) [1]. According to the European Accident Research and Safety Report 

2013, more than 90% of vehicle crashes are caused by driver errors [1]. Unsafe lane 
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departures due to driver error are a common cause of crashes. Estimates from the U.S. 

National Highway Traffic Safety Administration indicate that 11% of crashes result from the 

driver inappropriately departing from their lane while driving [2].

In 2017, 44 million older drivers (≥65 years) were licensed in the United States, accounting 

for the fastest growing segment of the driver population [3]. In the same year, nearly 7,700 

of them died in vehicle crashes and more than 257,000 were injured [4]. Statistics show that 

those drivers over 75+ years have a higher fatal crash rate in comparison to middle-aged (35 

to 54 years) drivers [5], [6]. According to Wang et al., lane departures are the second leading 

cause of vehicle crashes [7].

Our goal is to develop techniques to classify driver safety behaviors related to unsafe lane 

departures in challenging, low-resolution naturalistic driving videos. Our technique can be 

applied broadly to improve driver safety assessments and predictions in at-risk populations, 

like older drivers. Better assessments of real-world driver safety can be used to support 

the development of methods to screen, detect, and track unsafe drivers and interventions 

aimed at preserving or improving driver safety. To meet this goal, we deployed our 

techniques to detect unsafe lane departures on challenging, low-resolution video collected 

from a naturalistic driving study on older driver safety across >180,000 miles of driving. 

Low-resolution video data is a common challenge in naturalistic driving datasets, often due 

to need for high compression rates that reduce data size permitting long-term data collection 

[8].

While others have approached this challenge [9], [10], prior methods have struggled to 

accurately detect lane markers and departure events in low-resolution video data. Our 

method improves on previous models by detecting lanes over time, rather than from single 

video frames, tracking the vehicle’s position relative to the forward roadway’s lane markers 

to improve departure detection, and robustly performing with challenging, low-resolution 

video data.

Our model defines lane departure events as lane changes (typically a deliberate driver action) 

or incursions (typically a driver error). Incursions are incomplete lane departures where the 

driver quickly returns to the original lane of travel (typically due to the driver self-correcting 

a lane departure error). While previous literature addresses simple lane marker detection, our 

model focuses on the detection and segmentation of the forward roadway lane area. Once 

the forward lane area is detected using consecutive video frames, we tracked the centroid of 

the convex hull region, which represents the forward lane area. The offset of the centroid’s 

location relative to the image’s vertical centerline was used to determine if the driver was 

driving within the lane or had departed from the lane.

II. RELATED WORKS

Unsafe lane departure events can result from several sources. In older drivers, age-related 

visual decline can impair driver ability to see surrounding traffic and lane markers increasing 

risk of unsafe lane departures (e.g., changing lanes while a vehicle in the opposing traffic 

lane is in the driver’s blind spot) [11]. Works on lane detection and departure warning 
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systems date back to the 1990s. Previously proposed methods in this area can be classified 

as low-level image feature base, machine/deep learning (DL) based approaches, or a hybrid 

between the two. The most widely used Lane Departure Warning (LDW) systems are either 

vision-based (e.g., histogram analysis, Hough transformation), more recently on DL. In 

general, vision-based and DL lane detection systems start by capturing images using a 

selected type of sensor, pre-processing the image, followed by lane marker detection and 

tracking. While many types of sensors have been proposed for capturing lanes images such 

as radars, laser range, lidar, active infrared, etc. the most widely used device is a mobile 

camera. An alternative to vision- and DL-based systems is the use of global positioning 

systems (GPS) combined with Geographic Information Systems [12]. However, current 

LDW based on GPS can be unreliable, mainly because of the often low reliability and 

resolution, signal loss (e.g., in covered areas), and inaccurate map databases. Due to these 

limitations, most modern research conducted in LDW involves the utilization of Neural 

Network-based solutions in some form.

Neural Networks have been a subject of investigation in the autonomous vehicles field for 

a while. Among the very first attempts to use a neural network for vehicle navigation, 

ALVINN [13] is considered a pioneer and one of the most influential papers. This model 

is comprised of a shallow neural network that predicts actions out of captured images from 

a forward-facing camera mounted on-board a vehicle, with few obstacles, leading to the 

potential use of neural networks for autonomous navigation. More recently, advances in 

object detection such as the contribution made by DL and Region Convolutional Neural 

Network (R-CNN) [14] in combination with Region Proposal Network (RPN) [15] have 

created models such as Mask R-CNN [15] that provide state of the art predictions. New 

trends in Neural Network object detection include segmentation, which we applied in our 

model as an estimator for lane departure events.

A. Image Feature Based Methods

Image feature-based lane detection is a well-researched area of computer vision [16]. The 

majority of existing image feature-based methods use detected lane marker features such 

as colors, gray-scale intensities, and textural information to perform edge detection. These 

approaches are very sensitive to illumination and environmental conditions.

In 2005, Lee and Yi [17] introduced the use of Sobel operator plus non-local maximum 

suppression (NLMS). It was built upon methods from Lee [20] which propose a linear 

lane model and edge distribution function (EDF) as well as lane boundary pixel extractor 

(LBPE) plus Hough transform. The model was able to overcome weak points of the 

EDF based lane-departure identification (LDI) system by increasing lane parameters. The 

LBPE improved the robustness of lane detection by minimizing missed detections and false 

positives (FPs) by taking advantage of linear regression analysis. Despite improvements, the 

model performed poorly at detecting curved lanes.

Some of the low-level image feature-based models include an initial layer to normalize 

illumination across consecutive images, other methods rely on filters or statistical models 

such as random sample consensus (RANSAC) [12]. Lately, approaches more frequently 

incorporate machine learning, specifically deep learning to increase image quality before 
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detection is conducted. However, image feature-based approaches require continuous lane 

detections and often fail to detect lanes when edges and colors are not clearly delineated 

(noisy), which results in inability to capture local image feature-based information. End-to-

end learning from deep neural networks substantially improves model robustness in the 

face of noisy images or roadway features by learning useful features from deeper layers of 

convolution.

B. Deep Learning Based Methods

To create lane detection models that are robust to environmental (e.g., illumination, weather) 

and road (e.g., clarity or type of lane markings) variation, CNN is becoming an increasingly 

popular method. Lane detection on the images shown in Fig. 1 (a–c) are difficult to 

detect and extract without using CNN. Kim and Lee [18] combined a CNN with the 

RANSAC algorithm to detect lanes edges on complex scenes (e.g., roadside trees, fences, 

or intersections). In their method, CNN was primarily used to enhance images. In [19], they 

showed how existing CNNs can be used to perform lane detection while running at frame 

rates required for a real-time system. Ozcan et al. [20] used this method to improve traffic 

sign detections from low-resolution, noisy videos using a chain-code aggregated channel 

features (ACF)-based model and a CNN model (Fast-RCNN).

More recently, a number of lane-detection methods have been proposed. He et al. [21] used 

a Dual-View Convolutional Neural Network (DVCNN) with a hat-like filter and optimized 

simultaneously the frontal-view and the top-view cameras. The hat-like filter extracts all 

potential lane marker candidates, thus removing most of FPs (e.g., moving vehicles, barriers, 

curbs, ground arrows, and marked words on the roadway) from the forward roadway view. 

With the LaneNet model a lane edge proposal and lane marker localization strategy is 

used [22]. At first, a lane edge proposal network for pixel-wise lane edge classification is 

used and then a lane marker localization network detects lane markers based on the edge 

proposals with high processing speed and low computational cost.

A different approach by Zou et al. [23] use an encoder-decoder framework where features 

are firstly abstracted by a CNN encoder. Then, sequentially encoded features are processed 

by a ConvLSTM which are fed into the CNN decoder for information reconstruction and 

lane prediction. They claim that the proposed models can stably detect the lanes in diverse 

situations and can well avoid FPs. Brabandere et al. [24] propose a method to train a lane 

detector in an end-to-end manner using a deep network that predicts a segmentation-like 

weight map for each lane marker, and a differentiable least-squares fitting that returns best-

fitting curve. They claim that the network learns to generate features that prevent instabilities 

during the model fitting step, as opposed to two-step pipelines methodology. In a similar 

approach, Neven et al. [25], have taken an end-to-end methodology using segmentation lane 

and fitting procedure claiming to run at 50 fps.

C. Lane departure models

The objective of Lane Departure Prediction (LDP) is to predict if the driver is likely to 

leave the lane with the goal of warning drivers in advance of the lane departure so that they 

may correct the error before it occurs (avoiding a potential crash). This improves on LDW 
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systems, which simply alert the driver to the error after it has occurred. LDP algorithms 

can be classified into one of the following three categories: vehicle-variable-based, vehicle-

position estimation, and detection of the lane boundary using real-time captured road 

images. They all use images captured in [26].

The time to lane crossing (TLC) model has been extensively used on production vehicles 

[27]. TLC systems evaluate the lane and vehicle state relying on vision-based equipment and 

perform TLC calculations online using a variety of algorithms. A TLC threshold is used to 

trigger an alert to the driver. Different computational methods are used with regard to the 

road geometries and vehicle types. Among these methods, the most common method used 

is to predict the road boundary, the vehicle trajectory, and then calculate intersection time of 

the two at the current driving speed. On small curvature roads, the TLC can be computed as 

the ratio of lateral distance to lateral velocity or the ratio of the distance to the line crossing. 

Studies suggest that TLC tend to have a higher false alarm rate (FAR) when the vehicle is 

driven close to lane boundary [26], [28].

Wang et al. [26] proposed an online learning-based approach to predict unintended lane-

departures (LDB) from a personalized driver model (PDM) and Hidden Markov Model 

(HMM). The PDM quantifies the driver’s lane-keeping and lane-departure behaviors by 

using a joint-probability density distribution of Gaussian mixture model (GMM) between 

vehicle speed, relative yaw angle, relative yaw rate, lateral displacement, and road curvature. 

PDM can discern characteristics of an individual’s driving style. By combining PDM with 

HMM to estimate the vehicle’s lateral displacement, they were able to reduce the FAR by 

3.07.

D. Driving behavior

A model using Support Vector Machine and K-Nearest Neighbor methods to estimate 

changes in fatigue-related driver steering behavior was proposed by Krajewsk et al. [29]. 

Sleepy drivers often show slow steering drifts or infrequent, rapid steering corrections 

(e.g., to correct lane position drifts). Older drivers are at risk for disrupted sleep and 

subsequent fatigue [30]. Salvucci et al. [31] developed a model to track changes in steering 

behavior from steering wheel angle, accelerator depression, lateral position, lead vehicle 

distance and headway time, and adjacent vehicle position (including presence or absence). 

The complexity of this model and limited information on surrounding traffic in our data 

eliminated the use of this model for our technique.

III. DATASET

Our dataset included 183,964 miles of driving and 30,034 drives. Data was collected from 

a broader longitudinal cohort study aimed at predicting older driver safety. Each driver 

was assessed for 2, 3-month periods separated by 1-year. Data analyzed for this paper was 

cross-sectional data collected during the first study year. The data analyzed included 77 

drivers (65–90 years [μ = 75.3]; 36 female and 41 male) recruited from Omaha, Nebraska 

and surrounding areas. Drivers showed a range of cognitive and visual abilities (based on 

in-laboratory testing) that are typical of normally aging driver cohorts [32]. No drivers had 

major confounding medical conditions (e.g., dementia, psychiatric) or medication usage 
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(e.g., antipsychotics, narcotics). To develop the lane departure detection algorithm, we 

annotated lane markers in 4,162 video frames to train our model. Videos came from a 

forward roadway camera mounted on the interior of each vehicle’s forward windshield (next 

to the rearview mirror). The videos had a resolution of 752×480 and were sampled at 25 fps. 

Images were split into training (70%), validation (15%), and test (15%) datasets.

We tested our algorithm on 30, 3-minute videos selected from our broader dataset. Videos 

were selected to contain lane departure events occurring across a variety of driving 

conditions typical for the dataset (e.g., nighttime, interstate or urban roadways, multiple 

lane departures, roadway shadow).

IV. PROPOSED MODEL AND LANE DEPARTURE

Lane detection in the presence of noisy and lower-resolution image data presents significant 

challenges. Illumination, color contrasts, and image resolution immediately prohibit the use 

of low-level image feature-based algorithms for detecting the lanes. Consequently, we turned 

our attention to machine/DL based models to detect lane regions as these models perform 

better than low-level image feature-based algorithms for given lower quality recordings on 

dataset. We selected a Mask R-CNN [33] architecture since we were mainly interested in 

segmented lane regions within the image. It has acceptable processing rate 5 fps [34] and 

provides a state-of-the-art mAP (mean average precision). The Mask R-CNN architecture, 

illustrated in Fig. 3, can be divided into two networks. The first network is the region 

proposal network (RPN) used for generating region proposals and a second network that use 

these proposals to detect objects. Video processing pipeline including detection and tracking 

is given in Alg. 1.

A. Lane Detection

Our Mask R-CNN based model was configured using ResNet-50 as backbone with a 

learning rate of 0.001, a learning momentum of 0.9, and 256 RPN anchors per image. 

The model was trained to detect lane regions exclusively using segmented masks, rather than 

typical prior approaches detecting only lane markers. Lane region detection, rather than lane 

marker detection, performed more robustly with the low-resolution images. This approach 

provided us a lane segmentation mask, which was later used to track the lane regions. 

To mitigate FPs, we used a Region of Interest (ROI) skim mask that concealed areas not 

relevant to our view of interest. Fig. 1 (a–c) provides some of the example detections during 

daytime, nighttime, and shadowy conditions on the road.

algorithm 1

Video Control Algorithm

procedure VIDEOCAPTURE(video) ▷ mp4

 frame ← video

 whileframe ≠ Nulldo ▷ Loop until video end

  M ← detection ▷ Mask

  Display ← Tracking(M)

Riera et al. Page 6

IEEE Intell Veh Symp. Author manuscript; available in PMC 2023 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



  frame ← video

B. Lane Tracking

The mask tracking algorithm used for lane departure events is explained in Alg. 2. Once 

the lane mask regions were detected, the point coordinates conforming the mask were used 

to compute a convex hull enclosing the mask. For this purpose, we employed a Quickhull 

algorithm, which is shown in Alg. 3, in order to obtain a Convex Hull polygon. Next, a 

centroid of the convex hull was calculated. Our model used the centroid in order to track its 

vertical and horizontal offset of the vehicle within the lane as shown in Fig. 2. For reference, 

the vertical offset was calculated according to an imaginary vertical line in the middle of the 

image as illustrated in Fig. 2. Also, the horizontal reference was chosen to be an imaginary 

line between the vehicle and the detected mask. The horizontal offset was not used in our 

model; however, it was implemented to detect driving separation distance possibly useful for 

acceleration and braking.

The offsets were calculated using the distance between a line and a point in 2D space Eq. 

(1). The offset units were measured in number of pixels. These offsets were first tracked 

over time, then normalized by their means, centered at zero and smoothed using a Fix-lag 

Kalman filter as it is shown in Fig. 4 (a). We found that centering around zero permitted 

better data generalization across drivers due to the small variance in the location where the 

forward camera was mounted on the front vehicle windshield.

distance ax + by + c = 0, x0, y0 = ax0 + by0 + c
a2 + b2 (1)

C. Lane departure classification

The plots in Fig. 4 (b) and (c) illustrate the typical patterns observed when the line lanes 

are crossed towards left or right, respectively. These two plots were obtained while a driver 

changes from the right lane to the left lane and back to the right lane. It can be seen that 

there is a high peak that starts developing as the driver departs from the center of its lane 

following by rapid decline and a trend to go back to zero. Detecting and measuring this 

pattern is the core idea of our Alg. 2 that predicts the type of lane departure that occurred.

The coordinates of the detected segmentation polygon are calculated from the lane detection 

model. The coordinates are then converted into a convex hull using Alg. 3. A centroid for the 

convex-hull is calculated and tracked over time, and the noise of the signal is smoothed out 

by a Kalman Lag Filter. The original tracking signal and a horizontally mirrored time-series 

are used to detect the peaks that indicate the lane departures. The original time-series signal 

was used to discriminate lane departures to the left side while the horizontally mirrored 

signal predicted departures to the right. We were able to detect lane departures resulting 

from changes and incursions using these algorithms.
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Our test dataset of 30, 3-minute videos containing lane departure events across typical 

driving conditions was annotated to mark: (a) event type (change or incursion) and (b) event 

time (start and end time). Each video had at least one lane departure event and, in some, 

a lane marker was partially to fully missing (i.e. lane bifurcation on a highway exit). We 

identified 3 lane incursion events. All other departure events were lane changes. From data 

inspection, we determined that lane departures, including incursions, were associated with 

changes in vertical offset. Key differences between lane incursions and changes were that 

incursions showed (1) differences in shallowness of the peak vertical offset and (2) absence 

of a depression zone. We used this observation to discriminate lane departure event types in 

Alg. 2.

algorithm 2

Mask Tracking Algorithm

procedure TRACKING(M) ▷ Mask

 Mcentroid ← MconvexHull ← M

 Msmooth ← series(Mnorm) ← Norm(Mcentroid)

 prediction ← classifier(msmooth)

 return ← prediction

function CLASSIFIER(Msmoothing,) ▷ smooth series

 max ← Constant ▷ Max distance between peaks

 lanechange ← (None,None)

 laneincursion ← (None,None)

 Mmirror ← Mirror(Msmooth)

 origpeak ← Msmooth

 mirrpeak ← Mirror(Mmirror)

 iflength(origpeak) > 0 & length(mirrpeak) > 0then

  if |origpeak − mirrpeak| < max then

   if 0 < origpeak − mirrpeak < max then

    lanechange ← (′left′,origpeak)

    return ← (lanechange, laneincursion)

  else if 0 < mirrpeak − origpeak < max then

    lanechange ← (′right′,mirrpeak)

    return ← (lanechange,laneincursion)

  else

   return ← (lanechange, (′incursion′,origpeak))

 return ← (lanechange,laneincursion) ▷ no change

function MIRROR(Msmooth) ▷ smooth series

 for X in Msmoothdo

  Mmirror ← −X

 return ← Mmirror
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V. RESULTS

We tested our lane tracking algorithm on the test dataset to determine accuracy. Our main 

performance indicator for the pre-processing segmentation model to detect the forward lane 

area, Mask R-CNN, was mAP. A mAP of 70% was achieved. We acknowledge when 

evaluating our results that our video was collected from a single forward camera, limiting 

our algorithm to the forward lane area. To better illustrate our objective to detect lane 

departures, we provide a sequence of images showing the lane change detection process in 

Fig. 5.

algorithm 3

2D QuickHull

Input ← a set S(n points)) ▷ at least 2 
points in S

procedure QUICKHULL(S) ▷ Gets convex 
hull from S

 ConvexHull ← {}

 foreach point in Sdo

  A ← left most point

  B ← right most point

  S1 ← points in S right to oriented line AB

  S2 ← points in S right to oriented line BA

  FindHull(S1,A,B)

  FindHull(S2,B,A)

function FINDHULL(Sk,P,Q) ▷ Find points on hull from the set of point in S to the right of the line 
from P to Q

 foreach point in SKdo

  C ← find farthest point from PQ

  S0 ← points inside triangle PCQ

  S1 ← points right side line PC

  S2 ← points right side line CQ

 FindHull(S1,P,C)

 FindHull(S2,C,Q)

Out put ← ConvexHull

A. Validation of the Pre-Processing Lane Detection Model

The mAP was calculated according to Eq. (3), where TP, FP, TN, and FN denote the 

true positive, false positive, true negative and false negative, respectively. We incorporated 

an intersection over union (IoU) criteria, where the IoU is calculated as per Eq. (2). The 

thresholds for in Eq. (3) was set to 0.5, this means that any predicted object is considered a 

TP if its’ IoU with respect to the ground truth is greater than 0.5. The overall segmentation 

detection mAP was 70% while formAP50 and mAP75 were 100%.
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IoU(A, B) = A ∩ B
A ∪ B (2)

mAP = 1
∣ thresholds ∣ ∑t

TP (t)
TP (t) + FP (t) + FN(t) (3)

F1 = 2 ⋅ TP
2 ⋅ TP + FP + FN (4)

Recall(Sensitivity ) = TP
TP + FN (5)

Precision = TP
TP + FP (6)

B. Lane Departure Algorithm Results

We examined the performance of the proposed lane departure algorithm using F1 score, 

precision, and recall. The F1 was calculates using Eq. 4, and measures the detection accuracy 

of the algorithm characterizing the balance between precision and sensitivity.

We used the algorithm to test for lane changes to the left, right, and lane incursions. Results 

are summarized in Table I. Results were limited by the small number of identified lane 

incursions in the test dataset. We detected two out of three incursions. TPs are interpreted as 

left or right lane departure events that were classified correctly. TNs were events where 

no lane departures occurred, and our algorithm also didn’t detect any departures. FP 

corresponds to a detected lane departures when no lane departure occurred. FNs are missed 

lane departure events. We found that the model was susceptible to offset noise during lane 

detection and the parameters used for peak detection algorithm, suggesting that it would 

be convenient to substitute the peak detection algorithm with a machine learning model for 

better generalization. While we mitigated the noise using smoothing techniques, a robust 

lane detection model is essential to increase the algorithm accuracy.

VI. CONCLUSION

We developed a novel algorithm to track and discriminate lane departures, capable of 

detecting driver lane position, on challenging, low-resolution video recordings. Our model 

was trained to track lanes and achieved a lane departure event detection recall (sensitivity) 

of 0.82. Future investigations will expand our model to a broader variety of classes in 

the annotations, which will likely improve FP rates, and the use of segmented masks to 

detect lane types and improve the detection of lane departure events such as lane change 

and incursion. An area that should be further explored is the use of horizontal offset as a 

way to detect proximity, even when image perspectives are known to have a chirp effect as 

objects or information is compressed as it gets closer to the vanishing point. Also, using 
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ML models such as Long Short Term Memory (LSTM) to detect peaks instead of a peak 

detection algorithm should provide an excellent possibility to improve the model along with 

data fusion using other Inertial Measurement Unit (IMU) sensors. While our implementation 

was performed using only pre-recorded videos, utilizing a convex hull centroid offset may 

permit real-time lane tracking while driving (e.g., vehicle automation). Our results support 

the feasibility and utility of applying DL models to advance driver safety assessments and 

interventions to preserve and improve safety in medically at-risk or aging populations.
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Fig. 1. 
Examples were illumination and color contrast create Challenging conditions for lane 

detection

Riera et al. Page 13

IEEE Intell Veh Symp. Author manuscript; available in PMC 2023 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Location of the Lane Mask Centroid Offset with respect to the selected reference lines
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Fig. 3. 
Segmentation Architecture of Mask R-CNN
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Fig. 4. 
Synopsis of a lane change using Mask Centroid Tracking
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Fig. 5. 
Sequential images of a lane change under extreme challenging condition.
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TABLE I

Lane change detection results

Description Left Right

True Positive (TP) 9 18

False Positive (FP) 4 11

False Negative (FN) 2 4

Precision 69.23% 62.07%

Recall (Sensitivity) 81.82% 81.82%

F1 75.00% 70.59%
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