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Abstract
Tumor development and metastasis are facilitated by the complex interactions
between cancer cells and theirmicroenvironment, which comprises stromal cells
and extracellular matrix (ECM) components, among other factors. Stromal cells
can adopt newphenotypes to promote tumor cell invasion.Adeepunderstanding
of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions
is needed to design effective intervention strategies that might interrupt these
interactions. In this review, we describe the tumor microenvironment (TME)
components and associated therapeutics. We discuss the clinical advances in the
prevalent and newly discovered signaling pathways in the TME, the immune
checkpoints and immunosuppressive chemokines, and currently used inhibitors
targeting these pathways. These include both intrinsic and non-autonomous
tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling,
Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Retic-
ulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic
GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) and Siglec
signaling pathways. We also discuss the recent advances in Programmed Cell
Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4),
T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3
(LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor
4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine
receptor type 2 (CCR2)- chemokine (C-Cmotif) ligand 2 (CCL2), C-C chemokine
receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine sig-
naling axis in the TME. In addition, this review provides a holistic understanding
of the TME as we discuss the three-dimensional and microfluidic models of
the TME, which are believed to recapitulate the original characteristics of the
patient tumor and hence may be used as a platform to study new mechanisms
and screen for various anti-cancer therapies. We further discuss the systemic
influences of gut microbiota in TME reprogramming and treatment response.
Overall, this review provides a comprehensive analysis of the diverse and most
critical signaling pathways in the TME, highlighting the associated newest and
critical preclinical and clinical studies along with their underlying biology. We
highlight the importance of the most recent technologies of microfluidics and
lab-on-chip models for TME research and also present an overview of extrinsic
factors, such as the inhabitant human microbiome, which have the potential to
modulate TME biology and drug responses.
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1 BACKGROUND

The concept of tumor microenvironment (TME) research
emerged in the 1800s when the relationship between
inflammation and cancerwas proposed and acknowledged
with Paget’s theory of “seed and soil” [1].With the progress
made in the following decades, Hanahan and Weinberg
enhanced the hallmarks of cancer from six to ten in 2011
with the recognition of the TME [2]. However, with the
limited understanding of the TME, the therapies targeted
against its components, such as the blood vasculature,
were efficient against cancers of all organs regardless of
their source [3].
With the advent of single-cell analysis through sequenc-

ing technologies and analytical bioinformatics, the
immense complexity of the TME is apparent, and contrary
to the earlier notions, the TME is now understood to be
either tumor-supportive or tumor-suppressive depending
on the stage and type of cancer [4, 5]. Currently approved
therapeutics of the TME are targeted against immune
checkpoints, T cells and blood vasculature. In one study,
inhibition of p21-activated kinase 4 (PAK4), selectively
expressed by tumor endothelial cells (ECs) in glioma,
re-sensitizes tumor cells to chimeric antigen receptor
(CAR)-T cell therapy engineered against epidermal
growth factor receptor variant III (EGFRvIII) mutation in
glioma, allowing engineered T cells to enter the brain and
elicit a robust immune response [6]. Another study tar-
geting chemoresistant and desmoplastic colorectal cancer
(CRC) cells by targeting vascular endothelial growth factor
A (VEGFA) and angiopoietin-2 (ANGPT2) along with the
cluster of differentiation 40 (CD40) agonistic antibodies
destroyed tumor fibrosis and induced T cell-mediated
killing [7]. These studies exemplify the successes and
current state of the art of TME signaling and mechanisms
of unleashing tumor therapeutics.
However, several challenges impede the progression of

TME research. One challenge is to create experimental
models that can preserve the initial characteristics of the
primary tumor to develop personalized medicine tools for
drug development and cancer therapy. The recent devel-
opment of three-dimensional platforms for cell culture
using lab-on-chip and microfluidic devices holds enor-
mous potential to better simulate TME processes and
bridge the gap between preclinical and clinical translations
[8]. Another aspect of personalized medicine that poses a
challenge to TME research is to identify responders from
non-responders [4]. To achieve this, several approaches,
such as noninvasive liquid biopsies to identify circulat-
ing tumor DNA in the blood or the use of extracellular
vesicles as diagnostic markers, are underway to improve
the prediction of responses in patients [9]. Thus, preclini-
cal studies, especially those involving immune responses,

should consider responsiveness of the mechanistic aspects
of mutations or molecular subtyping in patients.
Few recent reviews have discussed the advances in TME

therapeutics. Baghban et al. explored the molecular inter-
actions between cancer cells and the TME to identify
novel cancer therapeutics [10]. Jin et al. classified the
chemopathological characteristics of TME, such as the
metabolic, immune and acidic niches and advances in drug
repurposing in their context [11]. Moreover, Bejarano et al.
provided a comprehensive analysis of the current therapies
targeting the TME and their clinical evaluation [3]. In this
current review, we extensively discuss the advances in the
signaling mechanisms, both intrinsic to cancer cells and
non-autonomous signaling prevalent in the TME and the
therapeutics targeting those mechanisms from a preclini-
cal and clinical perspective. We further comprehensively
assessed the prevalent and newly identified tumor models
in TME research and described how the gut microbiome
alters the TME and affects treatment response.

2 EXPLOITING
MICROENVIRONMENTAL CUES FOR
THERAPY

2.1 Components of the TME

Single-cell-based technologies have enabled a better dis-
section of the TME through precise monitoring of cell
sub-populations and spatial architecture, thus reveal-
ing the heterogeneous and complex nature of the TME
[10, 12]. Other than the cancer cells that form the
bulk of the tumor, the other predominant popula-
tions include the immune cells constituting the tumor-
associated macrophages (TAMs), natural killer (NK) and
dendritic cells (DCs), and T and B lymphocytes. The
blood and lymphatic ECs, complex collagen fibers and
glycoproteins form the ECM, while the cancer-associated
fibroblasts (CAFs) and mesenchymal stem cells further
assist in ECM remodeling and even chemoresistance [13,
14]. The unique signatures of its cellular components, the
associated signaling and the diversity of the TME have
been targeted in cancer therapy.
The contribution of the immune system in the mod-

ulation of cancer has recently gained importance. Other
than tumor heterogeneity, the ‘immune system’ forms a
crucial aspect of the complex architecture of the TME,
and their modulation can be leveraged to overcome the
persistent problems of therapy failure and resistance. Cyto-
toxic CD8+ T cells infiltrate in the TME to get primed by
antigen-presenting cells (APCs), macrophages, B cells and
DCs to modulate cytotoxic effector T (Teff) cell response.
For instance, DCs secrete the chemoattractants chemokine
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(C-X-C motif) ligand 9 (CXCL9) and 10 (CXCL10) to facil-
itate the infiltration of CD8+ Teff cells in the TME and
for T cell cytotoxic activity [15]. Instead, their engage-
ment in inhibitory crosstalk, such as with the PD-1/
programmed death-ligand 1 (PD-L1) signaling axis, leads
to immunosuppression in the TME [16]. Other immune
cells facilitating a pro-tumorigenic response in the TME
include the immunomodulatory regulatory T (Treg) cells
and the myeloid suppressor (MDSCs) that result in an
immunosuppressive TME [17] and therapy failure. How-
ever, the presence of NK cells in the TME is believed to be
anti-tumorigenic, resulting from the release of cytokines
and chemoattractants such as X-C motif chemokine lig-
and 1 (XCL1), chemokine ligand 5 (CCL5) or Fms-related
tyrosine kinase 3 ligand (FLT3LG) and leading to APC
accumulation in the TME [18–20].
CAFs were initially considered a homogeneous popula-

tion. However, recent studies indicated that CAFs consist
of several types of stromal cells that differ in their origin,
functions, number, and phenotype [21–24]. Thus, CAFs
can either lead to cancer progression or inhibit cancer
growth, depending on their nature. They secrete several
growth factors, such as fibroblast growth factor (FGF) and
C-X-C motif chemokine ligand 12 (CXCL12), to promote
angiogenesis via the VEGF, stromal cell-derived factor 1
(SDF-1) and TGF-ß signaling [25, 26]. CAFs recruit and
polarize immune cells such as macrophages, neutrophils,
T cells and DCs to a pro-tumorigenic phenotype by
secreting several cytokines, chemokines, and other effec-
tor molecules such as Interleukin 6 (IL-6), and 8 (IL-8),
TGF-β, CXCL12, CCL2, SDF-1, VEGF, Indoleamine-pyrrole
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase
(TDO2) [27]. However, certain CAFs (Slit Guidance Lig-
and 2 [Slit2]+ and cluster of differentiation 146 [CD146]+
CAFs)were shown to have anti-tumorigenic effects such as
tumor suppression and increased tumor chemosensitivity
[28]. Furthermore, downregulating the paracrine signaling
of fibroblasts, such as the platelet-derived growth factor
(PDGF)/ PDGF receptor (PDGFR) signaling pathway and
hepatocyte growth factor (HGF)/ mesenchymal-epithelial
transition factor (MET) signaling pathway, was shown to
promote chemosensitivity in CAFs [29, 30].
The TME modulates ECs to induce an angiogenic

response because of the high nutritional demand of the
tumor [31]. Hypoxia-inducible factor 1-alpha (HIF-1α)
activation in tumor cells promotes the secretion of proan-
giogenic factors, such as VEGF, FGF-2, and PDGF, and
stimulates angiogenesis [32, 33]. ECs are targeted indi-
rectly for tumor therapy by inhibiting angiogenesis via
neutralizing antibodies for VEGF or inhibitors of VEGF
activity [34]. In a clinical trial, bevacizumab, a mono-
clonal antibody against circulating VEGF-A, combined
with chemotherapy was shown to improve the overall and

progression-free survival of colorectal cancer patients com-
pared with chemotherapy alone [35]. However, tumor cells
become resistant after long-term treatment, and these anti-
angiogenic drugs were shown to promote vasoinvasion
leading to metastasis and reduced lifespan in mice [36].
Thus, it suggests the need for targeting the multiple onco-
genic interactions in the TME rather than individual cell
types and molecules.
ECM acts as a scaffold and plays a tumor-suppressing

role in healthy tissues; however, it is modified in tumor
tissue to possess a tumor-promoting role [37]. The ECM
components underlying tumor-promoting activity, such
as fibronectin and its splice variants, crosslinked col-
lagen I and tenascin-C, are induced in the TME [37,
38] and interact with integrins to influence tumor cell
migration, proliferation and cellular signaling [39]. Var-
ious strategies have been developed to target aberrant
ECM components to develop novel treatments, includ-
ing fresolimumab (to inhibit collagen synthesis), collage-
nases and matrix metalloproteinases (MMPs) (to promote
collagen degradation), 4-methylumbelliferone (to inhibit
hyaluronic acid synthesis), hyaluronidase (to promote
hyaluronic acid degradation), Vitaxin and Volociximab (to
target integrin and inhibit angiogenesis) [40]. Moreover,
Provenzano et al. found that systemic administration of
pegvorhyaluronidase alfa (PEGPH20), an enzyme against
hyaluronic acid, reduced stromal hyaluronic acid, normal-
ized interstitial fluid pressures, re-expanded the microvas-
culature and led to tumor suppression in pancreatic ductal
adenocarcinomas murine models [41].
Thus, different components of the TME secrete growth

factors, components of the ECM, cytokines and extracel-
lular molecules that are essential for signaling between
cells in the TME and systemically. Thus, it would be criti-
cal to identify strategies for identifying key vulnerabilities
and targeting them to alleviate the immune suppression
prevalent in most TMEs.

2.2 TME-based cancer therapy

In recent times, combining therapies, especially those
inducing the engagement of immune cells, have been the
primary focus of TME-based therapeutics. In this section,
we review several facets of the TME that have been tar-
geted for therapy. Table 1 shows the clinical trials targeting
different components of the TME.
Tumors have a high demand for rich vasculature to keep

up with the high nutrient and glucose demand for their
progression. However, most tumors are poorly vascular-
ized and hypoxic, which advances cancer progression and
chemoresistance [70, 71]. Additionally, poor tumor vascu-
lature increases interstitial fluid pressure, protecting the
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TABLE 1 Clinical trials conducted to target components of the TME.

Inhibitor Functional Mechanism
Cancer Type/
Stage

Clinical ID/
Phase References

ECM
Fresolimumab mAb inhibits collagen

synthesis (targets TGF-β)
Advanced malignant
melanoma or renal cell
carcinoma

NCT01401062NCT0
2581787

[42]

Losartan Anti-hypertensive drug:
inhibits collagen synthesis

Breast, pancreatic, skin,
and ovarian cancer

NCT01821729 [43, 44]

FN-CH296 Recombinant fibronectin -
stimulates T cells to achieve
strong tumor-inhibitory
effects

Advanced cancer Phase I [45]

Vitaxin Humanized mAb - targets
integrin αvβ3

Progressive tumors with
stage IV disease

Phase I [46]

Cilengitide Peptide antagonist - targets
the binding between
integrin αvβ3 and RGD

Head and neck tumor,
glioblastoma

Phase II [42, 47]

huBC-1-mIL-12 Murine mAb - targets extra
domain B (EDB) of
fibronectin

Malignant melanoma,
renal cell carcinoma

NCT00625768
(Phase I)

[48]

L19-IL-2 L19, was fused with IL-2 -
targets EDB

Advanced renal cell
carcinoma, metastatic
melanoma

NCT01058538 (I)
NCT01055522 (II)

[49, 50]

RO5429083 CD44 antibody - inhibits the
mRNA transcription of
CD44 or CD44v

Neoplasms, Myelogenous
Leukemia, acute

NCT01358903NCT
01641250

[51, 52]

Ronespartat
(SST0001)

Heparanase inhibitor Multiple myeloma NCT01764880
(Phase I)

[53, 54]

Incyclinide
(CMT-3 and
COL-3)

MMP inhibitor Advanced carcinomas NCT00004147NCT0000
3721NCT00001683
NCT00020683

-

Immune cells
MTP10-HDL Immunostimulatory muramyl

tripeptide - epigenetic
reprogramming of the
multipotent progenitor cells
in the bone marrow

Mouse melanoma model preclinical [55]

6-diazo-5-oxo-l-
norleucine
(DON)

Blocks glutamine metabolism
in myeloid precursor cells

4T1 triple-negative breast
cancer model

preclinical [56]

“designer” T cells
(dTc, CAR-T)
against PSMA

PSA declines of 50% and
70% in 2/5 patients

Prostate cancer phase I trial [57]

CD133-CAR-T
therapy

CART-133 transfer for treating
patients with
CD133-positive and
late-stage metastasis
malignancies.

Advanced metastasis
malignancies

phase I trial [58]

HPV16 vaccine
(ISA101)

Long immunogenic peptide
antigens - induce CD4+T
and CD8+T cell cytotoxic
activities

HPV16-induced cancers Phase I/II study [59]

(Continues)
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TABLE 1 (Continued)

Inhibitor Functional Mechanism Cancer Type/
Stage

Clinical ID/
Phase

References

Pexidartinib
(PLX3397)

CSF-1R 1 inhibitor Advanced solid tumors NCT02734433 (1) [60]
Giant cell tumor NCT02371369 (3) [61]
Melanoma NCT02975700 (1/2) -
Pancreatic/colorectal
cancer

NCT02777710 (1) -

Gastrointestinal stromal
cancer

NCT03158103 (1) [62]

Advanced solid tumors NCT01525602 (1) [63]
Gastric cancer NCT03694977 (2) -

Canakinumab Anti-IL-1βmonoclonal
antibody

Lung cancer NCT01327846 [64]

Sipuleucel-T Recombinant fusion protein of
prostatic acid phosphatase;
PA2024 linked to GM-CSF

Prostate adenocarcinoma NCT03686683 -

Cancer-Associated Fibroblasts
Val-boroPro
(talabostat) and
Cisplatin

FAP-targeted inhibitory
small-molecules

Colorectal cancer,
melanoma

Phase II [65, 66]

Crenolanib PDGFR-targeted inhibitor Gastro-intestinal stromal
tumor

NCT02847429 (Phase III) -

Endothelial Cells and Pericytes
Bevacizumab
(Avastin)

Antibody - anti-angiogenic;
targets VEGF

FDA-approved (in
clinics)

[67]

Everolimus
(RAD001)

Rapamycin derivative mTOR
inhibitor

Renal cell carcinoma NCT01206764 (Phase 4) -

Pazopanib
(Votrient)

Multi-target tyrosine kinase
inhibitor

Advanced renal cell
carcinoma and soft
tissue sarcoma

[68, 69]

tumor core from cancer therapeutics via the bloodstream
[72, 73]. To block neoangiogenesis and mitigate hypoxia,
VEGF antagonists have been used as a line of therapy [74].
However, its success depends on other microenvironmen-
tal factors. For example, anti-VEGF treatment is ineffective
in obese mice due to increased IL-6 and FGF-2 expres-
sion by the adipocytes in the TME,while co-targeting these
improve the anti-VEGF therapy response [75].
Tumor-specific ECM varies among different cancer

types. This specificity is exploited for therapies. For exam-
ple, breast cancer samples have a remarkably high fibrillar
collagen content, leading to a poor prognosis [76, 77].
Thus, probes targeted to tumor-specific collagen help
detect tumors and micrometastases [78]. Conjugation or
recombinant fusion of therapeutic agents such as cetux-
imab or lumican to a collagen-binding domain peptide
can increase efficacy and safety [79, 80]. Similar to col-
lagen, TME also displays a unique matrix of fibrin and
fibronectin. Specific antibodies (such as L19) against
fibronectin to improve tumor response in the clinical tri-

als of patients with glioblastoma by localizing interleukin
2 (IL-2) or interleukin 12 (IL-12) in the tumor, leading to
increased infiltration of cytotoxic T cells [81–83].
The abundance of TAMs in TME can be therapeuti-

cally harnessed if they can be polarized to their anti-tumor
phenotype. Histone deacetylase inhibitor, TMP195, polar-
izes TAMs toward an anti-tumor phenotype and increases
the efficacy of carboplatin, paclitaxel, and anti-PD-1 ther-
apies [84]. Moreover, the phagocytic role of TAMs can be
harnessed to concentrate cytotoxic drugs in the TME [85,
86]. Miller et al. found a reduction in liver metastases due
to enhanced delivery of nano-encapsulated platinum in
the TME via TAMs in a breast cancer mouse model [87].
On a similar note, immunosuppressive myeloid cells can
be differentiated/polarized for anti-tumor phenotypes [88,
89]. For this, myeloid progenitor differentiation has been
manipulated via a bonemarrowhoming nanoparticle ther-
apeutically containing the immunostimulatory muramyl
tripeptide. This peptide shows anti-tumor effects by epi-
genetic reprograming of the multipotent progenitor cells
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in the bone marrow, which overcomes the immunosup-
pressive TME [55]. Moreover, a prodrug of 6-diazo-5-oxo-
l-norleucine (DON) that blocks glutamine metabolism in
myeloid precursor cells can differentiate monocytes into
anti-tumor TAMs, leading to tumor regression in mouse
models [56].
Stimulating a patient’s dominant immune system can

have long-lasting effects against cancer. Targeting the
immunosuppressive TGF-β signaling in T cells by PLGA
nanoparticles enhances antitumor immunity in mice.
These nanoparticles bind to T cells and release a TGF-βR1
inhibitor, SD-208, that stimulates the potency of CD8+ Teff
cells while inhibiting the inhibitory Treg cells in the TME
[90]. CAR-T cell therapy by engineering T cells to express
synthetic receptors that recognize tumor-associated anti-
gens in a major histocompatibility complex (MHC)-
independent way has shown huge success in hematolog-
ical malignancies. Although CAR-T cell therapy in solid
tumors is challenging since CAR-T cells cannot penetrate
solid tumors through vascular endothelium, prostate-
specific membrane antigen (PSMA)-directed CAR-T cells
have shown success in clinical trials against prostate can-
cer [57]. CD133-CAR-T therapy in colorectal, pancreatic
and hepatocellular carcinoma has shown anti-metastatic
potential in a phase I clinical trial [91]. Moreover, thera-
peutic cancer vaccines have shown promising results in
cancer immunotherapy by amplifying tumor-specific T-
cell responses. They can be categorized as cellular, viral,
or molecular vaccines [92]. Viral vaccines using a heterolo-
gous prime-boost strategy to amplify T-cell responses have
been successful in prostate cancer. Here, the delivery of
a tumor antigen by a viral vector is boosted by a subse-
quent delivery of the same antigen by another vector [93].
Also, peptide-based vaccines that deliver long immuno-
genic antigens to DCs have been shown to induce CD4+ T
and CD8+ T cell cytotoxic activities and improve survival
in patients withHPV-16-positive cervical cancer and newly
diagnosed glioblastoma (NCT02455557) [59].
DCs form a nexus between the adaptive and innate

immune responses. DCs present antigen to T cells
along with upregulation of co-stimulatory molecules and
cytokine production. The inactivity of DCs in the TME
to perform these functions hampers immune response
to tumors. DC deficiency in the TME can be caused by
several factors. Tumor-derived exosomes are known to
inhibit DC differentiation by releasing immunosuppres-
sive factors such as IL-6 and TGF-β [94, 95]. Moreover,
high lipid accumulation in DCs facilitated by tumor cells
can also decrease the secretion profile and reduce antigen-
presenting capacity, and high amounts of hyaluronic acid
in the ECM affect DC maturation [96]. Also, hypoxia in
the TME inhibits DCmaturation and function by inducing
VEGF signaling caused by the binding of hypoxia-induced

VEGF to its receptors on DC membranes [97]. Combi-
national DC-based therapy, such as DC-based vaccine or
granulocyte-macrophage colony-stimulating factor (GM-
CSF), which stimulates DC differentiation, activation and
migration, along with immune-checkpoint blockade, has
shown success in clinics [98]. Immune checkpoint block-
ers pembrolizumab and nivolumab are among the most
frequently used blockers, along with US FDA-approved
PD-1/PD-L1 inhibitors [96].
CAFs are unique in expressing their cell surface mark-

ers. For example, depleting fibroblast activation protein
(FAP)+ CAFs via a FAP vaccine decreases collagen den-
sity and improves chemoresistance in mouse models
[99]. However, CAF depletion has also been shown to
reduce infiltrating immune cells, leading to tumor pro-
gression [100]. CAF depletion in the TME leads to a
shift from T helper 2 (Th2) to T helper 1 (Th1) to pro-
mote inflammation, accompanied by the up-regulation of
IL-2 and IL-7 and downregulation of TAMs, Tregs and
MDSCs [101]. Moreover, CAF depletion using diphthe-
ria toxin-based immunotherapy reduced cancer growth by
increasing CD8+ Teff-cell infiltration to the TME [102].
Another approach to target CAFs is to inhibit their tumor-
promoting functions. For example, CAFs are known to
activate the transcription of homeobox (HOX) transcript
antisense RNA through paracrine TGF-β1, which leads
to epithelial-mesenchymal transition and thus promotes
breast cancer metastasis. Moreover, inhibiting TGF-β1 was
found to significantly inhibit CAF-induced tumor growth
and lung metastasis in an MDA-MB-231 orthotopic tumor
transplantation nude mouse model [103]. Furthermore,
inhibiting the proliferation of CAFs by co-administering
IPI-926, which inhibits the hedgehog signaling, with
the chemotherapeutic drug gemcitabine increasing tumor
drug sensitivity in the mouse models of pancreatic ductal
adenocarcinoma [104].
Most current therapies directed against the TME target

TAMs, tumor vasculature, DCs, ECM, T cells and CAFs.
As each of these cell types functions uniquely to modulate
the TME, it is important to analyze them and identify crit-
ical nodes that could be targeted to inhibit TME support to
tumor cells.

3 TARGETING SIGNALING IN THE
TME

Tumor cells highjack andmodulate various signaling path-
ways such as the PKC, Notch and TGF-β signaling path-
ways, endoplasmic reticulum (ER) stress response, lactate
and metabolic signaling, and the most recent cyclic GMP–
AMP synthase (cGAS)–stimulator of interferon genes
(STING) and Siglec signaling pathways [105–108]. These
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signaling pathways are crucial in maintaining a favor-
able TME and developing resistance against therapies or
multi-drug resistance [109]. In this section, we review the
signaling mechanisms of these pathways in different can-
cer types and the current status of therapies to target
them.

3.1 Protein kinase C (PKC) signaling

The extent to which PKC isoform activation or inactivation
affects TME components, including stroma and immune
systems, determines their promotion or suppressor func-
tions on tumor growth. PKC is a family of structurally
related serine/threonine kinases that functions as the
transducer of signals from a variety of molecules ranging
from hormones (adrenaline, angiotensin), growth factors
(insulin, epidermal growth factor), cytokines (Tumour
necrosis factor α (TNF-α), IL-1β and IL-6) and neuro-
transmitters (i.e., dopamine, endorphins) to regulate cell
survival, proliferation, differentiation, apoptosis, adhesion
and malignant transformation [105, 110, 111]. The binding
of ligands to their receptors can activate phospholipase C,
leading to the upregulation of cytosolic concentrations of
the activators of PKC signaling, diacylglycerol (DAG) and
Ca++ [112, 113]. The activation of PKC can upregulate sev-
eral molecular pathways, including Akt, signal transducer
and activator of transcription 3 (STAT3), nuclear factor-κB
(NF-κB) and apoptotic pathways, to regulate tumorigene-
sis andmetastasis [112]. PKC alpha, a PKC isoform, showed
antitumor activity by inducing the polarization of TAMs
within the TME [114]. Additionally, the protein levels of
PKC alpha, beta and epsilon were found to be downreg-
ulated in cancers such as colon cancer [115, 116]. PKC
theta, another isoform of PKC, showed tumor-suppressive
effects by inducing immune suppression within the TME
by controlling CTLA4-mediated regulatory T-cell function
[117–119]. Conversely, phorbol esters, the naturally occur-
ring activating ligands of PKC, showed tumor-promoting
functions, suggesting that PKC could be an oncogene [111,
120, 121]. Moreover, within the TME, PKC beta, another
PKC isoform, is a well-documented effector of the VEGF
signaling that promotes angiogenesis and is required for
invasiveness in certain tumors, such as pancreatic tumors
[122–124]. Therefore, it is likely that different isoforms
of PKCs or the same isoform within different contexts
may act as tumor promotors or tumor suppressors in a
context-dependent manner.
Nonetheless, combining existing therapies with novel

molecules to modulate the dysregulated PKC signaling
in cancer could be promising. Bryostatins, which are
PKC activators, were shown to protect against phorbol
ester-induced tumors [125]. Epoxytiglianes, another class

of PKC activators, showed efficacy in preclinical mouse
models and clinical mast cell tumors in canine models
[126–128]. Another activator of PKC, tigilanol tiglate, has
been approved for use in canine mast cell tumors [129].
Besides activators, CGP 41251, an inhibitor of PKC, has
also shown anti-tumor activity and was found to reverse
multidrug resistance when combined with adriamycin
[130].
Although preclinical activation has led to the identi-

fication of complex PKC functions, their translation in
clinical trials is impeded by a lack of mechanistic insights
and robust pathological markers. This understanding is
required to clinically address the action or inaction of
the isoforms and to reveal the gain or loss of function of
isoforms required for optimum efficiency of therapeutic
interventions.

3.2 Notch signaling

Recent evidence indicates that a distinct populationwithin
tumors can express distinct Notch ligands or paralogues,
which can both activate and inhibit tumor development
in different cancers since the outcome of Notch signal-
ing is highly changeable depending on the context. For
instance, the presence of Notch ligand delta-like canonical
Notch ligand 1 (DLL1) on DCs interacts with the NOTCH2
receptor on tumor cells to promote DC immunosuppres-
sive function. However, jagged canonical Notch ligand
2 (JAG2) on DCs plays negative tumor-promoting roles
Moreover, Notch mutations have been suggested to serve
as predictive biomarkers for immune checkpoint therapy
in various cancers. Thus, although not yet clinically suc-
cessful, an integrative analysis with newer perspectives
holds the potential for clinical developments [131].
Notch signaling plays a key role in determining cell fate

and regulating embryonic as well as tumor angiogenesis
[132, 133]. Notch receptors are heterodimeric, single-pass
transmembrane receptors that interact with either one
of their membrane-bound ligands (Jagged1, Jagged2, and
Delta-like ligands Dll1, Dll3 and Dll4) to stimulate the
expression of target genes [133]. In solid tumors’ TME, the
activation of Notch signaling generally promotes oncogen-
esis [134]. For example, Notch ligand Dll4 is upregulated
in tumor samples from clear cell renal cell carcinoma
patients [135], and inhibiting Dll4 leads to the disruption
of tumor vasculature within the TME [136, 137]. However,
Notch signaling functions as a tumor suppressor in the
malignancies of myeloid origin, such as acute myeloge-
nous leukemia and chronic myeloid leukemia [138, 139].
Moreover, a chronic blockade of Notch signaling leads to
vascular tumors of the liver, skin, ovary, testes and colon
in mice [140, 141].
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Demcizumab and enoticumab (Dll4 targeting antibod-
ies) alone or in combination with existing antitumor
drugs, and Rovalpituzumab (anti-Dll3 targeting antibody)
work by suppressing cancer stem cells and angiogenesis
in the TME and have progressed to randomized phase
II trials [142–144]. Brontictuzumab (anti-Notch1 recep-
tor antibody) and Tarextumab (anti-Notch2/3 receptor
antibody) were tested in relapsed or refractory tumors,
small-cell lung cancer and pancreatic ductal adenocarci-
noma, but clinical trials were discontinued owing to a low
response rate in patients [145–147]. MEDI3622 (anti-TACE
antibody) showed promising preclinical activity in human
colorectal adenocarcinoma progression [148, 149]. Inhibit-
ing γ-secretase using small molecules like PF-03084014
and BMS-906024 has shown promising results in triple-
negative breast cancer, desmoid tumors and pancreatic
ductal adenocarcinoma, and related phase II and III tri-
als are currently underway [150–153]. Small molecule and
peptide inhibitors of the intracellular domain of the Notch
receptor (NICD)-transcriptional complex assembly have
been developed, and phase I/IIa clinical trials are being
conducted on one such inhibitor, CB-103 (NCT03422679).
Other categories of Notch inhibitors, such as IMR-1 and
PRI-724, have been found to be effective in inhibiting
the Notch-transcriptional complex in in vitro model of
triple-negative breast cancer [154].
Although extensively studied in the past several decades,

Notch signaling therapeutics have failed clinical expec-
tations. The major shortcomings are high cytotoxicity,
shown by pan-NOTCH inhibitors, and low affinity of
antibody-drug conjugates (ADC). To combat these issues,
it was suggested to investigate novel isoform-specific drugs
with high ADC affinity. Moreover, combination thera-
pies targeting chemoresistance, endocrine resistance and
radio-resistance also hold promise.

3.3 TGF-β signaling

TGF-β therapeutics have recently shown great promise
with the use of TGF-β-neutralizing antibodies and ligand
traps, which inhibit the binding of TGF-β with its recep-
tors [155]. Moreover, dosing strategies to bypass cellular
toxicity or specifically target TGF-β isoforms that are max-
imally linked to cancer progression hold promise in clinics
to avoid the cytotoxicity of TGF-β inhibitors [155].
Transforming growth factor-β (TGF-β) is a family of

cytokines that intricately regulate embryonic develop-
ment, tissue homeostasis and regeneration [156]. More-
over, they regulate various aspects of cancer cells, such as
adhesion, differentiation, cell cycle progression and apop-
tosis [157, 158]. TGF-β signaling plays a biphasic role in
TME and cancer progression. It acts as a tumor suppres-

sor in the initial stages of malignancies by suppressing cell
proliferation and inducing apoptosis [159]. However, can-
cer cells adapt to the protective TGF-β signaling and utilize
its moonlighting functions to create a conducive TME by
activating CAFs, promoting angiogenesis and ECM pro-
duction, and suppressing anti-tumor immune responses
[160–162].
Various strategies have been adopted to target the

deregulated TGF-β signaling, including neutralizing anti-
bodies to target either ligands or receptors, ligand traps,
small-molecule inhibitors, and antisense oligonucleotides
(ASOs). Fresolimumab, a human monoclonal antibody
against TGF-β in a phase 1 clinical trial (NCT00356460),
demonstrated preliminary evidence of anti-tumor activ-
ity in malignant melanoma and renal cell carcinoma
[42]. LY3022859, an antibody against TGF-β receptor 2,
showed survival benefits in mouse models [163]. TGF-
β ligand traps are chimeric fusion proteins designed to
prevent TGF-β from binding to its receptors. AVID200, a
ligand trap for TGF-β1 and TGF-β3, showed anti-tumor
activity in mouse models [164] and feasibility in clinics
in patients with advanced solid-state tumors in a phase
1 clinical trial (NCT03834662) [165]. Moreover, various
small molecule inhibitors of TGF-β, including galunisertib
(LY2157299) [166–168], vactosertib (TEW-7197) [169–171]
and LY3200882 [172], have shown specific antitumor
activity. Lastly, phase 1 clinical studies with trabedersen
(AP12009), Lucanix (belagenpumatucel-L), or with ASOs
against TGF-β2 mRNA, showed better survival in glioblas-
toma, melanoma, pancreatic cancer or colorectal cancer
patients [173, 174].
The pleiotropic effects of TGF-β in tissue homeostasis

have rendered exploiting their pro-tumorigenic properties
difficult, as targeting TGF-β can systemically affect healthy
tissues and tumor cells, thus safety concerns. Thus, a better
understanding of the molecular mechanisms of TGF-β in
their regulation of normal and cancerous cells is required.
Moreover, stratifying patients based on biomarkers who
may benefit from TGF-β targeting is essential.

3.4 ER stress response pathways

The presence of hypoxia [175, 176], reduced nutrient avail-
ability [177, 178], accumulation of reactive oxygen species
[179, 180] and a decreased pH within the TME [180,
181] contribute to a chronic upregulation of ER stress
in the TME, impacting the fate and survival of cancer
cells. Additionally, oncogenic transformation contributes
to the constitutive activation of ER stress sensors such as
inositol-requiring enzyme 1α (IRE1α), leading to persistent
activation of ER stress by cancer cells [182]. Such chronic
activation of ER stress modulates the TME by reducing
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the surface expression ofmajor histocompatibility complex
class 1 and 2 proteins, thereby impeding immune recogni-
tion of the cancer cells by NK cells [183, 184]. Therefore,
reducing the ER stress load could be utilized to target TME
for more favorable treatment outcomes.
Therapies modulating ER stress response pathways by

inhibiting IRE1α, PRKR-like ERkinase (PERK) andmolec-
ular chaperone binding-immunoglobulin protein (BiP)
have shown success in various preclinical and clinical
studies. IRE1α inhibitors KIRA8 or AMG-18, STF083010,
MKC8866 and MKC3946 reduced tumor growth in various
cancers, includingmultiplemyeloma [185–187], melanoma
[188], breast cancer and prostate cancer [189]. Similarly,
PERK inhibitors GSK2606414 and GSK2656157 possess
antitumor activity and can reactivate T cell function in the
TME inmouse embryonic fibroblasts; however, these com-
pounds had adverse effects in mouse models, hindering
their progress toward clinical trials [190–193]. Further, sup-
pression of BiP signaling by KP1339 (also known as IT-139)
or HA15 in glioblastoma, bladder or breast cancer cell lines
has been shown to enhance the response to anti-cancer
therapy [194, 195].

3.5 Modulation of the TME by lactate
bioavailability

Targeting lactate transporters, such as solute carrier fam-
ily 16 member 1 (SLC16A1) and member 7 (SLC16A7),
to reduce lactate levels in tumors has shown huge pre-
clinical success. Another approach to inhibit the con-
version of pyruvate to lactate through targeting lactate
dehydrogenase A (LDHA) is useful in inhibiting the
oncometabolic lactase functions and revoking T cell- and
NK cell-mediated immunosuppression in various cancers
[108].
Due to elevated glucose uptake rates, cancer tissues

have high levels of metabolic by-products like lactate that
can be partly attributed to the accelerated metabolism of
cancer stem cells and other constituents of the TME [2,
196]. Recent reports suggest the role of proton-coupled
lactate efflux in maintaining an acidic phenotype in the
TME, thereby promoting angiogenesis [197, 198], cell inva-
sion [198] and metastasis [199–202]. Additionally, high
lactate concentration in the TME inhibits the maturation
of monocytes to dendritic cells [203, 204] and reduces
cytokine production and cytotoxic activity by T cells and
NK cells [205–207], thereby contributing to suppressed
immune recognition of cancer cells.
Suppression of lactate efflux by cancer cells using

the small molecule inhibitor AZ3965, α-cyano-4-
hydroxycinnamate (CHC), has shown promising results
in preclinical models of Burkitt lymphoma, breast cancer,

gastric cancer, small cell lung cancer and glioblastoma
[208, 209]. Moreover, pharmacological inhibition of lactate
dehydrogenase-A, a key gene involved in lactate synthesis
using N-hydroxyindoles and galloflavin or genetic ablation
of LDHA, reduced tumorigenesis in non-small cell lung
cancer[210], pancreatic ductal adenocarcinoma [211, 212]
and cervical cancer cells [212, 213].
Despite understanding the pathogenic roles of lactate,

how its targeting affects host anti-tumor immunity and
synergizes with other anti-cancer immune therapies still
needs to be explored since lactate also partly modulates
the metabolism in the TME as an energy source, signal-
ing molecule, and as a key tumor immunosuppressive
factor [202]. Moreover, identifying more potent lactate
transporter and LDHA inhibitors warrants improving
anti-cancer therapies.

3.6 Metabolic reprogramming of the
TME

Metabolic reprogramming is an essential hallmark of
cancer characterized by the ability of cancer cells to repro-
gram the metabolism of non-cancerous cells, specifically
immune cells, to go against their nature, help in tumor
progression, and better adapt to the limited availability
of nutrients in the TME [214–216]. This reprogramming,
via regulating metabolic enzymes’ activities, helps enrich
the TME with nutrients and plays a causal role in tumor
progression [217, 218].
The metabolic niche of the TME is regulated by four

key factors: 1) intrinsic metabolism of the tumor cells, 2)
tumor-non-tumor cell interaction, 3) location and hetero-
geneity of the tumor, and 4) metabolic homeostasis of the
body [219]. Regarding intrinsicmetabolism, several studies
have demonstrated that tumor cells drive aerobic glycoly-
sis and promote cell proliferation via fuelingmitochondrial
metabolism [220, 221]. Moreover, apart from glucose and
lactate, tumor cells use fatty acids, proteins and amino
acids as fuel [222, 223]. For example, glutamate is converted
into aspartate in cells with a dysfunctional electron trans-
port chain to promote proliferation, allowing tumor cells to
adapt rapidly to the substrates available in their TMEniche
[224, 225].
T cells provide a natural defense against cancer cells

as they can specifically kill tumor cells by recognizing
tumor-specific antigens. However, glycolytic tumors have
very low T cell infiltration and proliferation as activated
T cells and tumor cells compete for glucose in the TME
[226]. Limiting glucose levels leads to cellular competition;
this impairs T-cell function via decreasedmTOR signaling.
Reduction in mTOR activity diminishes IFNγ transcripts
in T cells, mitigating Th1 CD4+ T cell differentiation
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[227–229]. Furthermore, tumor cells compete with T cells
for amino acids [230]. For example, glutamine is required
for T-cell function and differentiation, and tumor cells use
glutamine to activate STAT3 to promote cell proliferation
[231].
The polarization of TAMs towards either the M1 (anti-

tumoral) or M2 (protumoral) phenotype is dictated by
cellular metabolism and thus regulates its response to
tumor cells. Increased glycolysis by tumor cells leads to
the formation of TAMswith lowglycolytic potential, which
promotes metastasis [232]. Moreover, tumor cells produce
lactate which induces the M2 phenotype of TAMs via
stabilizingHIF-1α and activating G-protein-coupled recep-
tor 132 [210, 233, 234]. Glutamine metabolism in TAMs
also promotes an M2 phenotype via the production of
α-ketoglutarate, which aids in fatty acid oxidation and
epigenetic activation of M2 genes [235].
Tumor location plays a key role in TME modula-

tion because different organs and tissues have different
proteomic and metabolic signatures. These differences
determine the metabolite dependencies of tumor cells.
Moreover, the perfusion level, tissue function and cell-
type composition within the same organ also contribute to
metabolic heterogeneity. For example, blood vessel prox-
imity distinctly defines metabolic niches. Additionally, a
significant correlation has been found between glycolysis,
mitochondrial metabolism and local oxygen concentra-
tions in a study conducted on human melanoma and
head and neck cancers [236]. Glucose tracing studies
stipulate that tumor cells in highly perfused locations
rely mainly on glucose, whereas those in less perfused
regions depend on other carbon sources [237]. Further-
more, solid tumors, being metabolically heterogeneous,
show glutamine-depleted cores, which promote histone
hypermethylation, resulting in the reduced expression of
differentiation-related genes and cancer cell dedifferentia-
tion [238, 239].
Although cellular metabolism and its role in the TME

are well explored, the role of systemic nutrient levels in
characterizing the metabolic environment of the TME is
still elusive. Recent studies indicate that dietary restric-
tions and hormonal modulation affect local metabolism
[240]. For example, dietary restriction of serine-glycine is
beneficial in tumors lacking p53 because of their inabil-
ity to counteract reactive oxygen species (ROS)-associated
oxidative stress [241, 242]. Moreover, the gut microbiome
also produces specific microbial metabolites that can be
altered by dietary restrictions, thus affecting tumor cell
metabolism [243].
Metabolic enzymes were previously considered to

catalyze their specific reactions, and their roles were
strictly limited to regulatingmetabolic pathways.However,

research in the past decades indicated that these enzymes
have a moonlighting function in phosphorylating various
proteins that regulate many pathways ranging from cell-
cycle progression and proliferation to apoptosis, autophagy
and T-cell activation. Some of these enzymes are pyruvate
kinase M2, phosphoenolpyruvate carboxykinase 1, acyl-
glycerol kinase, hexokinase and phosphoglycerate kinase
1 [244–247]. Moreover, the metabolic products of these
enzymes play a crucial role in regulating gene expression
[245, 248]. Interestingly, these enzymes perform their non-
canonical functions via protein-protein interactions and
regulate many central signaling pathways and functions of
several organelles, such as the nucleus, ER and mitochon-
dria [249]. Thus, unraveling the moonlighting functions
of metabolic enzymes that help in tumor progression
helps us to better understand the TME dynamics and can
be exploited to develop better therapeutic interventions
[250].
Several challenges hinder the targeting of the pro-

tumorigenic metabolic profile of the TME. Targeting
the tumor cells’ proliferative profile also affects nor-
mal cell metabolism at the systemic level. Combining
these drugs with other cancer hallmarks, such as immu-
nity, could increase the therapeutic window for targeting
oncometabolites. Another prevalent strategy is to inhibit
enzymes mutated in cancer, such as the isocitrate dehy-
drogenase 1 (IDH) 1/2 mutation-induced oncometabolite
D-2-Hydroxyglutarate (D2HG) in glioblastoma (GBM) and
acute myeloid leukemia (AML). IDH inhibitors have
shown clinical success in AML and are under investiga-
tion with combination therapies in GBM. Thus, targeting
tumor-specific metabolites in the optimum therapeutic
window and exploiting cancer-specific vulnerabilities hold
great potential in metabolomics [251].

3.7 cGAS-STING signaling in the TME

Research on the cGAS-STING signaling promoting tumor
progression is emerging in the field of cancer. The Cancer
Genome Atlas (TCGA) database categorizes 18 differ-
ent malignant tumor types. Researchers have observed
differences in the expression of essential genes in the
cGAS-STING signaling mechanism between normal and
malignant tissues, along with MB21D1-encoding cGAS,
transmembrane protein 173 (TMEM-173)-encoding STING,
TANK-binding kinase 1 (TBK-1) and interferon regulatory
factor 3 (IRF-3). Comprehensive research and recent evi-
dence proved that these four genes were significantly ele-
vated in almost all cancer models, suggesting that cGAS-
STING signal transduction might be stimulated in all
cancer types [252, 253]. In some cancer models, extremely
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F IGURE 1 Hormones, metabolites and cytokines released by the microenvironment regulate gene expression to increase glucose uptake
and glycolysis in the tumor cell. cGAS-STING cellular signaling pathway is activated upon recognition of double-stranded DNA in the cytosol.
cGAS in turn activates the STING protein on the ER to initiate downstream signaling, primarily through TBK-1 and IKK. STING activation
typically leads to the activation of transcription factors, IRF3 and NF-κB1, which is known to partially inhibit the activity of NF-κB1. STING
signaling results in the production of IFN-I and TNF-α proinflammatory cytokines. Siglec-sialic (sialidase) axes signaling to represent siglecs
on the surface of immune cells and binding with sialic on tumor cell leads to the deactivation of immune response by all the immune cell
population as siglec express on most of the immune cell (e.g., T-cell, TAM, MDSC, NK and neutrophils). Created with BioRender.com
Abbreviations: cGAS: cyclic GMP–AMP synthase; STING: stimulator of interferon genes; ER: Endoplasmic Reticulum; TBK-1: TANK-binding
kinase 1; IKK: nuclear factor-κB (IκB) kinase; IRF3: Interferon regulatory factor 3; NF-κB1: nuclear factor κB1; IFN-I: Type I interferons;
TNF-α: Tumour necrosis factor α; TAM: Tumor-Associated Macrophage; MDSC: Myeloid-derived suppressor cell; NK: Natural Killer, TRAF:
Tumor-necrosis factor Receptor-Associated Factor, TAK: TGF-β-activated kinase.

invasive tumors can ambiguously depend on and uti-
lize the cGAS-STING pathway to modulate tumorigenesis
with significant implications for cancer therapy [254]. NF-
κB regulates cell proliferation, apoptosis and survival of
normal cells, thus acting as a crucial stimulator of the
inflammatory response. Additionally, NF-κB promotes the
development of inflammation, tumors and immune dys-
function [255]. Chromosomal instability induces chronic
inflammatory signals by constantly activating the cGAS-
STING signaling mechanism, which downstream NF-κB
function and consecutively increasesmetastatic cancer cell
progression [256] (Figure 1).
Moreover, TCGA dataset analysis revealed that the

STING expression level in cancer is negatively correlated

with infiltrating immune cells in various tumor models,
demonstrating that significant upregulation of the cGAS-
STING signaling mechanism predicts a poor prognosis
in cancer patients [252]. It has been shown that various
tumor cells can specifically advance the accumulation of
astrocyte-gap junctions to enhance brain metastasis by
expressing protocadherin 7 (PCDH7), composed of con-
nexin 43 (Cx43)[257]. These junction carriers pass to the
cGAMP, from cancer cells to adjacent astrocytes, to stimu-
late STING by triggering IRF-3 and TBK-1 to generate TNF
and IFN-α. Similarly, as paracrine signals, these factors fur-
ther activate the NF-κB and STAT-1 pathway in metastatic
brain cells, thus promoting brainmetastasis and resistance
in lung and breast cancer therapy [257].
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3.8 Siglec signaling in the TME

Tumor cells express an abnormal quantity of sialic acids
on their cell surface [258]. Most sialic acids belong to
negatively charged disaccharides masking the chains of
glycan on glycoproteins and glycolipids [258, 259] and are
known as sialoglycans. On tumor cells, sialoglycans are
involved in tumor cell-to-cell interactions within the TME,
and it was also suggested that sialoglycans with nega-
tively charged moieties could form an invisible cover by
protecting tumor cells from immune recognition [260].
A vaccination trial with autologous sialidase treatment
in human breast and melanoma cancer revealed that the
elimination of sialic acid elicited a robust antitumor and
an immune response [261]. Studies over the past decades
have suggested a clear function of sialoglycans in tumors
via immune evasion, not only by shielding of antigens but
also by sialic acids show robust immunomodulatory prop-
erties as sugar moieties [260, 262, 263]. Sialoglycans form
different ligands for sialic acid binding proteins, i.e., Factor
H (FH), to evade complemented activation and are pro-
posed as a mediator of the selectin-independent adhesion
of lymphocyte trafficking, plays an essential role in metas-
tasis [258, 264, 265]. Sialic acid-binding immunoglobulin-
like lectins (Siglecs) have specific interactions with the
immunomodulatory properties of sialoglycans. In mam-
mals, siglecs are divided into two groups: the structurally
preserved siglecs- (1, 2, 4 to 15) and the CD33-related
siglecs (3, 5 to 11, 14 to 16) [266, 267]. Tumor cells with
abnormal expression of sialic acid upregulate siglec fam-
ily expression to infiltrate immune cells in the TME. The
function of inhibitory siglecs closely resembles the PD-1
immune checkpoint function (Figure 1) [266, 267]. TME
also promotes abnormal sialylation in tumor cells and
modulates the expression of siglec on infiltrating immune
cells [268]. Future studies could explore the approach to
target the dysregulation of the sialoglycan-siglec axis in
cancer, which could contribute to shaping the immuno-
suppressive TME, composing an obstacle to overcome
towards effective immunotherapy in cancers.

4 IMMUNOTHERAPY AND
IMMUNOSUPPRESSIVE SIGNALING IN
TME

4.1 Checkpoint signaling mechanisms

Several inhibitory immune receptors have been identified
and studied intensively in the TME immune population,
such as PD-1, CTLA4, TIM-3, LAG3 and B and T lym-
phocyte attenuator (BTLA), and are termed “immune
checkpoints”, which essentially indicate a molecule that

acts as a guard of immune responses against tumors
or pathogens. The immuno-suppressive functions of the
immune checkpoints usually rely upon ligand-receptor
interaction. Recent studies using advanced technolo-
gies, like mass cytometry (CyTOF) and single-cell RNA-
sequencing (scRNA-seq), followed by functional studies,
have shown a dynamic and diverse immune landscape
that facilitates the understanding of tumor heterogene-
ity in various cancers, including various tumor stages
and genetic backgrounds. In the TME, exhausted T cells
exhibit reduced effector function and increased expres-
sion of immune checkpoints (e.g., PD-1, CTLA4, TIM-3,
LAG3, BTLA) [269]. In this section, we summarize several
well-researched immune checkpoint receptor signaling
mechanisms.

4.1.1 Programmed cell death protein 1
(PD-1) signaling

Some tumors express PD-L1, which contributes to immune
evasion by inhibiting cytotoxic responses. Thus, anti-PD-
1/PD-L1 antibodies can promote T cell activation and
enhance anti-tumor immunity by blocking the interaction
between PD-1 and PD-L1/PD-L2 [270, 271]. Typically, PD-
L1 or PD-L2 are expressed on the surface of cancer cells or
antigen-presenting cells and transduce a signal for coop-
eration with PD-1 expression on the cell surface of T lym-
phocytes to stimulate restraint signaling [272, 273]. Tumor
cells secrete extracellular vesicles (EVs) havingmembrane-
bound PD-L1, mostly to upregulate the PD-1 mechanism,
thus decreasingT lymphocytes [274, 275]. Additionally, PD-
L1 can interact in cis with Cluster of differentiation 80
(CD80) to PD-1 [276–278], which may disturb the PD-L1
and PD-1 interaction and the CTLA4 and CD80 interac-
tion and also maintain the flexibility of CD80 to trigger the
signaling of CD28 [277, 279]. Consequently, the cis PD-L1
and CD80 interaction influences antitumoral immunity by
abolishing PD-1 and CTLA4 functions. In contrast, ligand
involvement with PD-1 causes a mutation in immunore-
ceptor tyrosine-based switch motif (ITSM) in cytotoxic T
cells, which significantly abolishes tumor growth in the
Non-small cell lung cancer (NSCLC) model [280, 281].
Phosphorylated immunoreceptor tyrosine-based switch
motif (p-ITSM) primarily recruits Src-homology-region-
2-containing protein tyrosine phosphatase-2 (SHP2) to
dephosphorylate key signaling molecules to downmodu-
late PD-1 activity levels [282, 283]. Even though SHP2 is
important for inhibitory signaling of PD-1 in most cases,
T lymphocyte SHP2 deficiency can still be detrimental
by reacting to the treatment of anti-PD-1 antibodies in
vitro, thus revealing an alternate signaling pathway [284,
285]. Reports also showed that phosphorylated PD-1 ITSM
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could recruit SHP-1 to play a role in the T-cell inhibitory
mechanism [286]. Previous studies showed quantitatively
applied mass spectrometry of PD-1 signalosome assem-
bly in primary effector T cells and confirmed that PD-1
mainly recruited SHP2 [282, 287, 288]. Deep immune pro-
filing of immune checkpoint inhibitor (ICI)-refractory and
responsive in mouse models using Cytometry by the time
of flight (CyTOF) showed that ICI-refractory in glioma
tumors was associated with accumulating PD-L1+ TAMs
and lack of MHC-II+ antigen-presenting cells [289]. It
is important to note that multiple TAM subpopulations
likely drive the immune evasion of GBM. In addition to
PD-L1+ TAMs, CyTOF and scRNA-seq analyses revealed
that CD73high macrophages are immunosuppressive cells
and have a signature distinct from microglia that persist
after anti-PD-1 treatment [269, 290, 291]. A transcriptional
study of the PD-1-modulated activation on individual pop-
ulations of T cells confirmed that PD-1 signaling largely
inhibits transcriptional genes generated by the powerful T
cell receptor (TCR) signaling pathway [292, 293]. Emerging
evidence leveraged translationally to improve anti-PD-L1
therapy, and future studies can minimize it by avoiding
the resistance and using combination therapy, for example,
through companion biomarkers and/or identifying novel
targets that could be modulated to overcome resistance.

4.1.2 Cytotoxic T-lymphocyte associated
protein 4 (CTLA4) signaling

New studies suggest that CTLA4 blockade within the
TME could decrease the activation threshold of T cells
while selectively depleting immunosuppressive regulatory
T cells, which can increase the number of tumor-specific
CD8+ T cells [294]. CTLA4 binds to CD80 or CD86 with
higher binding affinity and impedes CD28 co-stimulation
[295, 296]. T cells expressing CTLA4 on the surface can
decrease CD80 and CD86 expressions on APCs by under-
going trans-endocytosis and inhibiting CD28 signaling
[297]. It is commonly known that the CTLA4 cytoplasmic
domain recruits SHP2 and contains YVKM motifs, which
are considered to recruit SHP2 [298]. Some studies reported
that there might be phosphotyrosine-independent coop-
eration among SHP2 and CTLA4 as alternated tyrosine
CTLA4 could interact with SHP2 and inhibit TCRζ sig-
naling pathways [299, 300]. Evidence also confirms no
immediate interaction between CTLA4 and SHP2. How-
ever, it is perhaps arbitrated through the PI3K protein
[301]. Further studies have suggested a disturbing action
of CTLA4 on ZAP70. Micro-clusters are established when
the ligands bind to TCR, and ZAP-70 reacts and arbitrates
on the downstream pathway. CTLA4 disrupted the ZAP70
cluster formation in most T cells, although 5%-10% of T

cells demonstrated cluster forming followed by anti-CD3
treatment [302–304]. A study reported almost no effect on
ZAP70. Instead, the activation of T cells was associated
with impaired c-JunN-terminal kinase (JNK) and extracel-
lular signal-regulated kinases (ERK) signaling activation
[305, 306]. Consequently, the inhibition of CTLA4 could be
achieved without the degradation of CTLA4 and adverse
events caused by toxicity. Exploring CTLA4’s inhibition
in combination with other checkpoint inhibitors, such as
anti-PD-1 and anti-PD-L1, could improve the therapeutic
efficacy compared to their single inhibition.

4.1.3 T cell immunoglobulin and
mucin-domain containing-3 (TIM-3) signaling

The interest in studying the ICI TIM-3 comes amid grow-
ing efforts to boost the efficacy of ICI immunotherapy.
TIM-3 expression has a “complex biology” that nega-
tively affects the immune system. Nevertheless, tyrosine
kinase FYN and human leukocyte antigen B (HLA-B)-
associated transcript 3 (BAT3) were suggested to inhibit
the cytoplasmic tail of TIM-3 signaling [307–309]. It is
hypothesized that when TIM-3 is unbound, BAT3 is con-
fined to bind TIM-3 cytoplasmic motif and engage the
intermediary form of lymphocyte-specific protein tyrosine
kinase (LCK). In this condition, T cell activity was not
inhibited. The binding state of TIM-3 with ligands acti-
vates the phosphorylation of Tyr256 and Tyr263 tyrosine
residues by IL-2-inducible T cell kinase (ITK), followed
by ligand binding, releasing BAT3 into the cytoplasm
[310, 311]. Release of BAT3 suggests that FYN tyrosine-
protein kinase links with the TIM-3 cytoplasmic tail to
generate inhibitory signaling that causes anergy of T cells
by activating the transmembrane protein phosphoprotein
membrane anchor with glycosphingolipid microdomains
1 (PAG1). This prompts the recruitment of tyrosine kinase
(CSK), leading to phosphorylating LCK and suppressing T
cells [308, 312]. Another inhibitory signaling mechanism
discussed is the colocalization of TIM-3 with CD45 and
CD148 at the immunological synapse, where T cell func-
tion was suppressed [313]. The latest study showed that the
binding for a short term of the extracellular motif of TIM-3
amidst phosphatidylserine (PS) leads to the activation of
TCR signaling. Another data revealed that the blockade
activity of the TIM-3 or galectin 9 axis is due to the action
of galectin 3 by clustering TIM-3 to inhibit the binding to
PS [314]. Nevertheless, the binding of TIM-3 to PS in NK
cells abrogated the activity and all-inclusive cytokines pro-
duction [315]. It is known that TIM-3 action is based on
different ligand interactions, and investigative efforts are
focusing on pairing novel agents directed at TIM-3 activity
with PD-1/PD-L1 immune ICI therapy [316, 317].



GOENKA et al. 539

4.1.4 Lymphocyte activation gene 3 (LAG3)
signaling

LAG3 interacts with its ligands to regulate the function of T
cells. The ligands of LAG3 are not only limited toMHC II as
well as other ligands like galectin 3 (Gal-3),α-synuclein fib-
rils (α-syn), lymph node sinusoidal endothelial cell C-type
lectin (L-SECtin) and fibrinogen-like protein 1 (FGL-1)
[318–320]. In TCR signaling engagement, the LAG3 cyto-
plasmic tail arbitrates the inhibitory signaling through 3
conserved motifs, glutamate proline di-peptide multiple
repeats (EP), a KIEELE, and a serine phosphorylation
(S484) motif. It is known that the inhibiting action of
LAG3 is not directly contemplated by eradicating the inter-
action between MHC-II and CD4 [321]. Some confirmed
data showed that inhibitory signaling is triggered when
LAG3 and CD-3 interlink. When LAG3 physically inter-
plays with the complex of CD3 or TCR, it decreases the
stimulative alteration of the complex. In addition, besides
this, it also abolishes the activity of calcium influx. The
essential role of LAG3 is to reduce the T-cell counter, but
it does not necessarily induce any apoptosis in T cells [322,
323]. It is already illustrated that the specific KIEELEmotif
is a vital sequence necessary for blocking the signaling
pathway. Notably, a single lysine residue (Lys468) exerts
an inhibitory effect in CD4+ T lymphocytes at 468 motifs
within the KIEELE [324]. However, LAG3 can positively
induce Treg cell activation and stimulate its immunosup-
pressive function [325, 326]. LAG3 may synergize with
other inhibitory molecules (PD-1, CTLA4) to improve the
inhibitory activity of Treg cells, leading to APC-induced
immune tolerance [327]. LAG3 can activate thematuration
and stimulation of DCs through the regulation of intra-
cellular phosphorylation protein and promote chemokines
like tumor necrosis factor α (TNF-α) [328]. LAG3, highly
expressed on the tumor-infiltrating lymphocytes (TILs),
interacts with ligands located on the surface of tumor cells
to cause T cell dysfunction or even exhaustion, promoting
tumor immune escape, particularly evident inCD8+ T cells
[329, 330].

4.1.5 B- and T-lymphocyte attenuator
(BTLA) signaling

BTLA is the essential co-signaling immune checkpoint
protein with bidirectional functions [331]. BTLA contains
ITIM and ITSM motifs and stimulates the inhibition of
Grb2 protein in its cytoplasmic domain. Due to adaptor sig-
naling, Grb2 recruits the p85 protein subunit of the PI3K or
Akt signaling mechanism, inducing the proliferation of B
and T lymphocytes [332]. ITIM and ITSM, both tyrosine
residues, are phosphorylated in BTLA signaling to recruit

SHP1 and SHP2, which inhibit lymphocyte functional sig-
naling. BTLA compels the strongest phosphatase SHP1 to
abrogate theCD28 andTCR signalingmechanisms. In con-
trast, PD-1 signaling recruits the weakened phosphatase
SHP2 [282]. In addition, BTLAandherpesvirus entrymedi-
ator (HVEM) shares ligand on the same T lymphocytes
(CD8+), and the same cell interaction happens, which sup-
presses T cell function [333]. On the other hand, on APCs,
when HVEM is attached to BTLA on T lymphocytes, it
invigorates downstream NF-κB signaling, which leads to
APC maturation [334]. The unique interaction between
HVEMand BTLA allows for bidirectional signaling, which
elucidates an understanding of the opposite or dual roles
of HVEM and BTLA and the approach for their specific
targeting in treatment.

4.2 Immunotherapies targeting
immune checkpoint signaling

In recent years, the TME has appeared as a promising
approach for targeting several cancers. Here we discuss
recent research targeting immune checkpoint signaling by
blockade antibodies, ICIs, or various tumor-suppressive
blocking peptides, nanoparticles, and CAR-T cell ther-
apy to target the receptor-ligand intercommunication and
attenuate T cell function to kill tumor cell progression.
Many studies or clinical trials have conquered and are
authorized for clinical translation [335]. Nonetheless, the
overall survival response for these immunotherapies is
not enough and needs a more comprehensive study [335].
Blocking antibodies PD-1 or PD-L1 is the most widely
used in various cancer models as immunotherapy. T cell-
targeted immune modulators are used as monotherapy or
combination treatment with chemotherapies for almost all
cancer types [336, 337]. Active clinical trials on different
immune checkpoint proteins in several cancer models are
shown in Figure 2 and Table 2. Recently small molecules
have been studied and shown to have the potential to
emerge into immune checkpoint inhibitors with nanomo-
lar binding affinity to PD-L1. Conceivable data revealed
abolished PD-1 and PD-L1 interactions, improved T-cell
activity, and enhanced antitumor immunity in colon,
breast, pancreatic, and kidney cancer models [338–341].
Recently, glioblastoma mouse models revealed the inhi-
bition of intratumoral immune-suppressive microglia or
macrophages into the TME and increased CD8+ T cell
infiltration, activation, and cytotoxicity into the tumor tis-
sue and synergizing with anti-PD-1 combination therapy
[342, 343]. In contrast, to intensify the T cells’ function and
minimize the adverse effects of usingCTLA4 immunother-
apies, ICI treatment using combinations of anti-PD-1
(nivolumab) and anti-CTLA (ipilimumab) have shown to
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F IGURE 2 Blockade of ICI restores T cell function. Inhibition of PD-1, CTLA4, TIM-3, and LAG3 with interaction by antibodies, drugs,
and peptides. The cytotoxic signal is released when the TCR recognizes an antigen on the membrane of tumor cells or (APCs). However,
PD-L1/2, B7-1/2, Gal-9/BAT-3 and Gal-3/α-syn/L-selectin/FGL-1 are up-regulated in tumor cells (APCs) when T cells are activated, resulting
in inhibitory signals and dampening T cell activation by stimulatory signals. Clinical trials of blocking or inhibiting these interactions using
antibodies or a newly designed combination, which restores T cell function and anti-tumor immunity, are ongoing. Created with
BioRender.com.Abbreviations: ICI: Immune checkpoint inhibitor; PD-1: Programmed cell death protein 1; CTLA4: Cytotoxic T-lymphocyte
associated protein 4; TIM-3: T-cell immunoglobulin and mucin domain 3; LAG3: Lymphocyte Activating 3; TCR: T cell receptor; APC:
Antigen-presenting cells; PD-L1/2: ligands of PD-1 (PD-L1 and PD-L2); Gal-9: galectin-9; BAT-3: HLA-B associated transcript 3; Gal-3:
Galectin-3; α-syn: Alpha-synuclein; FGL-1: Fibrinogen like 1.

boost CD8+ T cell activation, proliferation, enhance the
Teff cell memory (CD8+) and produce interferon-γ and
granzyme-B in malignant pleural mesothelioma (MPM)
patients [344]. Recently, the US FDA-approved PD-L1
inhibitors atezolizumab and durvalumab were combined
with carboplatin plus etoposide (CP/ET) to target and kill
aggressively growing tumors in advanced SCLC patients
and reported an overall increase in survival [345, 346].
Recent data from several clinical trials are encouraging
combination therapywith a TIM-3 directed antibody (TSR-
022) and PD-1 together with chemotherapy for patients
with NSCLC [347]. The researcher explained that the
combination regimen was well tolerated across multiple
dosing levels and that the responses showed the strat-
egy is worth pursuing. Anti-LAG3 monoclonal antibody
relatlimab was also evaluated in several advanced solid
tumors such as head and neck squamous cell carcino-
mas (HNSCCs), melanoma, NSCLC, renal cell carcinoma
and bladder cancer, and the trial evaluated the efficacy
of relatlimab, mono-immunotherapy or in a combina-

tion regimen with an anti-PD-1 antibody nivolumab [348].
LAG3 may synergize with other inhibitory molecules (PD-
1, CTLA4) to improve the inhibitory activity of Treg cells,
leading to APC-induced immune tolerance [327]. Several
ongoing clinical trials investigating the blockade of TIM-
3 inhibitor (sabatolimab) with or without PD-1 inhibitors
in advanced solid tumors concluded that the doses for
combination therapy of sabatolimab and spartalizumab
were under tolerance and showed anti-cancer activity with
survival benefits [349]. Moreover, CAR-T cell therapy is
emerging to be a progressive new pillar in immune cell
therapy for cancer, which has yielded remarkable clini-
cal responses in patients with B-cell leukemia. However,
many challenges remain to be addressed to overcome
its ineffectiveness in treating solid tumors and hemato-
logical malignancies [350]. The great potential of CAR-T
cell therapy at the beginning or earlier during the treat-
ment course was unraveled, and the strategy revealed
higher success rates and reduced toxicity associated with
anticancer treatments [351]. Early administration of the
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therapy may also provide access to a higher proportion
of naïve unexposed T-cell population, which is benefi-
cial to facilitate the production of CAR-T cells. Finally,
immunotherapeutic development of targeting immune
checkpoint signaling molecules has promptly increased
over the decade. The development of new biomarkers or
identification of new targeting mechanisms with combi-
national strategies and novel nano-drug delivery strategies
could significantly boost immunotherapy benefits in an
effort to improve the quality of life for cancer patients
by enhancing overall survival and eventually eliminate
cancer.

4.3 Immunosuppressive chemokine cell
signaling into the TME

The chemokine gradient determines the composition of
the TME. Pro-tumor chemokine gradient attracts immune
suppressive immune cells and excludes effector immune
cells. On the other hand, the antitumor chemokine gra-
dient favors the migration of effector immune cells. Here,
we discuss key chemokine signaling axes in tumors and
immune crosstalk therapeutically targeted to make the
TME less immune suppressive.

4.3.1 CCR4-CCL22/17 signaling axis in the
migration of regulatory T cells into the TME

Regulatory T cells suppress immune responses against
tumors and their normal function to maintain immune
tolerance in physiological conditions [352]. The CCR4-
CCL17 signaling axis induces chemotaxis of CCR4+ T cells,
mainly Th2 and Tregs, generating an immunosuppres-
sive TME [353]. CCL17 acts as a ligand for CCR4 and is
produced by DCs or endothelial cells [354, 355]. These
observations were made in the context of gastric can-
cer and esophageal squamous cell carcinoma. Similarly,
CCL22 is also another ligand of CCR4. In breast cancer,
the CCR4-CCL22 signaling axis was reported to induce
increased migration of regulatory T cells in TME, which
in turn leads to the exclusion of effector T cells in the TME
[356, 357].

4.3.2 CCR2-CCL2 axis and CCR5-CCL5
signaling axis in the migration of TAMs into the
TME

TAMs are bone marrow-derived myeloid cells that are
part of the tumor-associated stroma and are usually repro-
grammed to perform immune suppressive and pro-tumor

functions [358]. The CCR2-CCL2 axis is implicated in
the recruitment of TAMs and myeloid-derived suppres-
sive cells (MDSCs) in the tumor bed. These observations
were made in different cancers like glioma, renal tumors,
lung cancer, prostate cancer, and melanoma [359]. The
tumor cells and tumor stroma are known to express CCL2,
and the receptor CCR2 is exclusively expressed by myeloid
cells [360, 361]. Similarly, CCL5, which is produced by
epithelial cells, fibroblasts, monocytes, NK cells, DCs,
endothelial cells, macrophages and lymphocytes, acts as
a ligand for CCR5, preferentially expressed by Tregs, and
the CCL5-CCR5 signaling axis can induce the migration
of TAMs, myeloid-derived suppressive cells and that of
regulatory T cells. Moreover, disrupting the CCL5-CCR5
axis may inhibit their migration and reduce tumor growth
[362, 363].

4.3.3 CCR5-CCL5 and CCR6-CCL20
signaling axis in the migration of dendritic cells
into the TME

DCs are APCs that help in priming effector T cells. DCs
play an important role in regulating themigration of CD8+
T cells into the TME [363]. CCL3, CCL44 andCCL55 are the
ligands for CCR5 and are produced by various cell types
like epithelial cells, fibroblasts, monocytes, NK cells, DCs,
endothelial cells, macrophages and lymphocytes [364].
CCL3, CCL4 and CCL5 form a cytokine gradient that can
recruit DCs into the TME. The recruited DCs produced
CXCR3 ligands are important for migrating effector CD8
T cells to the tumor [365, 366]. Along with CCR5, the
CCR6-CCL20 axis is known to promote the migration of
DCs into sites of inflammation [367]. A preclinical murine
melanoma model showed increased migration of DCs in
CCL20-positive tumor cells, indicating the role of CCL20
in attracting DCs to the tumor site [368].

4.4 Therapeutics targeting chemokine
signaling in the TME

4.4.1 Abrogation of the CCR4-CL22/17 axis

The preclinical model of murine Hodgkin tumor with T
cells coexpressing CCR4 and a chimeric antigen recep-
tor targeting CD30 demonstrated an improved hom-
ing and antitumor activity [369]. Mogamulizumab (KW-
0761), a humanized, glycoengineered IgG1κ monoclonal
antibody, is known to bind to CCR4-expressing cells
to induce antibody-dependent, cell-mediated cytotoxic-
ity (ADCC) [370]. This antibody is in clinical trials for
lung and esophageal cancer patients [371]. Small molecule
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inhibitors targeting the CCR4-CCL22/CCL17 axis are also
being developed [359].

4.4.2 Abrogation of the CCR2-CCL2 axis

In preclinical models of breast cancer, anti-CCL2 blocking
antibodies inhibited infiltrating monocytes and subse-
quent recruitment of metastasis-associated macrophages,
thereby inhibiting metastasis and prolonging the lifes-
pan of tumor-bearing mice [360]. CCR2 inhibitor (PF-
04136309) demonstrated a reduction in the migration of
TAMs toward tumors in the pancreatic ductal adenocar-
cinoma model [360]. Along the same lines, decreased
inflammatory monocytes were found in the periph-
eral blood of pancreatic ductal adenocarcinoma patients
treated with PF-04136309 in combination with nab-
paclitaxel/gemcitabine [372].

4.4.3 Activation of the CCR5-CCL3
signaling axis

In the preclinical study onmurinemelanomamodels, ade-
noviral delivery of CCL3 alongwith the adoptive transfer of
T cells led to significant migration of effector T cells to the
tumor bed [373]. Virus-mediated expression of CXCL10,
CXCL11, or recombinant CXCL10 injection in tumors was
able to increase the infiltration of anticancer T cells in
mice [364, 374, 375]. This approach suggests that pairing
adoptive T-cell therapy with cytokine therapy could be
beneficial for the long-term persistence and function of
effector T cells.
Cytokine signaling is important for tumor development

and the recognition of tumors by immune cells. Under-
standing the dynamics of cytokine signaling could allow
us to use cytokine signaling to effectively curb tumor
growth and elicit anti-tumor memory to sustain tumor
regression.

5 3DMODELS OF THE TME

A complex TME is driven by physical and biochemical
interactions between cancer cells and the tumor stroma,
constituting the rest of the TME. To understand these
interactions, it is important to mimic these integrated
interactions using 3D models of the TME, which closely
mimic the patient-derived heterogeneity and help under-
stand the cellular interactions in theTME to amuchdeeper
extent as compared to the oversimplified 2-dimensional
(2D) models.

5.1 Spheroids

Spheroids are the most widely used 3D tumor models
that precisely model in vitro conditions of a TME, includ-
ing cellular heterogeneity, cell-cell interactions, cell-ECM
interactions, signaling pathways, and gene expression
profiles [376, 377]. Spheroids are created by a forced aggre-
gation of cells, and those larger than 500 μm mimic the
TME of micrometastases (microscopic, aggregated cancer
cells that have escaped the original tumor) and avascu-
lar tumors owing to the presence of a gradient of oxygen
and nutrients [378]. Moreover, this gradient leads to the
formation of concentric zones in the spheroids with a cen-
ter containing an anoxic core with necrotic cells, a middle
zone containing hypoxic cells, and an outer zone of highly
proliferative cells, recapitulating the properties of an in
vitro tumor [379].
Spheroids can be associated with microfluidic or

scaffold-based procedures to generate physiologically
more relevant tumor models [377]. They are also advanta-
geous over 2D cell culture models in studying the role of
ECM stiffness on tumor growth when combined with bio-
materials like hydrogel by mimicking cell-cell/cell-ECM
interactions in the TME [380]. Spheroids can also be fine-
tuned by varying the composition of tumor cells, CAFs,
and immune cells to obtain an immunosuppressive TME
to study the roles of various immune cells like monocytes,
NK cells, or T cells in tumors [381]. The spheroid model
of human breast cancer played a key role in discover-
ing the dependence of angiogenesis (sprout formation) on
VEGF and FGF growth factors [382]. Spheroid 3D models,
therefore, represent a powerful model system for studying
tumor biology and drug testing. Nonetheless, there are cer-
tain limitations, including 1) poor uniformity in spheroid
size or morphology, 2) low throughput, and 3) difficulties
in retrieving cells for analyses, etc., in the 3D spheroid
models that limit reproducibility while using these models
[377].

5.2 Organoids

Organoids are small 3D self-organized tissue cultures
derived from progenitor stem cells that maintain natural
cancer cell heterogeneity in vitro, including genetic and
phenotypic features of the tissue from which the culture
is derived [383, 384]. In contrast to the spheroids, where
a forced aggregation of cancer cells forms a 3D structure,
organoids follow a natural course of 3D tumor develop-
ment based on the genetic programming of progenitor
cells [377]. Therefore, organoids more closely resemble
the in vitro development of tumors and can be cultured
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from patient-derived cells from biopsy samples. Since
patient-derived organoids (PDOs) consist of only epithe-
lial cells, to develop a TME in organoids, either of the two
approaches for organoid culture can be used: reconstituted
the TME (submerged Matrigel culture) model or native
TME (air-liquid interface culture) model.

5.2.1 Reconstituted the TME (submerged
matrigel culture) model

In this method, dissociated tumor cells are cultured to pro-
duce PDOs in a Matrigel submerged beneath the nutrient
media containing supplements depending on the tumor
tissue type [383, 385, 386]. The PDOs are subsequently
supplemented exogenously with stromal cells (i.e., CAFs),
immune cells (i.e., cytotoxic T lymphocytes) or patient-
matched peripheral blood lymphocytes to develop an in
vitro TME [387, 388]. The reconstituted TME model reca-
pitulates not only the genetic and phenotypic features of a
tumor but also models the functional response of a patient
to therapeutic agents [389, 390].

5.2.2 Native TME (air-liquid interface
culture) model

Herein, to develop PDOs, the minced tumor tissue frag-
ments are embedded in a collagen gel where the nutrient
media diffuses from the bottom of the gel, and the top
layer of the collagen is exposed to air for oxygen diffusion
to take place [391, 392]. In contrast to the reconstituted
TME model, cancer cells grow alongside the endogenous
stromal and immune cells without needing reconstitution
[393]. In addition to preserving the genetic and phenotypic
constitution of the tumor, native TMEmodels preserve the
complex composition of the TME, including parenchyma
and stroma [394].
Moreover, organoids are more advantageous due to the

ease of culturing and closer resemblance to the TME,
thus being more pathophysiologically relevant as com-
pared to the patient-derived tumor xenograft (PDX) model
and other tumor-bearing animal models, which are more
tedious and expensive to maintain [384, 395]. Organoids
represent early passage material retaining the genetic
makeup of cancer cells compared to long-passaged can-
cer cell lines that might have lost the genetic features of
their original tumors owing to genomic instability [395,
396]. Moreover, the organoids derived from 2D mono-
layer cultures or mouse xenograft cultures differ from a
primary organoid culture that retains cellular heterogene-
ity, tumor architecture, cell-cell interactions, and stemness
[377]. These models have been extensively used to assess

a patient’s response to preclinical treatments. However,
the organoid model system has some limitations, includ-
ing high variability and difficulty in achieving in vitro-like
maturity, lack of vasculature, an immune-competent TME,
and stroma [395]. Nevertheless, as discussed earlier, some
of the limitations have been overcome by co-culturingwith
other cell types like stromal cells, CAFs, or T cells [175].

5.3 Microfluidic models

Microfluidic models consist of a network of microflu-
idic channels where tumor spheroids can be continuously
perfused and grown in the presence of fine-tuned con-
centrations of growth factors or drugs [397, 398]. These
models allow fine control over the mechanical forces, the
orientation of the tissue interfaces, and chemical gradients,
and they can be modified for high throughput screening
[399, 400]. Moreover, microfluidic devices used in these
models use microscale volumes, which can drastically
reduce their operating costs compared to 3D TME mod-
els [401]. They have been extensively used for studying
tumor-stroma interactions and the effects of growth fac-
tors or drugs in a biomimetic TME for various cancer types,
including breast cancer, colorectal cancer, melanoma, and
Merkel cell carcinoma [376, 402]. Specific cell-cell inter-
action can also be studied using microfluidic models, for
example, in tumor cell and stromal interaction studies.
Culturing organoids in themicrofluidic device have helped
us understand tumor-stroma interactions and their sys-
temic effects [403, 404]. They have also been used tomimic
microvascular functions and TME modeling [175]. Limita-
tions of themicrofluidicmodels include the requirement of
specialized skills to perform the experiments, edge effects
and high shear pressure in the device can compromise
the reproducibility of the experimental outcomes, and the
most used material, polydimethylsiloxane (PDMS), to fab-
ricate microfluidic devices indiscriminately absorbs small
molecules [397, 398, 405, 406].

6 ROLE OF GUTMICROBIOTA IN
SHAPING THE TME

The role of gut microbiota in tumorigenesis has been
disputed for centuries, and its importance in tumor pro-
gression has only been recognized in the past few decades.
Although only 11 microbial species are known to directly
cause carcinogenesis [407], a category of microbes and
their functions promote tumorigenesis but are insufficient
to cause tumorigenesis on their own. These microbiotas
utilize their immunomodulatory functions and metabo-
lites to upregulate tumor progression. For example, p53
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mutations in tumor cells are carcinogenic only in the
presence of microbially produced gallic acid in the gut;
otherwise, mutant p53 was found to be more protective
than wild-type p53 in tumor regression in mouse mod-
els of WNT-driven intestinal cancer [408]. Moreover, Kras
mutation and loss of p53 failed to promote lung tumori-
genesis in antibiotic-treated/germ-free mice because lung
microbiota could promote tumorigenesis via IL-23 and
IL-17 production, leading to tumor-promoting inflamma-
tion [409]. Furthermore, mounting evidence suggests the
presence of intratumoral microbiota [410]. Thesemicrobes
regulate tumors in several ways. They affect gastrointesti-
nal and urinary tract mutagenesis by secreting genotoxins
[411–413], promote cytotoxin-associated gene A- or T cell-
mediated inflammation as shown in stomach and lung
cancers, respectively [409, 414], regulate chemoresistance
via direct drug metabolism by microbes [415, 416], pro-
mote tumor progression via fungal activation of the host’s
C3 complement system [417] and even advance metastasis
by upregulating tumor MMPs or by reducing infiltrating
immune cells [418, 419].
Recent studies indicate that information on gut micro-

biota can be channelized for novel therapeutic approaches.
However, depending on various factors, the gut micro-
biome can lead to either tumorigenesis or tumor regression
[420, 421]. For example, chemotherapy may lead to gut
microbiome changes that increase drug response effi-
ciency. The chemotherapeutic agent, cyclophosphamide,
was shown to alter intestinal microbiota in mice and pro-
mote “pathogenic” Th17 cell production [422]; however,
removing gut microbiota via antibiotic treatment led to
drug resistance [423, 424]. Additionally, if chemotherapy
was degraded by microbiota, it led to tumor progression
[415]. Geller et al. showed that intratumor Gammapro-
teobacteria in a tumor could metabolize gemcitabine
into its inactive form leading to chemoresistance in a
murine model of colon cancer [415]. Furthermore, cer-
tain bacteria stimulate tumorigenesis by blocking immune
effectors that normally inhibit tumorigenesis. For exam-
ple, Fusobacterium nucleatum inhibits the host’s NK cells
from recruiting myeloid suppressor cells at the site of the
infection, thus indirectly helping in cancer genesis. This
is mediated by Fap2, a bacterial virulence factor, which
can bind and block the NK inhibitory receptor T cell
immunoreceptor with Ig and ITIM domains (TGIT), thus
arresting the NK cell-mediated tumor cell attack [425].
Furthermore, targeting microbiota for tumor regression

is easy as it can be easily modified by many approaches,
such as probiotics, antibiotics, and fecal microbiota
transplantation (FMT) [426]. Probiotics increase anti-
cancer immunity by decreasing Treg levels and enhancing
CD4+ T cell differentiation, CD8+ T cell activation, and
intratumoral infiltration of NK cells [427, 428]. More-

over, probiotics, such as L. acidophilus NCFM, increase
butyrate-producing species in the gut, leading to improved
immunotherapy response [429, 430]. FMT has also been
exploited for tumor suppression. For example, mice trans-
planted with liquefied and filtered stool from patients
with bacteroides-rich microbiota population respond bet-
ter to CTLA4 inhibitor treatment [431]. Antibiotics have
also been shown to have anti-cancer properties. For
example, adriamycin is used in many childhood cancer
patients. Bleomycin effectively treats germ cell cancers,
lymphomas, and squamous cell carcinomas [432].
Lastly, certain microbial species may interfere with

the host’s hormonal metabolism. When gut microbiota
depletion occurs along with an increase in the β-
glucuronidase-secreting bacteria, such as Clostridium lep-
tum and Clostridium coccoides, due to gut dysbiosis, the
enzyme deconjugates liver-catabolized and plant-derived
estrogens and enables them to activate host’s estrogen
receptors [430, 433, 434]. Estrogen receptor activation
promotes cell proliferation in estrogen-responsive tissues
(breast and endometrium) [435]. Thus, this sudden rise
in estrogen increases the risk of developing breast can-
cer [436]. It further confirms that gut dysbiosis may be
a risk factor for breast cancer. Thus, diet, chemotherapy,
antibiotics, probiotics, and hormones all play a role in
modulating the TME microbiota [437, 438].

7 CONCLUSIONS

Accumulating evidence demonstrates that stromal cells
and other TME components undergo reprogramming to
support tumor growth andmetastasis. Transformed cancer
cells invade normal, healthy cells in their vicinities, such
as immune cells and fibroblasts, to counter stress, nutri-
ent deprivation, and hypoxia. As previously described,
CAFs and immune cells such as TAMs, both of which
are major parts of the heterogenous tumor ecosystem, fur-
ther support tumor progression by upregulating signaling
pathways associated with inflammation and angiogene-
sis. Tumor-derived exosomes prevent DC differentiation
by the secretion of immunosuppressive molecules such as
IL-6. Furthermore, gut microbiota plays a crucial role in
tumorigenesis via their immunomodulatory abilities.
Preclinical research efforts are focused on developing

therapeutic strategies that disrupt the crosstalk between
tumor cells and the TME, leading to better patient out-
comes. 3D cultures such as spheroids and organoids have
been extensively used to model tumor heterogeneity and
cellular behavior. Several clinical trials are underway to
assess candidates that have shown efficacy at preclinical
levels, including monoclonal antibodies against proangio-
genic or prosurvival proteins.
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Due to the involvement of many signaling pathways and
dynamic interactions between cancer cells and ECM, com-
binational approachesmay likely show better efficacy than
implementing a single strategy. Firstly, an improved under-
standing of metabolic and signaling pathways associated
with the TME could largely help with better drug design.
Secondly, exosomes may serve as powerful tools due to
their role in early diagnosis and their unique signatures.
At the same time, therapeutic targeting of tumor-derived
exosomes and cell-free DNA is urgently needed. In addi-
tion, modulation of gut microbiota could be a potential
strategy for tumor suppression and warrants further inves-
tigation. Taken together, the TME can be modulated by
targeting these complex interactions and signaling path-
ways to improve the effectiveness of currently existing
therapeutic strategies in treating cancers.
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