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Th2 responses

T helper 2 cells in asthma
James A. Harker1 and Clare M. Lloyd1

Allergic asthma is among the most common immune-mediated diseases across the world, and type 2 immune responses are
thought to be central to pathogenesis. The importance of T helper 2 (Th2) cells as central regulators of type 2 responses in
asthma has, however, become less clear with the discovery of other potent innate sources of type 2 cytokines and innate
mediators of inflammation such as the alarmins. This review provides an update of our current understanding of Th2 cells in
human asthma, highlighting their many guises and functions in asthma, both pathogenic and regulatory, and how these are
influenced by the tissue location and disease stage and severity. It also explores how biologics targeting type 2 immune
pathways are impacting asthma, and how these have the potential to reveal hitherto underappreciated roles for Th2 cell in
lung inflammation.

Introduction
Asthma is a common chronic airway disease affecting over 200
million individuals globally. The hallmarks of asthma include
narrowing of the airways, chronic airway and tissue inflam-
mation, hyperplasia and hyperresponsiveness of the airway
smooth muscle, and airway remodeling. These changes in the
respiratory tract result in a range of symptoms, the most com-
mon of which are intermittent shortness of breath, wheeze, and
cough, which are exacerbated by a range of environmental
triggers, including respiratory viral infections, pollution, and
inhaled allergens.

For many years asthma was considered a canonical type
2 disease, with atopy, eosinophilia, and elevated allergen-specific
IgE being frequently observed. T helper 2 cells (Th2), as a pri-
mary source of the type 2 cytokines IL-4, IL-5, and IL-13, capable
of driving all these immunological and physiological features,
have therefore long been considered central to asthma patho-
genesis. It is now clear however that asthma is a heterogenous
disease made up of many endotypes and phenotypes including
non–type 2 neutrophilic endotypes associated with obesity,
smoking, and paucigranulocytic disease linked to smooth muscle
dysfunction (reviewed inWenzel, 2012 and summarized in Fig. 1).
This has increased attention on non–type 2 cell types and sig-
naling molecules and their role in asthma pathogenesis, including
the contribution of Th1, Th9, and Th17 cell populations to non–
type 2 asthma (reviewed in Lloyd and Hessel, 2010). However,
analysis of different endotypes generally focuses on clinical
symptoms associated with type 2 immunity, such as eosinophilia,

serum IgE, and exhaled nitric oxide, or the general levels of type
2 cytokines, but analyses rarely reach the level of granularity such
that type 2 cell populations are identified (Fig. 1). In addition, it is
now accepted that the phenotype of immune cells, including
T cells, within tissues may be flexible according to the sur-
rounding cytokine milieu, local tissue pathology, and disease
variations, so Th2 varieties may differ in the circulation versus
the lung even within the same patient.

Type 2 allergic asthma still remains the most prevalent en-
dotype however, and is characterized by different phases of
disease including (1) allergen sensitization, which primarily
occurs in early life, (2) periods of stable respiratory homeostasis,
(3) acute exacerbations in response to acute inflammatory
stimuli, and (4) periods of chronic inflammation due to sus-
tained exposure to environmental stimuli (See Fig. 2, top, and
reviewed in Fahy, 2015). The periods of chronic inflammation,
frequency of exacerbations, and therapy responsiveness differ
greatly between individuals, and in search of a deeper under-
standing of pathophysiology, greater emphasis has been placed
on non-Th2 type 2–associated cell types. The discovery of pop-
ulations of innate lymphoid cells (ILCs) capable of producing
type 2 cytokines (ILC2s) in an antigen-independent fashion is
perhaps the most notable discovery (reviewed in Rodriguez-
Rodriguez et al., 2021). ILC2s are a major source of these cyto-
kines in murine models of allergic airways disease (AAD) and
can promote many of the hallmarks of asthma in the absence of
T cells (Bartemes et al., 2012; Halim et al., 2012; Klein Wolterink
et al., 2012). Indeed, murine studies using protease-associated
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aeroallergens such as papain have highlighted that ILC2s may
also be critical in the development of Th2 cells during allergen
sensitization (Gold et al., 2014; Halim et al., 2014). Concurrently,
the importance of epithelial-derived alarmin signaling in asthma,
in particular thymic stromal lymphopoietin (TSLP), IL-25, and
IL-33, has been identified (reviewed extensively including
Lambrecht et al., 2019; Lloyd and Snelgrove, 2018). Poly-
morphisms in genes encoding these alarmins or their re-
ceptors have some of the strongest associations with an
increased risk of developing asthma, and therapeutic target-
ing of alarmins is showing promise clinically in the treatment
of allergic asthma. Indeed, damage-associated molecular pat-
terns, TSLP, IL-25, and IL-33 are critical in initial response of
the respiratory epithelium to inhaled allergens, and any
subsequent inflammatory encounters within the respiratory
tract with expression of the alarmin receptors can be preva-
lent on key immune cells including ILC2s, dendritic cells
(DCs), and CD4 T cells.

The innate immune response is unequivocally pivotal in al-
lergen sensitization of AADs. The incredible longevity of memory

T cells’ functional and proliferative capacity, which can be sus-
tained through many rounds of antigenic exposure (Soerens
et al., 2023), means that once established, allergen-specific Th2
cells are a core, prominent, and potent mediator of asthma
pathogenesis. Placing how Th2 cells sit within the complex im-
munological landscape in the human asthmatic lung has, however
inevitably, become more challenging. Recent technological ad-
vances in the study of immune cell heterogeneity at the single-cell
level have refocused attention on the Th2 cell, revealing hitherto
underappreciated complexity and diversity of their roles in
asthma. This reviewwill highlight these new roles and reposition
Th2 cells as central nexus in asthma.

Section 1: Defining the Th2 cell in asthma
Th2 cells of human asthma
Since the identification of GATA3 as a master transcriptional
regulator that was necessary and sufficient for type 2 cytokine
production by CD4 T cells (Zheng and Flavell, 1997), the Th2 cell
has predominantly been described as a homogenous population
of GATA3+, IL-4, IL-5, and IL-13 secreting CD4 T cells. The study

Figure 1. Asthma endotypes and phenotypes. The schematic shows the broad relationship between type 2 immune responses and asthma. Clinically diagnosed
asthma is associated with a number of common “symptoms.” these can be associated with either type 2 (the majority of individuals) or non–type 2 profiles. In type
2, the most common “triggers” are allergic in origin, although other non-allergic triggers (e.g., infections, pollutants) are known. Non–type 2 triggers are pre-
dominantly non-allergic in origin. In turn, a number of “endotypes” have been described, which have one or more shared “immunotypes.” In preclinical models of
type 2 asthma both ILC2s and Th2s have been shown to be capable of promoting these immunotypes, but there is limited data from humans, and it is likely these
cells play somewhat overlapping, synergistic roles. An individual’s profile with regards to these features can show overlap between different aspects and fluctuate
throughout life depending on age, environment, and previous or current treatments.
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of human Th2 cells, however, reveals the difficulty of directly
translating these findings from murine models to the human
disease. For instance, circulating allergen-specific Th2 cells,
while more abundant in asthmatics, are routinely found in
healthy individuals, thus the mere presence of Th2 cells does
not, therefore, implicate them in the pathogenesis of asthma.
Indeed, early sequencing analysis of circulating memory Th2
cells from asthmatics and non-asthmatics revealed that while
both shared a core transcriptional and epigenetic profile, Th2
cells from asthmatics display a unique enhancer pattern and
potentially pathogenic gene expression signature (Seumois et al.,
2014; Seumois et al., 2016); this includes upregulated transcripts
encoding proteins likely to promote survival such as IL17RB,

which encodes the IL-25 receptor, and metabolic and apoptotic
regulators such as CPT1A and CASP2, and concomitant decreases
in genes such as DUSP10, ZBTB10, and GABARAPL1 that negatively
regulate T cell activation and survival via inhibition of the JNK
signaling pathway, limiting IL-2 receptor signaling and pro-
moting autophagy (Seumois et al., 2016). High-resolution
single-cell RNA sequencing (scRNA-seq) of house dust mite
(HDM)–specific CD4 T cells from human peripheral blood,
assessed after restimulation with HDM ex vivo, confirms the
enhanced expression of survival and functional factors in Th2
cells from allergic asthmatics compared not only with healthy
controls but also to HDM-allergic individuals without asthma
(Seumois et al., 2020). Clustering T cells identified by expression

Figure 2. Th2 cell diversity and dynamics during asthma inception and exacerbation. Top: Allergic asthma displays distinct phases including (1) allergen
sensitization, (2) periods of stable disease, (3) acute exacerbations, and (4) sustained enhanced symptoms. These are often linked to exposure to environmental
substances (allergens, pathogens, pollutants) that drive disease. Bottom: the Th2 response to allergic asthma is heterogenous, with different mediators, surface
receptors, and transcription factors expressed depending on the anatomical site and stage of disease being examined. Areg, amphiregulin.
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of Th2 transcriptional signature (e.g., GATA3, IL4, IL5, IL13)
highlights at least two distinct clusters of Th2 cells. One of these
clusters is significantly increased in HDM-sensitive asthmatics
compared with HDM-sensitive non-asthmatics, and these
“asthma-associated” Th2 cells are highly enriched for expres-
sion of IL5, IL9, PPARG (a transcription factor linked to IL-9
production), GZMB (encoding for the cytotoxic molecule gran-
zyme B), IL17RB, and IL1RL1 (the gene encoding IL-33R/ST2).
HDM-specific Th2 cells in non-asthmatics, meanwhile, have
enriched expression for IL4, IL21, and ICOS.

Transcriptional analysis, even at a single-cell resolution, does
however have its limitations, including being limited to those
genes regulated at a transcriptional level and expressed suffi-
ciently to be identified. Use of these data in concert with other
approaches is therefore key in dissecting what is taking place
within a patient. Indeed, individuals with allergic disease have
frequently been observed to possess different subsets of Th2
cells, commonly termed “pathogenic,” “inflammatory,” or “al-
lergic”when analyzed at a protein level (Huang et al., 2022). In a
range of allergic diseases such as nasal polyposis or eosinophilic
atopic dermatitis, they have been discriminated from non-
pathogenic Th2 cells using molecules including hematopoietic
prostaglandin D synthase (HGPDS), CRTh2, and IL-17RB (Lam
et al., 2016; Mitson-Salazar et al., 2016). The usefulness of
these molecules individually to identify subsets of Th2 cells is
however highly dependent on the type and severity of disease,
with the majority being most robustly expressed during active
disease. More recently, a subset termed Th2A cells has been
identified that can be separated from conventional Th2 cells in
stable disease via their coexpression of CRTh2, CD161, and
CD49d, and low expression of CD27 (Wambre et al., 2017).
Functionally, Th2A cells have increased expression of IL-5 and
IL-9 but a similar expression of IL-4 and IL-13 compared with
conventional Th2 cells, aligning with the asthma-associated
cluster identified transcriptionally. Further, it is Th2A cells
that appear to be specifically targeted during allergen immu-
notherapy in a range of conditions from food antigens such as
peanuts to aeroallergens involved in asthma such as HDM (Luce
et al., 2021; Wambre et al., 2017).

Taken together, there is compelling evidence for at least two
distinct subsets of Th2 cells within the peripheral blood of al-
lergic asthmatics. It is in the respiratory tract itself however that
our understanding of Th2 cell biology has perhaps been most
transformed with increasing recognition that tissue-resident
memory T cells (Trm), rather than recruited T cells, may act
as the critical mediators of respiratory health and disease (Gray
and Farber, 2022). A recent scRNA-seq atlas of human bronchial
biopsies revealed the presence of multiple distinct lung-resident
CD4 T cell populations not found within the circulating blood
(Vieira Braga et al., 2019). When comparisons were made be-
tween healthy and asthmatic tissue, asthmatics were found to
exhibit tissue-resident GATA3 expressing CD4 T cells in their
airway wall (Vieira Braga et al., 2019). These lung-resident Th2
cells, while transcriptionally distinct from their circulating
counterparts, possess elevated expression of genes including
HGPDS, PPARG, IL17RB, and IL9R linked to both pathogenic
Th2path and allergic Th2A cells described in the circulation. In

asthmatic individuals, these tissue-resident Th2 cells become
the dominant driver of cell–cell interactions within the airway
wall, communicating with epithelial cells via a range of path-
ways including IL-33, TSLP, epidermal growth factor receptor,
and IL-13, which was linked to an IL-13–driven gene signature
within both goblet and muco-ciliated epithelial cells.

Th2 cells are also increased in the bronchoalveolar lavage
(BAL) of asthmatics comparedwith healthy individuals (Brightling
et al., 2002; Cho et al., 2016; Cho et al., 2005;Message et al., 2008).
The frequency of antigen-specific CD4 T cells against any specific
allergen in the BAL in stable disease is low, but they rapidly in-
crease within 24 h of allergen exposure (Cho et al., 2016). Like-
wise, BAL Th2 cells and the cytokines they produce also rapidly
expand upon viral exacerbation with virus-specific and allergen-
specific CD4 T cells, appearing to contribute to this expansion
(Jackson et al., 2014; Message et al., 2008; Muehling et al., 2020).
Collectively, these studies support the notion of a community of
Th2 cells that are lung resident rather than recruited. Of the three
canonical type 2 cytokines produced by lung-resident Th2 cells,
IL-13 is the most readily detectable during stable disease
(Hilvering et al., 2018; Hinks et al., 2015; Singhania et al., 2018),
and likely the most important in promoting airway pathology. IL-
13 signaling on human epithelial cells can directly inhibit differ-
entiation of ciliated epithelial cells, promotes mucous-secreting
cells with an altered mucus secretome, and concomitantly limits
anti-viral defense genes (Jackson et al., 2020; Laoukili et al., 2001).
An IL-13 gene signature is also most readily detectable in epithelial
cells isolated from asthmatics and correlates with mucus within
the airways following allergen exposure (Cho et al., 2016; Jackson
et al., 2020; Singhania et al., 2018).

Alongside the canonical cytokines IL-4, IL-5, and IL-13, it is
also clear that human Th2 cells can take on characteristics
normally associated with other Th subsets in asthma. As high-
lighted above, for instance, there is pronounced overlap between
potentially pathogenic Th2A and features found in Th9 cells,
including IL-9 itself. Th9 and Th2 cells share similar differen-
tiation and transcriptional features including a requirement for
IL-4 signaling and expression of STAT6, IRF4, and GATA3
transcription factors (Kaplan, 2013). The necessity for TGF-β
signaling and expression of the transcription factor PU.1 mean-
while distinguish Th9 cells from Th2 cells. PU.1 is critical in
delineating murine Th9 cells from Th2 cells as it can directly
interfere with GATA3 and IRF4 activity, and its overexpression
in Th2 cells suppresses type 2 cytokines while promoting IL-9
secretion (Ahyi et al., 2009; Chang et al., 2009; Chang et al.,
2005). In human asthma-associated CD4 T cells, SPI1 (the gene
encoding PU.1) is notably not upregulated in Th2 cells, even
when analysis is focused on those cells producing IL-9 (Seumois
et al., 2020; Vieira Braga et al., 2019). Instead, IL-9+ Th2 cells
coexpress IL-5, but reduced IL-4, suggesting more subtle func-
tional regulation (Seumois et al., 2020). In accordance with this,
it has recently been proposed that PPAR-γ, a transcriptional
factor also upregulated in disease-associated Th2 cells, is re-
quired and can distinguish IL-9+ Th2 cells that maintain robust
IL-5 and IL-13 secretion from IL-9− Th2 cells in humans (Micossé
et al., 2019). Coproduction of IL-17 alongside Th2 cytokines by
CD4 T cells has also been observed in individuals with asthma,
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particularly those with severe, steroid-resistant asthma (Irvin
et al., 2014; Wang et al., 2010). These Th2/Th17 cells express both
GATA3 and the master transcriptional factor of Th17 cells, RORγt,
and are correlated with more severe airway hyperreactivity (AHR)
and obstruction; their precise ontological relationship to Th2 and
Th17 cells is, however, challenging to dissect in humans.

As highlighted above, the Th2 cells found in asthma display
diverse molecular and cellular phenotypes. Caution should,
however, be taken in treating each Th2 profile identified as
distinct given the capacity of immune cells to rapidly adapt to
environmental cues. Far more likely is that the different iden-
tities captured above represent the capacity of Th2 cells to dy-
namically change their phenotype depending on disease state
and tissue site (summarized in Fig. 2 B).

Mechanistic in vivo evaluation of Th2 cells function in asthma
Despite substantial progress, highlighted above, phenotyping
the heterogeneity of Th2 cells in humans and delineating their
role in asthma pathogenesis is more challenging to analyze.
Fortunately, murine modeling of AAD, ranging from simplistic
OVA sensitizations to complex polyallergic exposures, provides
a diversity of tools with which to examine individual aspects of
Th2 cells and their role in asthma pathophysiology (see text
box). For instance, the primary roles of IL-4 in Th2 cell differ-
entiation, IL-13 in mucus secretion and airway smooth muscle
responses, and IL-5 in eosinophil recruitment and survival are
robust across a range of AAD models (Lambrecht et al., 2019;
Townsend et al., 2000). In vivo tools also allow a focus on Th2
cells specifically, for instance, T cell–derived IL-4 and IL-13, but
not ILC2s, are essential for the development of airway hyper-
responsiveness after early life exposure to either HDM or Al-
ternaria exposure (Saglani et al., 2018). Likewise, HDM challenge
of mice results in development of IL-9+ CD4 T cells in the lungs
in a TGF-β and activin A–dependent fashion, and their adoptive
transfer exacerbates AAD (Jones et al., 2012). PPAR-γ+ Th2 cells
are also observed in the lungs of HDM-challenged mice, and
T cell–specific PPAR-γ–deficient mice fail to generate IL-5 and
IL-13 secreting Th2 cells and have more limited disease (Chen
et al., 2017). Sustained intranasal exposure to either papain or
Aspergillusmeanwhile results in the formation of IL-17+ Th2 cells
that persist in the lungs and promote enhanced inflammation
during AAD compared to either conventional (IL-17−) Th2 cells
or Th17 cells when adoptively transferred (Wang et al., 2010).

Murine models also allow the functional evaluation of genes
identified by genome-wide association studies or investigated
for other reasons. For instance, polymorphisms in DENNB1, ex-
pression of which is found in DCs, natural killer cells, and ac-
tivated T cells, are linked to development of asthma (Sleiman
et al., 2010). Dennb1 deficiency in mice results in a hyperallergic
phenotype as a consequence of altered TCR signaling that only
affected Th2 cells, and led to increased IL-4, IL-5, and IL-13
production (Yang et al., 2016). Further investigations have re-
vealed that under normal circumstances proximal TCR signaling
is maintained by the E3 ubiquitin ligases Itch and WWP2, and in
their absence, TCR hypo-responsiveness leads enhanced Th2
differentiation and lung inflammation (Aki et al., 2018). In a
similar vein, a CRISPR-Cas9 screen of Th2 differentiation

identified expression of αvβ3 integrin as essential in both
priming and polarization of Th2 cells (Szeto et al., 2023). Mouse
models have also enabled the role of microenvironmental cues in
Th2 differentiation to be identified such as hitherto underap-
preciated cytokines like IL-1β or metabolic reprogramming
(Caucheteux et al., 2016; Stark et al., 2019; Yang et al., 2013).
Highlighting the mechanistic benefits in vivo models can pro-
vide while re-enforcing the central role of Th2 cells in asthma.

Genetic reporters meanwhile allow location-based informa-
tion of the T cell response to be evaluated. One of themost striking
observations, initially made in Nippostrongylus brasiliensis–induced
lung inflammation, is the divergent production of IL-4 and IL-13.
In the lungs, IL-13+, IL-4+, and IL-13+/IL-4+ CD4 T cells are all
present, with IL-13+ CD4 T cells being dominant (Liang et al., 2011;
Prout et al., 2018). Meanwhile, T follicular helper cells (TFH)
rather than Th2 is the predominant IL-4 secreting cell in the LNs
while IL-13 is produced at a much lower frequency, primarily by
LN-localized Th2 cells (Glatman Zaretsky et al., 2009; King and
Mohrs, 2009; Uwadiae et al., 2019). This heterogeneity is re-
inforced by scRNA-seq of BAL CD4 T helper cells after intranasal
sensitization and challenge of mice with HDM, which shows at
least six distinct clusters of CD4 T cells developing in response to
allergen in the airways alone (Tibbitt et al., 2019). This includes a
cluster with a distinct Th2 transcriptional signature which in-
cludes Gata3, Il5 and Il13, Pparg, Cd200r1 and Il6, and a dependence
on lipid metabolism but is temporally separate from Il4 expres-
sion, aligning with observations of the pathogenic Th2 population
seen in patients.

Asthma results in both systemic and local inflammation with
parenchymal, perivascular, and airway inflammation all observed
in murine models of AAD (Johnson et al., 2004), allowing the
importance of location in determining the function of Th2 cells to
be assessed. Allergen-specific Th2 Trm cells rapidly develop and
persist in the lungs ofmice after HDMexposure (Hondowicz et al.,
2016). These Th2 Trm are necessary and sufficient for airway
hyperresponsiveness and type 2 inflammation on allergen chal-
lenge and depend on IL-2 signaling for their development and
tissue retention. Once present, these Th2 Trm rapidly react to
allergens and direct early inflammatory responses (Turner et al.,
2018). Th2 Trm are dependent on the transcription factor Blimp-1,
unlike Th2 cells generated via systemic allergen challenge, which
is upregulated in an IL-10–STAT3–Blimp-1 dependent fashion to
promote Gata3 expression (He et al., 2020). While Th2 Trm are
therefore critical in driving airway inflammation, mucus meta-
plasia, and airway hyperresponsiveness, it is not, however, that
circulating Th2 cells are irrelevant in AAD. Indeed, a recent study
identified a non-redundant role for circulating Th2 cells in pro-
moting parenchymal and perivascular inflammation after aero-
allergen challenge (Rahimi et al., 2020).

Even once resident, mouse models have shown that Th2 cells
are highly influenced by their microenvironment. The level of
IL-33/ST-2 signaling appears particularly critical. IL-33 signal-
ing on Th2 cells promotes the acquisition of a proinflammatory
memory state, allowing elevated expression of IL-5 (Endo et al.,
2015). Mechanistically, pathogenic tissue-resident Th2 cells in-
crease expression of acetyl-CoA carboxylase 1, a key regulator of
fatty acid biosynthesis, leading to upregulation of IL-33R,
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increased sensitivity to IL-33, and elevated IL-5 production
(Nakajima et al., 2021). IL-33 signaling following HDM exposure
can also result in production of the epidermal growth factor
receptor ligand amphiregulin by Th2 cells, reprogramming eo-
sinophils to acquire a profibrotic state in a process distinct from
that of IL-5 and enhancing airways disease (Morimoto et al.,
2018). In more prolonged airway inflammation, such as that
established by chronic exposure of mice to Aspergillus, extensive
lung fibrosis is observed alongside inflammation and AHR, and
Trm CD4 T cells colocalize to areas of fibrosis, express IL-5 and IL-
13, and exhibit a profibrotic gene signature (Ichikawa et al., 2019).
During quiescent phases, Trm have been shown to occupy distinct
anatomical niches to their recruited counterparts with murine
models, initially of infection, highlighting their presence in the
tissue surrounding the airways (Turner et al., 2014). At an even
higher resolution, IL-5–producing Trm, formed after N. brasiliensis
or papain exposure, have recently been shown to colocalize
alongside ILC2s at adventitial cuffs (Dahlgren et al., 2019) and
perivascular regions surrounding intermediate to larger blood
vessels, which in the lungs are primarily found proximal to air-
ways (Dahlgren andMolofsky, 2019). These areas are enriched for
immune cells alongside lymphatic and vascular flow and during
type 2 responses bring Th2 cells and ILC2s into close contact with
both DCs and adventitial stromal cells: fibroblast-like cells en-
riched for production of TSLP and IL-33 (Dahlgren et al., 2019).

Section 2: Th2 cells as central nexus for asthma
immune responses
Th2 cells are the main T cells associated with pathogenesis in
asthma; however, in allergic asthmatics, they remain low in
number, even among allergen-specific CD4 T cells. HDM-
reactive CD4 T cells isolated from peripheral blood mononu-
clear cells, for instance, contain CD4 T cells with Th1, Th17, and
regulatory T cell (Treg)–associated transcriptional signatures,
and by far the largest populations have transcriptional profiles
linked to a specific activation status rather than a canonical CD4
T cell subset (Seumois et al., 2020), findings largely replicated
when looking at BAL CD4 T cells found in mice after HDM
challenge (Tibbitt et al., 2019). These non-Th2 T cell populations
play a critical role in asthma, especially when they interact with,
or functionally replace, Th2 cells (summarized in Fig. 3).

Th1 cells
Th1 and Th2 cells are generally consideredmutually antagonistic,
and thus traditionally Th1 cells have been perceived as disease
limiting in asthma. Fitting this during a mixed inflammatory
response in the lungs, it was recently shown that IFN-γ pro-
ducing Th1 topographically limits Th2 and ILC2 cells perturbing
type 2 inflammation (Cautivo et al., 2022). The reality is, how-
ever, more nuanced. Th1 cells, alongside IFN-γ–secreting CD8
T cells, are readily detectable and more abundant than Th2 cells,
and IFN-γ elevated in individuals with more severe asthma
(Raundhal et al., 2015; Steinke et al., 2021; Wisniewski et al.,
2018), where the immune profile is also more heterogenous,
featuring neutrophilic alongside eosinophilic infiltration com-
pared to those with mild allergic asthma. Both Th1 and Th2 cells
also increase during viral exacerbations of asthma, with Th1

frequencies correlating with declining lung function (Muehling
et al., 2020). In mouse models of mixed inflammation, such as
sustained HDM exposure, inflammation is, however, usually
dominated by Th2 and Th17 cells, rather than Th1 cells. If im-
mune regulation is lost, however, for instance through deletion
of IL-10 which itself is primarily produced by the Th2 and Th17
cells, Th1 cells accumulate, causing IFN-γ–dependent airway
inflammation (Branchett et al., 2020). Likewise, if coupled with
the bacterial product cyclic-di-GMP, HDM exposure elicits Th1
accumulation, resulting in steroid-resistant airway hyper-
responsiveness (Raundhal et al., 2015). The Th1 and Th2 cell
paradigm, while clearly showcasing antagonism, may highlight
that in some circumstances it is the Th2 cell that is limiting a
more severe Th1 cell–dependent asthma from developing.
However, this requires careful analysis of lung T cells across the
spectrum of human asthma phenotypes.

Th17 cells
Aside from Th2 cells, Th17 cells and the IL-17A they produce are
the most frequently observed and studied CD4 T cell populations
in asthma (Newcomb and Peebles, 2013). Th17 cells and IL-17A
are increased in the asthmatic airway, particularly in individuals
with neutrophilic or more severe asthma (Al-Ramli et al., 2009;
Irvin et al., 2014; Liu et al., 2017). IL-17A signaling on mouse or
human airway smooth muscle cells enhances contractility, and
while IL-13 signaling is dominant in driving airway hyperre-
sponsive in mouse models, IL-17A signaling can operate inde-
pendently of IL-13 (Kudo et al., 2012; Manni et al., 2016). There is
also some evidence that Th17 cells contribute to airway remod-
eling in murine AAD (Zhao et al., 2013). As highlighted previ-
ously, several studies have described a population of asthmatics
with a Th2/Th17 cell population expressing both RORγt and
GATA3 linked tomore severe disease (Irvin et al., 2014; Liu et al.,
2017). Inhibition of Rorγt in a Aspergillus oryzae–induced mixed
inflammation AAD model resulted not only in the inhibition of
Th17 cells but also Th2 cells, with RORγt expression being re-
quired to suppress Bcl6, facilitating Gata3 activity, thus re-
enforcing codependence between Th2 and Th17 cells in asthma
(Na et al., 2018). Conversely, transcriptomics of bronchial

There are numerous protocols to generate allergic airway inflammation in
mice. Historically mice were systemically sensitized with the model antigen
OVA emulsified with the adjuvant Alum, followed by challenge with aero-
solized OVA. This protocol induces a highly polarized type 2 pathology, with
increased frequencies of these relatively homogenous Th2 cells in their lungs
and airways that correlate strongly with many features of type 2 asthma
including eosinophilia, T2 cytokine production, airway hyperresponsiveness,
and allergen-specific IgE. More recently, models involving inhaled allergens
such as HDM, ragweed, or cockroach have been adopted. When delivered
using a sensitization and challenge dosing regimen, these are arguably more
“clinically relevant” because they use agents that asthmatic patients are al-
lergic to, do not involve the use of a T2 polarizing adjuvant, and use the
airway route for sensitization and challenge. Chronic intermittent exposure,
to mimic regular low-dose allergen exposure often experienced by humans,
results in a more heterogenous lung inflammatory milieu and airway re-
modeling. Airway exposure to fungal allergens, such as Aspergillus or Alter-
naria, can also result in fibrosis alongside type 2 inflammation. Exposure to a
mixture of these allergens also results in asthma pathophysiology and is
important since relatively few asthma patients are mono-sensitized.
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biopsies from asthmatics indicated the presence of distinct Th2
high and Th17 high gene signatures that defined different pa-
tients suggesting reciprocal antagonism (Choy et al., 2015). A
separate study found an IL-17 gene signature in the absence of an
IL-13 gene signature within bronchial tissue in a subset of
asthmatics with heightened neutrophilia, increased risk of ex-
acerbations, and dysbiosis in the airways (Östling et al., 2019). A
steroid-resistant Th17 endotype may develop from a steroid-
sensitive Th2 endotype as a result of corticosteroid treatment.
While this may be the case in some individuals, it would neither
explain the observation of dual-expressing Th2/Th17 cells in
some patients nor the presence of both eosinophilia and neu-
trophilia in many individuals.

TFH cells
TFH are vital in the generation of T-dependent antibody re-
sponses. They are primarily found within the B cell follicles of
secondary lymphoid tissue (SLO), where they interact with
germinal center B cells and are critical protective antibody

generation in a variety of settings, including respiratory in-
fections (Pyle et al., 2021). Under normal conditions, TFH and
Th2 cell differentiation could be seen as mutually exclusive.
Bcl6, a transcriptional repressor and master regulator of TFH
differentiation, and Blimp-1, highlighted above as key for Th2
differentiation, are mutually antagonistic. Bcl6 deficiency
abolishes TFH differentiation while leading to accumulation
of lung Th2 cells after viral or aeroallergen exposure
(Hondowicz et al., 2016; Pyle et al., 2021), potentially through
both cell-intrinsic and cell-extrinsic routes (Chandler et al.,
2022). Likewise, IL-21, the major cytokine produced by TFH
within germinal centers, suppresses IgE switch in both
mouse and human B cells, even when IL-4 is also present
(Ozaki et al., 2002; Suto et al., 2002; Yang et al., 2020), and
TFH-derived IL-10 also suppresses IgE switch (Cañete et al.,
2019). Immunodeficiencies linked to a failure to generate
TFH, such as loss of function mutations in ICOS or STAT3,
can also lead to heightened IgE responses despite substan-
tially reduced concentrations of the other antibody isotypes

Figure 3. Th2 cells as a hub for T cell responses in asthma. Th2 cells are central contributors to asthma pathogenesis. They produce a range of soluble
mediators (black arrows) that promote the pathogenic features of asthma including epithelial dysfunction, granulocyte recruitment, smooth muscle and
extracellular matrix remodeling, and IgE production. They also shape the surrounding CD4 T cell response, regulating their function and identity (gray arrows).
AREG, amphiregulin.
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(Bossaller et al., 2006; Grimbacher et al., 2003; Ma et al.,
2008).

Despite this, in allergic diseases such as asthma, enhanced
frequency of circulating TFH, surrogates of their SLO-resident
counterparts, are often observed (reviewed in Varricchi et al.,
2016) with allergen-specific TFH seen from an early age and
enhanced frequencies associated with HDM sensitization (Foster
et al., 2020). TFH, but not Th2 cells, are essential for the gen-
eration of IgE in response to aerosolized or systemic allergens,
and therapeutic blockade of TFH reduces IgE and ameliorates
AAD (Dolence et al., 2018; Kobayashi et al., 2017; Uwadiae et al.,
2019). Indeed, TFH is the primary source of IL-4 within the SLO,
a cytokine that is required for IgE switch (Meli et al., 2017;
Vijayanand et al., 2012), and production of IL-4 by TFH is in-
creased in HDM-sensitized individuals (Foster et al., 2020).
TFH-producing IL-13 cells are also observed in allergen-
sensitized individuals with high IgE concentrations, and IL-13
secretion by TFH is central to IgE-dependent anaphylactic re-
sponses in mice (Clement et al., 2019; Gowthaman et al., 2019).
This highlights substantial functional overlap between TFH and
Th2, and Gata3+ TFH under some conditions (Glatman Zaretsky
et al., 2009), and upon adoptive transfer into HDM-sensitized
mice, TFH can migrate to the lungs and differentiate into IL-4/
IL-13 dual producing Th2 cells (Ballesteros-Tato et al., 2016). A
population of non-Th2 IL-21–secreting CD4 T cells has also been
observed in the lungs after allergen challenge, which provides
essential cues to IL-21R–expressing lung-resident Th2 cells and
enhances eosinophilia (Coquet et al., 2015).

In sum, TFH display substantial functional plasticity with
other CD4 T cell subsets, including Th2 cells in asthma (Morita
et al., 2011). Reflecting this, it has recently been proposed that
TFH are grouped according to their phenotype into Group 1, 2,
and 3 TFH, as is the case for ILCs (Eisenbarth et al., 2021).

Treg cells
Tregs, particularly those expressing Foxp3, have long been
known as critical suppressors of lung inflammation including
allergic asthma (Lloyd and Hawrylowicz, 2009; Ray et al., 2010),
and adoptive transfer of Tregs can suppress Th2-dependent AAD
in mice (Kearley et al., 2005; Wilson et al., 2005). Tregs are ro-
bustly recruited in asthma though with elevated frequencies in
the airways of individuals with more severe asthma (Smyth et al.,
2010) and increased numbers at the same time as type 2 inflam-
mation in response to experimental allergen challenge (Thunberg
et al., 2010). In recent years, focus has shifted from analysis of
Treg frequency to their phenotype and functionality during
asthma. In this regard, Tregs display similar “plastic” qualities to
those discussed for TFH above. Indeed, within SLOs Foxp3+, CD4
T cells can upregulate Bcl6 and enter the B cell follicles, where
they regulate antibody responses. In murine models of allergic
diseases, these T follicular regulatory cells can suppress TFH-
dependent IgE through molecules like IL-10 and neuritin
(Clement et al., 2019; Gonzalez-Figueroa et al., 2021; Xie et al.,
2020). In barrier tissues such as the respiratory tract, meanwhile,
Tregs express Gata3 and upregulate it further during inflamma-
tion (Wang et al., 2011; Wohlfert et al., 2011), where it stabilizes
Foxp3 function and prevents differentiation of Tregs into effector

CD4 T cells, especially Th17 cells. In homeostasis, Gata3 expres-
sion by Tregs does not result in IL-4, IL-5, and IL-13, with this
being prevented by Treg expression of the E3 ubiquitin ligase Itch
(Jin et al., 2013). In the lungs, however, IL-33 signaling on IL-33R
(ST2) expressing Tregs results in their production of IL-13, which
in this context appears to be protective against lung injury and
promotes resolution of inflammation (Liu et al., 2019; Proto et al.,
2018). The emergence of these Th2-like Tregs does however need
to be carefully regulated to prevent their exacerbation of allergic
disease, with Bcl6 and its antagonistic relationship with Blimp-
1 playing a key role in balance during AAD by limiting the fre-
quency of ST-2+ Tregs in the lungs (Xie et al., 2020).

Beyond T cells
The ability of Th2 cells to influence and shape other T cell re-
sponses and the role Th2 cells and their products play in core
aspects of asthma pathogenesis such as eosinophilia, airway
hyperresponsiveness, goblet cell hyperplasia, and IgE-mediated
inflammation is well described. They also, however, play an
integral in many other processes found in asthma that have only
recently come to light. For instance, their interplay and crosstalk
with their innate immune partners, ILC2s, including common
expression of alarmin receptors and cytokines, and DCs, with
which they form close anatomical bonds, are well known (Izumi
et al., 2021; Mi and Guo, 2022). They can also act as the bridge
between inflammation and neuronally regulated behavioral re-
sponses, e.g., via producing CGRP to mediate nerve elongation
and itching responses and causing potentiation of transient re-
ceptor potential cation channels (Meng et al., 2021; Okano et al.,
2022). Th2 production of factors such as AREG, meanwhile,
means they can play an intimate role in epithelial differentiation
and repair upon damage (Zaiss et al., 2006). Going forward, it
will be crucial to investigate these relationships in patients,
translating findings from mouse models to clinical phenotypes
and endotypes.

Influence of novel biologics on Th2 immunity
The advent of biological therapies for treatment of asthma has
made significant impact on the treatment choices available to
patients. Given the preclinical data documenting raised type 2 im-
munopathology in patients and compelling data in mouse models,
considerable efforts have been made to develop agents that ame-
liorate type 2 immune pathways. There are nowmultiple biological
therapies available that target the type 2 mediators that Th2 and
other immune cells produce, for use in patients with asthma. These
in vivo human “experiments” provide an opportunity to assess the
function of type 2 immune pathways in asthma.

Drugs targeting the IL-5/R axis are among the most widely
used therapies for asthma treatment. Mepolizumab and re-
slizumab are both antibodies specific for IL-5 and are available
as add-on therapies for patients with severe eosinophilic
asthma. In adult patients, both have been shown to successfully
reduce exacerbation rates and improve health-related quality of
life, with the best results observed in patients with elevated
blood eosinophil counts (Castro et al., 2015; Chupp et al., 2017;
Haldar et al., 2009). Benralizumb is directed toward the IL-5R
and induces antibody-dependent cell-mediated cytotoxicity
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whereby natural killer cells target IL-5R expressing cells such as
eosinophils and basophils and elicit cytotoxic killing. It has been
shown to deplete blood eosinophils and effectively reduce eosi-
nophils in the airway lumen (sputum) and the airway mucosa
(Laviolette et al., 2013). Benralizumab reduced the exacerbation
rate in adult asthma patients with exacerbation-prone, severe
eosinophilic asthma and improved their lung function (forced
expiratory volume in 1 s [FEV1]) comparedwith placebo (Bleecker
et al., 2016; FitzGerald et al., 2016), and has been shown to be safe
and effective in long-term trials (Busse et al., 2019a; Kavanagh
et al., 2021).

Dupilimab is a humanized IgG mAb designed to target the IL-
4Rα chain that is common to both type 1 and type 2 IL-4R
complexes. Thus, it inhibits signaling induced by both IL-4 (via
IL-4Rα/γ) and IL-13 (via IL4Rα/IL13Rα). It has proved effective
in downregulating type 2 immunity in a variety of disorders
including atopic dermatitis and asthma. Dupilimab is licensed in
a variety of countries to treat eosinophilic asthma and has been
shown to reduce a number of markers of type 2 inflammation,
including the chemokines eotaxin-3, TARC, and fractional ex-
haled nitric oxide (FeNO; Castro et al., 2018; Rabe et al., 2018;
Wenzel et al., 2016; Wenzel et al., 2013). However, treatment did
not reduce circulating eosinophils; in fact, some patients expe-
rienced transient hypereosinophilia, although this occurred
without clinical consequences. Clinically, patients experienced a
reduction in frequency of severe exacerbations, improved lung
function (via an increase FEV1), and were able to lower their
maintenance doses of oral glucocorticoids. The effect in clinical
improvement was seen in patients who had the highest levels of
circulating eosinophils going into the trials. A number of trials
have tested Dupilumab in adult and pediatric asthma patients
across the severity range, and outcomes were focused on clinical
efficacy rather than mechanistic pathophysiological outcomes
(Bacharier et al., 2021; Busse et al., 2018; Corren et al., 2020;
Wechsler et al., 2022).

Preclinical studies in mouse models defined a role for IL-13 in
many of the pathophysiologic features of asthma, including eo-
sinophil recruitment, AHR, and tissue remodeling, as described
by mucus hypersecretion, matrix dysregulation, and smooth
muscle hyperplasia (Gour and Wills-Karp, 2015). However, the
results from clinical trials in asthma patients treated with mAbs
specific for IL-13 have thus far been disappointing (Nair and
O’Byrne, 2019). Lebrikizumab, an IL-13 IgG4 neutralizing anti-
body that blocks IL-13 interactions with the IL4Rα, has so far
shown only modest effectiveness. Initial trials were designed to
monitor potential changes in prebronchodilator FEV1 in patients
that were preselected for baseline type 2 status (according to total
IgE level and blood eosinophil count) and serum periostin level
(Corren et al., 2011). Periostin is an extracellular matrix protein
that has been used as a surrogate biomarker for type 2 immunity,
steroid responsiveness, and, perhaps, tissue remodeling (Izuhara
et al., 2016). Results showed that Lebrikizumab treatment was
associated with improved lung function, particularly in those that
had higher levels of periostin. However, subsequent phase 3 trials
failed to replicate the effect, even in patients with raised serum
periostin (Hanania et al., 2016). Another IgG4 neutralizing IL-13
mAb, Tralokinumab, has also been tested in large clinical trials in

severe asthma patients. An early phase 2 trial did indicate a
modest improvement in FEV1 (Brightling et al., 2015). However,
larger phase 2 and 3 trials failed to demonstrate consistent effects
on exacerbation frequency, even when patients were preselected
based on high FeNO and did not impact oral corticosteroid re-
duction in severe asthma patients (Busse et al., 2019b; Nair and
O’Byrne, 2019; Panettieri et al., 2018). Trials of anti–IL-9 anti-
bodies in asthma have been similarly disappointing. Although
treatment was well tolerated in asthmatics across the severity
spectrum (Parker et al., 2011), there was a lack of effect on either
lung function, exacerbation rates, or asthma control question-
naire, even when combined with existing controller medications
(Oh et al., 2013). It should be noted that these trials were con-
ducted without patient stratification, and increasing evidence of
IL-9–producing Th2 cells linked to more severe disease may
warrant further investigation of anti–IL-9/IL-9R biologics.

Omalizumab is a recombinant DNA-derived mAb targeting
IgE that is approved for use in children (>6 yr old) and adults
with asthma. Both large-scale randomized trials and “real life”
studies have shown that this treatment reduces exacerbation
frequency, improves symptoms and quality of life for patients as
well as facilitates reduced steroid usage (Hanania et al., 2022).
Although most studies focus on the clinical efficacy, Omalizu-
mab therapy has been shown to reduce peripheral blood eo-
sinophilia and restore numbers of CD4+Foxp3+CD25+CD127lo

Treg, correlating with the level of asthma control (Amat et al.,
2016).

Due to the association of alarminswith driving type 2 immuno-
pathophysiological responses to allergens and the expression of
their receptors on Th2A cells, ILC2, and other type 2 immune cells,
there has been great interest in developing biologics targeting the
asthma-associated alarmin triad of TSLP, IL-25, and IL-33. The
hope would be to suppress both innate and adaptive pathways to
provide a more comprehensive suppression of type 2 immune
pathways. However, results have been disappointingly modest.
Treatment of moderate to severe asthma patients with Itepeki-
mab, a mAb targeting IL-33, improved asthma control and quality
of life as well as reduced mean blood eosinophil count (Parker
et al., 2011). There was no benefit to dual treatment combined
with Dupilimab to block IL-33, IL-4, and IL-13. Itepekimab did
reduce type 2 biomarkers such as FeNO, serum IgE, periostin,
eotaxin3, and pulmonary and activation-regulated chemokine, but
was less efficient than Dupilimab (Wechsler et al., 2021). Aste-
golimab, a selective inhibitor of the IL-33R, ST2, is safe and well
tolerated and reduced annual exacerbation rate in a broad range of
asthmatic patients, including those that had eosinophil low and
poorly controlled severe asthma (Kelsen et al., 2021). Tezepelumab
is an antibody that blocks function of TSLP, and trials have
demonstrated that patients with severe uncontrolled asthma have
reduced exacerbations, better asthma control, and improved
health-related quality of life after receiving Tezepelumab than
patients on placebo (Corren et al., 2017; Menzies-Gow et al., 2021).
Interestingly, patients on Tezepelumab showed a rapid and sus-
tained reduction in blood eosinophils, FeNO (a surrogate bio-
marker for inflammation), and serum IgE. A subsequent study
determined that eosinophil numbers were reduced in endobron-
chial biopsies from patients with uncontrolledmoderate-to-severe
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asthma following Tezepelumab, but there was no effect on other
cell types examined (T cells, neutrophils, or mast cells) or on
airway remodeling, as assessed by reticular basement membrane
thickening and epithelial integrity (Diver et al., 2021). More re-
cently, Tezepelumab has also been shown to reduce mucus
plugging in uncontrolled moderate-to-severe asthmatic patients
(Nordenmark et al., 2022).

It is clear from clinical trials of type 2 biologics that identi-
fying the right patients contributes to the success of the treat-
ment. The type 2 therapies seem to work most effectively in
patients who are preselected based on type 2 biomarkers such as
higher eosinophil counts, raised FeNO, or serum periostin. In
the case of anti–IL-13 biologics, it may be necessary to use wider
selection criteria—perhaps based on the most pronounced bio-
logical effects of IL-13, such as mucus production or smooth
muscle cell hyperplasia (Nair and O’Byrne, 2019). Indeed mucus,
specifically mucus plugging, has been proposed to be a key
contributor to airflow obstruction in severe eosinophilic asth-
matics (Dunican et al., 2018; Tang et al., 2022). Eosinophils are
likely key in the formation of these dense mucus plugs as they
are a rich source of Charcot–Leyden crystals (CLCs), formed
from Galectin-10 proteins, which are readily released on acti-
vation, especially during the generation of extracellular traps
(Porter et al., 2017; Ueki et al., 2018). Importantly, CLCs, and the
airway damage their presence can result in, are sufficient to
promote asthma-like type 2 inflammation in the lungs (Persson
et al., 2019). Moreover, antibodies targeted to destabilize
Galectin-10 interactions and dissolve CLCs are showing thera-
peutic potential in severe asthma.

An alternative strategy to neutralizing type 2 cytokines is to
target the type 2 cells themselves via specific transcription fac-
tors. A randomized, double-blind, placebo-controlled, multi-
center clinical trial of a novel DNA enzyme (SB010) was
designed to cleave and inactivate GATA3 messenger RNA in-
volved patients who had allergic asthma with sputum eosino-
philia and who also had biphasic early and late asthmatic
responses after laboratory-based allergen provocation (Krug
et al., 2015). Treatment with SB010 significantly attenuated
both late and early asthmatic responses after allergen provoca-
tion in patients with allergic asthma. There was also an atten-
uation of Th2 biomarkers such as sputum eosinophilia and
tryptase (a surrogate for mast cells) and circulating IL-5 levels.
However, there was no change in allergen-induced airway hy-
perresponsiveness and Th2 cells were not examined.

In any case, none of the agents developed so far are curative
and do not replicate the efficacy of blocking type 2 pathways in
animal models. This may reflect the complexity of the human
disease as compared with the relative simplicity of mice, which
can only mimic disease pathways rather than the complete
disease. However, we lack specific knowledge of the nuances of
type 2 biology in humans, particularly at the tissue level. At
present, none of the human studies have examined the effect on
T cell phenotypes, either in the blood or the tissue. In fact, most
studies focus on effects on clinical parameters and do not include
any mention of underlying mechanisms. A multiomics analysis
of skin biopsies taken from atopic dermatitis patients treated
with Dupilimab revealed that tissue-resident memory pathways

persisted, even when clinical remission was achieved (Bangert
et al., 2021). In particular, Th2A cells (CRTh2+CD161+Th cells)
were found in skin tissue up to a year after clinical remission.
These Th2A cells exhibited the characteristic cytokine receptor
profile for the subtype, being positive for IL17RB, IL1RL1, and
CRLF2, and the authors speculated that long-term maintenance
of these cells within tissues would enable them to be responders
to the epithelial-derived alarmins that are typical of an allergic
dermatitis reaction. The persistence of these cells implies that
once treatment is withdrawn, type 2 resident immune cells are
ready and poised to respond to allergens and thus facilitate or-
chestration of allergic dermatitis pathology, leading to disease
recurrence. Similar studies determining the effect of type 2 path-
way biologics on tissue immune cells are urgently needed in air-
way inflammation.

Conclusions
The advent of sophisticated technologies and investigative
strategies to examine the human immune system has led to a
greater understanding of the heterogeneous nature of immune-
mediated diseases such as asthma, in particular how the Th2 cell,
in its many guises, promotes and regulates various aspects of
asthma pathology. Coupled with the generation of biological
agents that effectively block selected cytokine/receptor path-
ways, the potential for enhancing our pathophysiological un-
derstanding of asthma is immense. However, clinical trials have
shown that although some aspects of severe disease, most often
exacerbations, are mitigated, the results have not replicated
those previously observed in preclinical models. Until there is a
greater emphasis on understanding how these interventions
function at the tissue level in humans, the ultimate scenario of
developing precision medicine strategies or furthering our un-
derstanding of type 2 immune-driven pathology at the cell and
molecular level will remain out of reach.
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