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Abstract

Speech enhancement (SE) reduces background noise signals in target speech and is

applied at the front end in various real-world applications, including robust ASRs and real-

time processing in mobile phone communications. SE systems are commonly integrated

into mobile phones to increase quality and intelligibility. As a result, a low-latency system is

required to operate in real-world applications. On the other hand, these systems need effi-

cient optimization. This research focuses on the single-microphone SE operating in real-

time systems with better optimization. We propose a causal data-driven model that uses

attention encoder-decoder long short-term memory (LSTM) to estimate the time-frequency

mask from a noisy speech in order to make a clean speech for real-time applications that

need low-latency causal processing. The encoder-decoder LSTM and a causal attention

mechanism are used in the proposed model. Furthermore, a dynamical-weighted (DW) loss

function is proposed to improve model learning by varying the weight loss values. Experi-

ments demonstrated that the proposed model consistently improves voice quality, intelligi-

bility, and noise suppression. In the causal processing mode, the LSTM-based estimated

suppression time-frequency mask outperforms the baseline model for unseen noise types.

The proposed SE improved the STOI by 2.64% (baseline LSTM-IRM), 6.6% (LSTM-KF),

4.18% (DeepXi-KF), and 3.58% (DeepResGRU-KF). In addition, we examine word error

rates (WERs) using Google’s Automatic Speech Recognition (ASR). The ASR results show

that error rates decreased from 46.33% (noisy signals) to 13.11% (proposed) 15.73%

(LSTM), and 14.97% (LSTM-KF).

1 Introduction

Speech signals in many real-world situations are degraded by noise signals. A degraded signal

severely influences the performance of many speech-related applications, such as automatic

speech recognition [1], speaker identification [2], and hearing aid devices [3]. A speech
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enhancement system is mainly involved in restoring the quality and improving the intelligibil-

ity of the signals degraded by the noise and is used at the front end of many speech applications

to enhance their performance in noisy situations where they are altered. Background noises,

competing speakers, and room reverberation are mainly the major sources of variations and

distortions. An SE algorithm ideally ought to work passably in various acoustic situations, a

broad-spectrum algorithm that is capable of performing well with little complexity and latency

in every noisy situation is a challenging technical task.

The conventional approaches include spectral subtraction [4], Wiener filtering [5], statisti-

cal models [6–8], and hybrid SE models [9, 10] They show better performance in many sta-

tionary noises but face difficulties in handling nonstationary noises. In the recent past, deep

learning has been developed into the mainstream for speech enhancement [11]. Given a speech

dataset of the clean-noisy pairs, the neural networks can learn to transform the noisy magni-

tude spectra to their clean counterparts (mapping based) [12–14] or estimate the time-fre-

quency masks (masking-based) such as ideal binary mask (IBM) [15, 16], ideal ratio mask

(IRM) [17, 18], and spectral magnitude mask (SMM) [19]. Fully connected networks (FCN)

[19], feedforward neural networks (FDNN) with Kalman filtering [20], recurrent neural net-

works (RNN) [21–23], and convolutional neural networks (CNN) [24, 25] are important deep

learning approaches in SE.

A fully connected feedforward neural network showed that a DNN trained for a large num-

ber of background noises with a single speaker generalized better to untrained noise types

[26]. Such a network, however, shows the difficulty in generalizing to both untrained speakers

and noises when trained with a large number of speakers and noises. The RNN with LSTM is

used to design a noise- and speaker-independent network for speech enhancement. A four-

layered RNN network was used to train speech utterances belonging to 77 different speakers

combined with 10,000 different noise types [26]. Recently, SE has aimed to improve the perfor-

mance of the speaker and noise-independent networks. In [25], a CNN with gated and dilated

convolutions is proposed for the magnitude enhancement. A recent trend is the use of atten-

tion mechanisms to improve the quality and intelligibility of noisy speech signals. In [27] a

speech enhancement approach is proposed and used with an attention LSTM by replacing the

forgetting gate with an attention gate. In [24] a dense CNN with a self-attention is proposed to

assist feature extraction using a combination of feature reuse. In [28] a dual-path self-attention

RNN is proposed to improve the long sequence of speech frames. A number of deep learning

studies based on the attention mechanism for SE are successfully proposed with novel results

[29–34].

In most of the deep learning approaches, mean-square error (MSE) is used as the loss func-

tion [15–19]. Other loss functions include Huber and mean absolute error (MAE). The gradi-

ent of the MAE remains invariant during training when loss approaches zero, resulting in

missing the minima. Moreover, the Huber loss needs hyperparameter tuning. This brings fur-

ther complexity when a loss function is dynamically weighted. A large error indicates poor

learning on a particular instance in the dataset. A dynamically weighted loss function is used

to alter the learning process by augmenting the weighted values corresponding to the learning

errors. Through such an amendment, the loss function focuses on the large learning errors

and improves the network performance.

In this paper, an attention encoder-decoder LSTM network for sequence-to-sequence

learning is proposed. The motivation behind this research is the recent success of the attention

mechanism in speech emotion recognition [33] and speech recognition [34]. Deep learning

approaches can be regression or prediction tasks [35, 36]. It is useful to employ the attention

process in speech enhancement since a human can focus on a certain part of a speech stream

with more attention, such as target speech, whereas they perceive the surrounding noise with
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less attention. We have used an attention process on the encoder-decoder LSTM network that

has been shown to perform better in modeling vital sequential information. LSTM [37–39]

can learn the weights of the past input features perfectly and predict the enhanced frames. The

attention process determines the correlations between the previous frames and the current

frames be enhanced and assigns weights to the previous frames. Experiments have shown that

the proposed network consistently performed better in terms of speech quality and intelligibil-

ity. The overall structure of the proposed speech enhancement algorithm is depicted in Fig 1.

We have summarized the main contributions of this study.

• For sequential learning to handle real-time speech applications that need low-latency causal

processing, a causal speech enhancement based on attention encoder-decoder LSTM net-

work is proposed.

• By adding weighted values for large learning errors, a dynamically weighted loss function is

used to improve the learning process. The loss function focuses on the large learning errors

to further improve the network performance.

• Automatic speech recognition is evaluated using estimated magnitude, thereby notably

improving the word error rate in noisy situations.

The remainder of this paper is organized as follows. In Section 2, we explain the proposed

speech enhancement algorithm. The dynamically-weighted loss is presented in Section 3. The

experimentation is presented in Section 4. The results and discussions are presented in Section

5. Finally, the conclusions are drawn in Section 6.

2 Proposed speech enhancement

For a given clean speech signal xt and noise signal dt, the noisy speech signal yt is formed by

the additive mixing as follows:

yt ¼ xt þ dt ð1Þ

where x; y; d g 2 RN�1
�

and N shows number of the speech frames. A SE algorithm aims to

recover a close estimate x̂t of the clean speech xt given yt. The inputs to the LSTM Encoder-

Decoder are Y = [y1, .., yt, .., yN], where yt indicates the spectral magnitudes of the noisy speech

at frame t. The high-level features h are extracted by the encoder from the input speech frames:

hK ; hQ ¼ EncoderðytÞ ð2Þ

where hK and hQ stand for the key and query, respectively. In this study, unidirectional LSTM

is used as an encoder which shows a strong ability to model the sequential data leading to the

improved performance of the speech enhancement [39]. The attention process is fed with key

and query as the input to create fixed-length context vectors:

Ct ¼ AttentionðhK ; hQÞ ð3Þ

The decoder output wt is the recovered enhanced speech signal x̂t which takes the context

vectors Ct, the output of the encoder hQ, and the noisy speech yt, respectively.

wðtÞ ¼ decoderðCt; hQt ; ytÞ ð4Þ

The proposed attention encoder-decoder LSTM is depicted in Fig 2.
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2.1 Unidirectional LSTM encoder

The LSTM encoder extracts the high-level feature representations from the input speech

frames. The input features are first fed into a fully-connected layer. The yt is the input to the

LSTM cell as:

hKt ¼ f ðytÞ ð5Þ

Fig 1.

https://doi.org/10.1371/journal.pone.0285629.g001
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where f(�) is LSTM function whereas hKt is LSTM output, respectively. The hQt can be computed

as:

hQt ¼ f ðh
K
t Þ ð6Þ

2.2 Attention process

The attention process is fed with information about the key and query as inputs to create

fixed-length context vectors. An attention process can use both previous and future speech

frames. But, SE is a causal problem and uses previous speech frames to avoid processing

latency. We have used casual dynamic and causal local attention approaches. To enhance a

speech frame in causal dynamic attention, Y = [y1, .., yt] is used to compute the attention

weights which means that all the previous speech frames are used to enhance the current

frames. If the duration of the speech utterance is long, the attention weights of several previous

speech frames can nearly be zero. Therefore, in casual local attention process, Y = [y1, .., yt] is

used to compute the attention weights. The z is set to a constant. The normalized attention

weight κ can be learned as:

ktk ¼
expðhKk ; h

Q
t ÞPt

k¼l expðhKk ; h
Q
t Þ

ð7Þ

l = 1 for causal dynamic attention whereas l = (t − z) is used for the causal local attention.

According to correlation computation, we have:

expðhKk ; h
Q
t Þ ¼ h

KT
k Wh

Q
t ð8Þ

The context vector with attention weights is given as:

Ct ¼
Xt

n¼l

ðktkh
K
k Þ ð9Þ

With an attention-weighted context vector, the model decides the attention process.

2.2.1 Unidirectional LSTM decoder. The decoder recovers the output-enhanced speech

by using the input features, encoder output, and context vector, respectively. The enhanced

vector Et is learned from context vectors and features as:

Et ¼ tanhðWE½Ct; hQt � þ bEÞ ð10Þ

Fig 2.

https://doi.org/10.1371/journal.pone.0285629.g002
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where ½Ct; hQt � shows the concatenation of the context and feature vectors, respectively. The

ideal ratio mask (IRM) is finally estimated from the feature vectors. The time-frequency IRM

(f, t) is given as:

IRMðf ; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXðf ; tÞj2

jXðf ; tÞj2 þ jDðf ; tÞj2

s

ð11Þ

where |X (f,t)| and |D (f,t)| show the magnitude spectra of clean speech and noise signals,

respectively. The enhanced vectors are multiplied with the noisy features to recover the

enhanced speech by taking the inverse Short-time Fourier Transform (STFT) as:

x̂t ¼ yt � IRMðf ; tÞ ð12Þ

2.3 Weighted loss function

In masking-based deep learning methods for SE, a loss function presents a divergence between

the predefined and the estimated mask. A loss function aims to reduce the errors produced

during training. Mostly, the MSE (mean square error) is used as the basic loss function, given

as:

lossðm; nÞ ¼
1

L

XL

j¼0

ððm � nÞÞ2 ð13Þ

wherem, and n denote the input and the predicted value, respectively. Eq (13) can be repre-

sented in terms of the time-frequency mask as:

lossðMx; M̂xÞ ¼
1

L

XL

j¼0

ððMx � M̂xÞÞ
2

ð14Þ

where M̂ðxÞ andM(x) denote the estimated and predefined IRM masks, respectively. The

dynamical-weight loss function is used to adjust the network learning by multiplying weighted

values corresponding to the learning errors. Thus, the loss function focuses on large errors to

improve performance. The MSE loss function is multiplied by a weighted variable O to get the

weighted MSE as:

lossðm;nÞ ¼ O∗
1

L

XL

j¼0

ððMx � M̂xÞÞ
2

 !

ð15Þ

To emphasize the instances with large errors, the weight variable O in Eq (15) is updated

according. The weight selection is done according to the following condition:

O∗LossðMx; M̂xÞ ¼

jMx � M̂xj

2
;wherejMx � M̂xj < B

jðMx � M̂xÞj;wherejMx � M̂xj � B

8
><

>:
ð16Þ

Where |.| indicates the magnitude of ground truth and estimated masks. The weighting

became halved when the absolute divergence is less than constant B which is set to 10 since it

has been observed that the performance of the model at this instance was better.
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3 Experiments

3.1 Data generation

In experiments, we have used IEEE dataset [40]. Two IEEE datasets are used which are com-

posed of male speakers and female speakers, respectively. The noise sources are selected from

AURORA [41]. For a given speech dataset D, we haveMtr andMte as the training and testing

speech utterances. The training and testing speech utterances in the dataset are denoted by Dtr
and Dte, respectively. The noisy utterances are generated by adding the noise signals to Dtr and

Dte:

yitr ¼ x
i
tr þ d

i
tr; i ¼ 1; 2; 3; :::;Mtr ð17Þ

yjte ¼ x
j
te þ d

j
te; j ¼ 1; 2; 3; :::;Mtr ð18Þ

3.2 Feature extraction

The input pairs y, x, d are transformed from the time to frequency domain using the STFT as:

Y ¼ STFTðyÞ;X ¼ STFTðxÞ;D ¼ STFTðdÞ ð19Þ

Where X;Y;D g 2 ZT�F
�

, T and F show frame number and frequency bin number. We have

used STFT magnitude |Y| as the input features.

3.3 Experimental setup

We have used speech utterances with a 16 kHz sampling rate. A 512 points Hanning window

with 75% overlapping is used. We used the noisy phase during waveform reconstruction. The

network consists of an input layer, three unidirectional LSTMs with 256 memory units fol-

lowed by a fully connected output layer with 257 sigmoidal units. The number of epochs and

the learning rate is set to 160 and 0.001, respectively. The weights are randomly initialized and

trained with 32 sequences mini-batches by back-propagation through time with Adam opti-

mizer. The three-layered LSTM network architecture with (128/256/256/256/257) memory

cells is used. The details of hyperparameters are given in Table 1. To create the noisy utter-

ances, three SNR levels are used (-5dB to +5dB) with a 5dB step size. For network training,

IEEE speech utterances from the male and female speakers are duplicated three times for each

SNR level and mixed with all noise types. Therefore, a total of 21600 (approx. 18 hours) speech

utterances are used in the training process. We also used half-speech utterances during testing

in the matched and mismatched conditions. During testing, each noise type is tested with a dif-

ferent set of utterances.

To evaluate the performance of the proposed approach, we used three objective measures:

Short-time objective intelligibility (STOI) [42], Perceptual evaluation of speech quality (PESQ)

[43], and Source-to-distortion ratio (SDR). To compare performance of the proposed method,

baseline LSTM [26], DNN [18], LMMSE [6], OM-LSA [7], FDNN-KF [20], LSTM-KF [44]

DeepXi-KF [45] and DeepResGRU-KF [46]. are selected as the competing methods. The com-

peting deep learning methods can be represented as LSTM-IRM: LSTM with IRM as a training

target. DNN-IRM: Feedforward DNN with IRM as a training target. DWAtten-LSTM-IRM:

Proposed method with IRM as a training target.
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4 Results and discussions

To signify the performance of the proposed speech enhancement method, we have compared

the results with baseline LSTM-IRM [26], DNN-IRM [18], LMMSE [6], OM-LSA [7],

FDNN-KF [20], LSTM-KF [44] DeepXi-KF [45] and DeepResGRU-KF [46]. For matched and

unmatched conditions, the average STOI, PESQ, and SDR test values across several noise

sources and SNRs are given in Tables 2–5. Note that, in contrast to the competing deep-learn-

ing methods, the proposed DWAtten-LSTM presents the highest performance in terms of the

STOI, PESQ, and SDR values in noisy situations. Two conditions including Matched and Mis-

matched are considered in experiments. During match conditions, the speakers and utterances

remain the same in training and testing sets whereas, in mismatched conditions, the speakers

and utterances in the training set are different from the testing set.

In the matched conditions (Tables 2–4), the proposed DWAtten-LSTM approach achieved

the best STOI, PESQ, and SDR values with airport noise, street noise, and car noise at

SNR�5dB, that is, STOI�94%, PESQ�2.99, and SDR�10.8dB. The STOI with the babble

noise is improved from 68.1% with noisy speech signals to 85.2% with DWAtten-LSTM and

achieves 17.1% improvement in STOI at 0dB SNR. Similarly, the PESQ with airport noise is

improved from 1.93 with DNN-IRM to 2.29 with proposed DWAtten-LSTM and improved

the PESQ by factor 0.36 (18.75%) at -5dB SNR. Moreover, the SDR value with car noise is

improved from 4.20dB with LSTM-IRM to 4.56dB with DWAtten-LSTM and achieved 0.36dB

(8.57%) improvement at -5dB SNR level. Note from Table 2 (matched condition) that DWAt-

ten-LSTM presents the highest STOI, PESQ, and SDR values in all noisy situations as com-

pared to baseline LSTM with the same network architecture.

The average STOI, PESQ, and SDR test values across all noise sources and SNRs are given

in Table 5 for unmatched conditions where the proposed DWAtten-LSTM achieved the best

STOI, PESQ, and SDR values at airport noise at SNR�5dB, that is, STOI�92.3%, PESQ�2.86,

and SDR�10.7dB. The STOI with factory noise is improved from 55.2% with noisy speech sig-

nals to 77.0% with DWAtten-LSTM and achieves 21.8% STOI gain at -5dB SNR. Fig 3 shows

STOI, PESQ, and SDR improvements in various background noises where we can see the per-

formance of the proposed DWAtten-LSTM in individual noise at -5dB, 0dB, and 5dB SNRs.

We also compared DWAtten-LSTM to non-deep learning-based LMMSE and OM-LSA.

Table 6 shows STOI, PESQ, and SDR values obtained with DWAtten-LSTM, LMMSE, and

OM-LSA, respectively. STOI is improved from 70.22% and 71.50% with LLMSE and OM-LSA

to 85.60% with DWAtten-LSTM and achieves 15.38% and 14.10% STOI gain at 0dB. Similarly,

PESQ is improved from 2.22 and 2.20 with LMMSE, and OM-LSA to 2.85 with proposed

DWAtten-LSTM and achieved 0.63 and 0.65 PESQ gain at 5dB. The PESQi and STOIi are

demonstrated in Fig 4.

Table 1. Hyperparameters of all deep learning networks.

Hyperparameters Atten-LSTM LSTM LSTM-KF DNN

No of layers 3 3 3 3

Layer 1 Neurons 256 256 256 1024

Layer 2 Neurons 256 256 256 1024

Layer 3 Neurons 256 256 256 1024

Learning Rate 0.0001 0.0001 0.0001 0.0001

No of Epochs 160 160 160 160

Momentum 0.9 0.9 0.9 0.9

https://doi.org/10.1371/journal.pone.0285629.t001
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The overall average STOI, PESQ, and SDR values for all noise sources are given in Table 6

for matched (denoted as Proposed-M), unmatched (denoted by Proposed-UM) conditions,

and the average of both matched and unmatched (denoted as Proposed-Avg). PESQ and STOI

values are calculated for the causal local attention process, and the value of z is varied from 4 to

12 with an increment of 4. Table 7 shows the results. It is noticed that values greater than 12

Table 2. STOI (in%) in matched test scores.

Noise Algorithm -5dB 0dB 5dB Avg

Airport Noise Noisy (UnP) 62.4 73.7 83.9 73.3

DNN-IRM 80.2 86.5 90.7 85.8

LSTM-IRM 82.9 88.6 92.3 87.9

LSTM-KF 74.2 80.3 82.8 79.1

FDNN-KF 72.2 79.8 81.3 77.8

DeepXi-KF 75.9 81.2 84.7 80.6

DeepResGRU-KF 76.6 82.3 85.5 81.1

Proposed 85.6 90.5 94.0 90.0

Babble Noise Noisy (UnP) 56.7 68.1 79.6 68.1

DNN-IRM 72.0 79.3 85.9 79.0

LSTM-IRM 75.9 82.6 87.0 81.8

LSTM-KF 74.1 80.1 82.7 79.2

FDNN-KF 72.3 79.6 81.1 78.0

DeepXi-KF 75.8 81.3 84.8 80.7

DeepResGRU-KF 76.5 82.4 85.6 81.2

Proposed 79.8 85.2 89.2 84.7

Car Noise Noisy (UnP) 58.8 68.9 79.6 69.1

DNN-IRM 73.7 81.0 86.0 80.2

LSTM-IRM 78.5 84.7 89.1 84.1

LSTM-KF 78.3 83.2 87.6 83.0

FDNN-KF 75.4 80.4 83.3 79.7

DeepXi-KF 80.1 85.6 89.0 84.9

DeepResGRU-KF 82.2 86.8 91.2 86.7

Proposed 83.4 88.5 92.6 88.2

Factory Noise Noisy (UnP) 56.4 67.4 78.8 67.5

DNN-IRM 70.2 78.7 85.2 78.0

LSTM-IRM 74.4 80.2 88.1 80.9

LSTM-KF 74.1 78.5 83.6 78.7

FDNN-KF 70.7 76.2 81.4 76.1

DeepXi-KF 77.2 79.8 85.4 80.8

DeepResGRU-KF 79.1 81.2 86.5 82.2

Proposed 78.6 82.1 90.0 83.6

Street Noise Noisy (UnP) 63.0 74.0 84.0 73.7

DNN-IRM 78.4 85.3 90.3 84.6

LSTM-IRM 82.0 86.8 91.8 87.9

LSTM-KF 74.8 82.9 86.6 83.0

FDNN-KF 70.8 79.8 83.3 79.7

DeepXi-KF 78.3 84.9 89.0 84.9

DeepResGRU-KF 80.1 85.6 91.2 86.7

Proposed 84.9 89.7 93.4 89.3

https://doi.org/10.1371/journal.pone.0285629.t002
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for z result in no further improvements and the best performance is achieved for z = 4. As

compared to causal dynamic attention, causal local attention showed better results. The obser-

vations verified the inference that extensive previous information is not required in speech

enhancement. This inference is logical since noisy situations, both types and SNRs, change

over time. The observations are valid for the attention networks since the attention LSTM out-

performed the baseline LSTM.

Table 3. PESQ in matched test scores.

Noise Algorithm -5dB 0dB 5dB Avg

Noisy (UnP) 1.53 1.86 2.14 1.84

Airport Noise DNN-IRM 1.93 2.41 2.79 2.37

LSTM-IRM 2.11 2.54 2.87 2.51

LSTM-KF 1.88 2.13 2.56 2.14

FDNN-KF 1.79 2.03 2.45 2.07

DeepXi-KF 1.99 2.21 2.58 2.23

DeepResGRU-KF 2.06 2.33 2.71 2.34

Proposed 2.29 2.67 2.98 2.65

Babble Noise Noisy (UnP) 1.52 1.75 2.07 1.78

DNN-IRM 1.95 2.34 2.66 2.32

LSTM-IRM 2.07 2.43 2.70 2.40

LSTM-KF 1.93 2.18 2.56 2.19

FDNN-KF 1.84 2.13 2.45 2.12

DeepXi-KF 2.04 2.26 2.60 2.28

DeepResGRU-KF 2.11 2.38 2.71 2.40

Proposed 2.19 2.56 2.78 2.51

Car Noise Noisy (UnP) 1.37 1.62 1.92 1.64

DNN-IRM 1.76 2.17 2.58 2.17

LSTM-IRM 2.01 2.41 2.78 2.40

LSTM-KF 2.03 2.33 2.67 2.41

FDNN-KF 1.94 2.25 2.60 2.33

DeepXi-KF 2.08 2.45 2.73 2.48

DeepResGRU-KF 2.21 2.55 2.86 2.52

Proposed 2.27 2.65 2.99 2.63

Factory Noise Noisy (UnP) 1.31 1.61 1.92 1.61

DNN-IRM 1.72 2.16 2.60 2.16

LSTM-IRM 1.94 2.32 2.71 2.32

LSTM-KF 1.81 2.05 2.36 2.07

FDNN-KF 1.72 2.01 2.28 2.01

DeepXi-KF 1.92 2.12 2.40 2.15

DeepResGRU-KF 1.98 2.26 2.55 2.26

Proposed 2.16 2.57 2.87 2.53

Street Noise Noisy (UnP) 1.47 1.86 2.01 1.78

DNN-IRM 1.94 2.44 2.65 2.34

LSTM-IRM 2.11 2.53 2.80 2.48

LSTM-KF 1.84 2.12 2.39 2.12

FDNN-KF 1.75 2.04 2.31 2.03

DeepXi-KF 1.93 2.21 2.45 2.20

DeepResGRU-KF 2.01 2.31 2.65 2.32

Proposed 2.29 2.66 2.99 2.65

https://doi.org/10.1371/journal.pone.0285629.t003
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Table 8 shows the comparison between the loss errors and predicted results of the DWAt-

ten-LSTM with and without the DW loss function. The DW loss function improved the pre-

dicted scores (STOI and PESQ). The errors are reduced by weighted MSE (3.42 × 10−4) as

compared to a non-weighted MSE (3.54 × 10−4).

To understand the attention process, the attention maps are illustrated in Fig 5. The x-axis

denotes hK and the y-axis denotes hQ. The points, (x;y) denote the attention weights. The

Table 4. SDR in matched test scores.

Noise Algorithm -5dB 0dB 5dB Avg

Airport Noise Noisy (UnP) -4.78 0.11 5.07 0.13

DNN-IRM 3.98 6.86 8.38 6.41

LSTM-IRM 4.09 7.10 9.54 6.91

LSTM-KF 4.05 7.13 9.55 6.92

FDNN-KF 3.99 7.01 9.42 6.80

DeepXi-KF 4.09 7.15 9.84 7.02

DeepResGRU-KF 4.16 7.22 10.1 7.16

Proposed 4.21 7.33 10.7 7.41

Babble Noise Noisy (UnP) -4.73 0.13 5.08 0.16

DNN-IRM 3.82 6.31 8.74 6.29

LSTM-IRM 3.95 6.58 9.05 6.52

LSTM-KF 4.03 7.21 9.25 6.83

FDNN-KF 3.95 7.10 9.12 6.72

DeepXi-KF 4.11 7.26 9.24 6.87

DeepResGRU-KF 4.19 7.31 9.29 6.93

Proposed 4.28 7.40 9.36 7.01

Car Noise Noisy (UnP) -4.85 0.08 5.05 0.09

DNN-IRM 3.81 6.42 8.83 6.35

LSTM-IRM 4.20 7.21 9.92 7.11

LSTM-KF 4.28 7.29 10.1 7.20

FDNN-KF 3.92 6.52 9.01 6.46

DeepXi-KF 4.34 7.35 10.2 7.45

DeepResGRU-KF 4.48 7.44 10.4 7.58

Proposed 4.56 7.59 10.8 7.65

Factory Noise Noisy (UnP) -4.69 0.12 5.07 0.17

DNN-IRM 3.66 5.34 8.72 6.24

LSTM-IRM 3.85 5.53 9.52 6.30

LSTM-KF 3.83 5.78 9.63 6.41

FDNN-KF 3.75 5.55 8.87 6.05

DeepXi-KF 3.91 6.12 9.96 6.66

DeepResGRU-KF 3.89 6.25 10.2 6.78

Proposed 4.01 6.69 10.3 6.99

Street Noise Noisy (UnP) -4.76 0.11 4.99 0.11

DNN-IRM 4.01 6.83 8.34 6.39

LSTM-IRM 4.05 7.32 9.22 6.86

LSTM-KF 4.08 7.43 9.33 6.94

FDNN-KF 4.02 6.98 8.40 6.46

DeepXi-KF 4.11 7.86 9.66 7.21

DeepResGRU-KF 4.18 7.73 9.89 7.26

Proposed 4.19 7.82 10.1 7.37

https://doi.org/10.1371/journal.pone.0285629.t004
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attention-based network assigns different attention levels (weights) to the contextual frames.

The top spectrogram shows noisy speech, and the other spectrogram shows clean speech,

respectively.

In experiments, time-varying spectral analysis is conducted to showcase the performance of

DWAtten-LSTM. Fig 6 demonstrates the sample spectrogram analysis. A clean speech

Table 5. Unmatched test scores in five noise sources at all SNRs. The results are averaged over all testing utterances.

Noise Algorithm STOI (in%) PESQ SDR

Airport Noise Noisy (UnP) 71.6 1.83 0.14

DNN-IRM 82.6 2.27 6.30

LSTM-IRM 85.0 2.37 6.84

LSTM-KF 85.9 2.40 6.96

FDNN-KF 83.4 2.31 6.41

DeepXi-KF 86.7 2.45 7.21

DeepResGRU-KF 86.9 2.46 7.31

Proposed 87.6 2.48 7.39

Babble Noise Noisy (UnP) 65.9 1.72 0.19

DNN-IRM 76.7 2.12 6.13

LSTM-IRM 78.5 2.23 6.31

LSTM-KF 79.1 2.28 6.35

FDNN-KF 77.2 2.15 6.18

DeepXi-KF 80.2 2.30 6.45

DeepResGRU-KF 80.8 2.32 6.51

Proposed 81.0 2.35 6.62

Car Noise Noisy (UnP) 67.5 1.65 0.13

DNN-IRM 79.6 2.17 6.38

LSTM-IRM 82.8 2.33 6.92

LSTM-KF 83.1 2.40 7.01

FDNN-KF 80.1 2.21 6.45

DeepXi-KF 84.2 2.45 7.12

DeepResGRU-KF 84.8 2.48 7.28

Proposed 86.0 2.49 7.45

Factory Noise Noisy (UnP) 66.1 1.61 0.18

DNN-IRM 75.7 2.08 5.92

LSTM-IRM 78.6 2.24 6.39

LSTM-KF 78.8 2.29 6.45

FDNN-KF 76.0 2.10 8.98

DeepXi-KF 79.5 2.35 6.57

DeepResGRU-KF 80.2 2.38 6.71

Proposed 81.3 2.39 6.87

Street Noise Noisy (UnP) 66.8 1.73 0.22

DNN-IRM 77.8 2.18 6.06

LSTM-IRM 81.5 2.31 6.34

LSTM-KF 81.9 2.35 6.40

FDNN-KF 78.0 2.21 6.10

DeepXi-KF 82.6 2.38 6.45

DeepResGRU-KF 84.7 2.40 6.58

Proposed 85.1 2.42 6.63

https://doi.org/10.1371/journal.pone.0285629.t005
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utterance is mixed with babble noise at 5 dB. The spectrogram of DWAtten-LSTM is plotted

in Fig 6(F). The harmonic structures of the vowel and the formant peaks are well retained.

Moreover, the spectrogram showed excellent structure during speech activity. During the

speech pause, DWAtten-LSTM removed the residual noise signals. The weak harmonic struc-

tures in the high-frequency sub-bands are well maintained. Thus, a better speech quality of the

enhanced speech is achieved by DWAtten-LSTM. The weak energy in the speech utterance is

also well retained and yields less speech distortion. Therefore, the intelligibility of noisy speech

is improved. The residual noise signals are evident in the spectrograms of LMMSE and

OM-LSA, plotted in Fig 6(C) and 6(D).

The complexity and convergence analysis are also given. The complexity of a deep learning

algorithm revolves around the number of training parameters; LSTM networks have 1.2 mil-

lion parameters. This is clearly a fewer number as compared to other networks used for speech

enhancement, for example, 10 million parameters are used by the residual LSTM [47]. This

also significantly reduces the training time and speeds up the process. DWAtten-LSTM took

less time per epoch compared to the Residual LSTM (using an NVIDIA GTX 950 Ti GPU).

Next, we observed the convergence of Weighted-MSE between the estimated and true values

Fig 3.

https://doi.org/10.1371/journal.pone.0285629.g003

Table 6. Comparison against non-deep learning methods. Test Scores are averaged over five noise sources at all SNRs.

STOI (in %) PESQ SDR

Algorithm -5dB 0dB 5dB Avg -5dB 0dB 5dB Avg -5dB 0dB 5dB Avg

Noisy (UnP) 58.02 68.87 80.05 68.98 1.43 1.73 2.01 1.72 -4.73 0.13 5.07 0.13

DNN-IRM 73.94 80.06 85.39 79.79 1.83 2.23 2.61 2.22 3.84 6.40 8.50 6.25

LSTM-IRM 77.39 83.15 87.89 82.81 2.02 2.36 2.72 2.37 4.00 6.61 9.35 6.65

LLMSE 59.21 70.22 81.80 70.41 1.49 1.75 2.22 1.82 -3.43 0.18 5.32 0.69

OM-LSA 59.49 71.50 82.14 71.04 1.52 1.81 2.20 1.84 -3.88 0.21 5.51 0.61

Proposed-M 82.46 87.20 91.84 87.16 2.24 2.62 2.92 2.59 4.19 7.17 10.3 7.20

Proposed-UM 79.06 84.08 89.48 84.20 2.09 2.40 2.79 2.43 4.09 6.72 10.0 6.97

Proposed-Avg 80.76 85.64 90.66 85.68 2.17 2.51 2.85 2.51 4.14 6.95 10.2 7.09

https://doi.org/10.1371/journal.pone.0285629.t006
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for the training and testing data sets of DWAtten-LSTM. The MSE has been reduced after

every epoch until converging at around epoch 155.

According to STOI, PESQ, and SDR, the following inferences are drawn. Under various

noisy situations, PESQ, STOI, and SDR values indicate that DWAtten-LSTM achieved the best

improvements in quality (PESQi), intelligibility (STOIi), and speech distortion (SDRi) as com-

pared to the competing deep learning and non-deep learning methods. The proposed DWAt-

ten-LSTM method improved the quality without degrading speech intelligibility in noisy

situations. All deep-learning methods showed repeated improvements in STOI and SDR val-

ues, which suggests the potential of deep learning for speech enhancement tasks.

The ASR systems use a magnitude spectrum of speech signals, and one would expect that

deep learning approaches would certainly improve ASR performance in noisy situations. For

ASR systems, SE algorithms operate at the front end. We have used Google ASR [48] to exam-

ine the ASR performance in terms of the WERs. The average WERs are given in Table 9,

Table 8. Dynamical-Weight vs. Non-Dynamical-Weight loss.

Algorithm Objective Measure Errors

Proposed+MSE STOI: 83%, PESQ: 2.42 3.54 × 10−4

Proposed+DW-MSE STOI: 85%, PESQ: 2.50 3.42 × 10−4

Improvements STOIi: 2.1%, PESQi: 3.3% -3.51%

https://doi.org/10.1371/journal.pone.0285629.t008

Table 7. Unmatched test scores in five noise sources at all SNRs. The results are averaged over all testing utterances.

z STOI (in%) PESQ

-5dB 0dB 5dB -5dB 0dB 5dB

4 80.92 86.46 90.88 2.163 2.503 2.81

12 80.90 86.42 90.82 2.160 2.501 2.80

24 80.70 86.12 90.01 2.145 2.489 2.77

https://doi.org/10.1371/journal.pone.0285629.t007

Fig 4.

https://doi.org/10.1371/journal.pone.0285629.g004
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which shows that LSTM and DWAtten-LSTM boosted the ASR performance. The error rates

decreased from 46.33% (noisy signals) to 13.11% (DWAtten-LSTM) and 15.73% (LSTM),

respectively. The ASR gradually decreases as the SNR increases, partly because the noise

becomes smaller. The ASR experiments aim to show the potential of the proposed RNNs and

DNNs instead of achieving state-of-the-art (SOTA) results.

4.1 Subjective evaluation

In addition, we have conducted subjective listening tests to assess the perceptual quality of

enhanced speech. The enhanced speech utterances are randomly chosen from various noise

Fig 5.

https://doi.org/10.1371/journal.pone.0285629.g005
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Fig 6.

https://doi.org/10.1371/journal.pone.0285629.g006

Table 9. WERs for different SE algorithms.

Noisy Speech DWAtten-LSTM LSTM LSTM-KF LMMSE

46.33% 13.11% 15.73% 14.97% 27.68%

https://doi.org/10.1371/journal.pone.0285629.t009
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Table 10. The subjective listener’s biodata.

Listeners L1 L2 L3 L4 L5 L6 L7 L8 L9

Age 27 29 33 36 40 40 45 48 48

Gender M M F M F F M M M

https://doi.org/10.1371/journal.pone.0285629.t010

Fig 7.

https://doi.org/10.1371/journal.pone.0285629.g007
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sources (airport, babble, factory, and restaurant) using three SNRs, which are -5 dB, 0 dB, and

5 dB. In total, 300 speech utterances are used to assess DNN, LSTM, and the proposed SE. The

participants are requested to assign a score (from 0 to 5) according to perceived speech quality.

During experiments, no speech utterance is repeated. The listening tests are conducted in an

isolated room using high-quality headphones. The data of the listeners who participated in the

subjective listening tests for speech quality are given in Table 10. Prior training sessions are

arranged to educate the listeners about the procedures.

Fig 7 shows the subjective listening tests in terms of MOS. The proposed DWAtten-LSTM

showed better MOS performance. The average MOS result at negative SNRs is higher than

2.80 (MOS�2.86 at -5 dB), which indicates significant performance. At SNR�0dB, the DWAt-

ten-LSTM exceeded the average MOS score beyond 3.0 (MOS�3.0 at SNR�0dB). The MOS

results for all listeners in the tests are averaged. The ANOVA tests for MOS at -5 dB, 0 dB, and

5 dB are [F (2, 9) = 43.4, p<0.0001], [F (2, 9) = 34.7, p<0.0001] and [F (2, 9) = 28.3, p<0.0001]

which indicate the statistical significance achieved by DWAtten-LSTM in terms of the MOS

scores. The other models (DNN and LSTM) also performed better since deep learning is able

to produce better speech quality.

4.2 Speech dereverberation

This section examined the dereverberation performance of the proposed SE. To train the SE

model, three reverberation times (0.4 sec, 0.6 sec, and 0.8 sec) are considered. A total of 100

anechoic speech utterances from the IEEE dataset [40] are used to create the training dataset.

The testing dataset contains 40 reverberant speech utterances. There is no overlap between the

speech utterances used during model training and testing. The proposed method with rever-

berant speech utterances is compared and examined for dereverberation. The results are com-

pared with the study of Wu and Wang [49], where estimated inverse filters and spectral

subtraction are used to reduce reverberation. Table 11 shows the results using STOI and

PESQ. The proposed method delivered the best STOI and PESQ scores, i.e., STOI�78.3%, and

PESQ�2.45 at RT�4 sec. The spectrograms are provided in Fig 8, where the smearing energy

produced by reverberation is considerably reduced, showing that the reverberation perfor-

mance of the proposed method is improved.

5 Conclusions

In this paper, we have proposed a monaural SE based on the attention LSTM encoder-decoder

model with a novel loss function. The proposed DWAtten-LSTM estimated the magnitude

spectrum from the noisy speech signals using an ideal ratio mask. We have compared this

model to the baseline and competing for deep learning and non-deep-learning methods for

Table 11. Performance analysis of proposed SE in reverberant situations.

Metric Method Reverberation Time

0.4 sec 0.6 sec 0.8 sec

STOI Noisy Reverb 53.1 48.5 40.2

Wu and Wang [49] 65.3 59.8 55.1

Proposed 78.3 70.1 68.4

PESQ Noisy Reverb 2.11 1.98 1.81

Wu and Wang [49] 2.32 2.00 1.92

Proposed 2.45 2.19 2.04

https://doi.org/10.1371/journal.pone.0285629.t011

PLOS ONE Causal speech enhancement

PLOS ONE | https://doi.org/10.1371/journal.pone.0285629 May 11, 2023 18 / 22

https://doi.org/10.1371/journal.pone.0285629.t011
https://doi.org/10.1371/journal.pone.0285629


speech intelligibility and quality assessment. The objective assessments are accomplished in

various noisy situations using three input SNR levels. The PESQ and SDR values indicated that

the proposed DWAtten-LSTM achieved significant gains of 0.79 (45.93%) and 6.96dB over

noisy speech. Similarly, STOI indicated that DWAtten-LSTM kept intelligibility in all noisy

situations and STOI achieved a large gain of 16.70% over the noisy speech. The subjective anal-

ysis confirmed the success of the proposed model in terms of speech quality. The results and

analysis concluded that we achieved better results in terms of speech quality and intelligibility

with the proposed DWAtten-LSTM. The attention process observations verified the inference

that extensive previous information is not vital in speech enhancement. The proposed loss

function significantly improved the model learning. Although deep learning for speech

enhancement outperformed the conventional methods with their complex network architec-

tures, yet required less computationally complex and efficient network architectures for

improved performance. The proposed DWAtten-LSTM SE algorithm has demonstrated con-

siderable performance gain as compared to the baseline LSTM and FDNN and achieved higher

performance gains when compared to the conventional SE.

Our future research will focus on further improving the quality and intelligibility by pro-

posing computationally less complex network architectures in intense unseen noises and

speakers. Moreover, phase estimation will also be included to increase the speech quality. This

study used STFT as a transformation tool for frequency domain representation; however, sev-

eral transformations are available in the literature. In future studies, these transformations

[50–53] will be used for more in-depth analysis.
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