Skip to main content
. 2023 May 11;18(5):e0285629. doi: 10.1371/journal.pone.0285629

Table 6. Comparison against non-deep learning methods.

Test Scores are averaged over five noise sources at all SNRs.

STOI (in %) PESQ SDR
Algorithm -5dB 0dB 5dB Avg -5dB 0dB 5dB Avg -5dB 0dB 5dB Avg
Noisy (UnP) 58.02 68.87 80.05 68.98 1.43 1.73 2.01 1.72 -4.73 0.13 5.07 0.13
DNN-IRM 73.94 80.06 85.39 79.79 1.83 2.23 2.61 2.22 3.84 6.40 8.50 6.25
LSTM-IRM 77.39 83.15 87.89 82.81 2.02 2.36 2.72 2.37 4.00 6.61 9.35 6.65
LLMSE 59.21 70.22 81.80 70.41 1.49 1.75 2.22 1.82 -3.43 0.18 5.32 0.69
OM-LSA 59.49 71.50 82.14 71.04 1.52 1.81 2.20 1.84 -3.88 0.21 5.51 0.61
Proposed-M 82.46 87.20 91.84 87.16 2.24 2.62 2.92 2.59 4.19 7.17 10.3 7.20
Proposed-UM 79.06 84.08 89.48 84.20 2.09 2.40 2.79 2.43 4.09 6.72 10.0 6.97
Proposed-Avg 80.76 85.64 90.66 85.68 2.17 2.51 2.85 2.51 4.14 6.95 10.2 7.09