Table 6. Comparison against non-deep learning methods.
STOI (in %) | PESQ | SDR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Algorithm | -5dB | 0dB | 5dB | Avg | -5dB | 0dB | 5dB | Avg | -5dB | 0dB | 5dB | Avg |
Noisy (UnP) | 58.02 | 68.87 | 80.05 | 68.98 | 1.43 | 1.73 | 2.01 | 1.72 | -4.73 | 0.13 | 5.07 | 0.13 |
DNN-IRM | 73.94 | 80.06 | 85.39 | 79.79 | 1.83 | 2.23 | 2.61 | 2.22 | 3.84 | 6.40 | 8.50 | 6.25 |
LSTM-IRM | 77.39 | 83.15 | 87.89 | 82.81 | 2.02 | 2.36 | 2.72 | 2.37 | 4.00 | 6.61 | 9.35 | 6.65 |
LLMSE | 59.21 | 70.22 | 81.80 | 70.41 | 1.49 | 1.75 | 2.22 | 1.82 | -3.43 | 0.18 | 5.32 | 0.69 |
OM-LSA | 59.49 | 71.50 | 82.14 | 71.04 | 1.52 | 1.81 | 2.20 | 1.84 | -3.88 | 0.21 | 5.51 | 0.61 |
Proposed-M | 82.46 | 87.20 | 91.84 | 87.16 | 2.24 | 2.62 | 2.92 | 2.59 | 4.19 | 7.17 | 10.3 | 7.20 |
Proposed-UM | 79.06 | 84.08 | 89.48 | 84.20 | 2.09 | 2.40 | 2.79 | 2.43 | 4.09 | 6.72 | 10.0 | 6.97 |
Proposed-Avg | 80.76 | 85.64 | 90.66 | 85.68 | 2.17 | 2.51 | 2.85 | 2.51 | 4.14 | 6.95 | 10.2 | 7.09 |