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Abstract
The heterogeneity of Parkinson’s disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predis-
positions and probably also the various implicated pathophysiological pathways pose a major challenge for future research 
projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including 
the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient 
autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut–brain axis and the evidence that microbial 
(viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed 
be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the 
gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity 
of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude 
that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of 
disease.
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Introduction

A disease-modifying therapy that slows or prevents progres-
sion is the single most important unmet need in the treatment 
of Parkinson’s disease (PD). However, it is increasingly rec-
ognized that there is no PD as such, but the fundamental par-
kinsonian features of what we call PD occur in a number of 
more or less distinct conditions (Obeso 2017). Of note, the 
sporadic form, which is widely denominated as idiopathic PD 
also constitutes a syndrome comprising different subtypes and 
likely different etiologies. Among the presumed mechanisms, 
the contributions of inflammatory processes, glia cells, intes-
tinal microbiota and the immunological status to the evolution 
of the disease remain largely unexplored (Ahmed et al. 2017; 
Bedarf 2017; De Miranda et al. 2022; Metta et al. 2022; Liu 
et al. 2021). Aggregation and (presumed) spreading of alpha-
synuclein (α-syn) on the other hand clearly seem to constitute 
a critical event in PD pathophysiology and the recent failure 
of different monoclonal antibodies directed against aggregated 
α-syn in two therapeutic trails left the scientific community 
somewhat puzzled (Whone 2022).

It is thus crucially important to consider the heterogene-
ity of pathways and mechanisms to get closer to the different 
causes of neuronal demise and to define targets for a given 
population of PD patients. Importantly, in the course of the 
disease over decades, targets may change over time. Brundin 
and colleagues proposed a three-stage model of disease pro-
gression, each driven by different factors (triggers, facilitators 
and aggravators and pointed out, that molecular mechanisms 
triggering the initial phases of the disease may be different 
from later stages (Johnson et al. 2019). In this model, apart 
from causative gene mutations that result in functionally 
impaired proteins, triggers encompass environmental factors, 
such as pathogens, toxins or trauma. Disease mechanisms ini-
tiated by these triggers are perpetuated by individual facilita-
tors or aggravators, i.e. mitochondrial dysfunction or systemic 
inflammatory reactions could contribute to disease progres-
sion; impaired autophagy and neuroinflammatory events may 
play a role in propagation and accelerated dysfunction. Fol-
lowing this concept, it appears plausible that inflammatory 
reactions as an example may constitute a drugable target only 
in a particular, probably early time-window and the same may 
hold true for aggregation of α-syn and other presumed targets 
in PD pathophysiology. Future therapies therefore not only 
need to consider the individual geno and molecular phenotype, 
but also the disease type and stage of individual patients.

Clinical phenotypes, pathological findings 
and genetic predispositions

While the initial disease concepts assumed a rather uniform 
clinical course of PD following the loss of dopaminergic 

innervation, recent cohort studies have confirmed that PD 
indeed exhibits high phenotypic variability (Bartl et al. 
2022). Independent analyses suggest four main clinical 
phenotypes, which at least in part seem to coincide with 
clinico-pathological findings: patients with non-tremor-
dominant postural instability and gait dominated PD 
(PIGD subtype) display more cortical Lewy bodies (LB) 
and amyloid β plaques compared with tremor dominant PD 
patients (Selikhova et al. 2009). Beyond the clinically obvi-
ous motor deterioration distinguishing these subtypes, the 
extensive spectrum of non-motor symptoms (NMS), par-
ticularly cognitive, affective, sleep-related, and autonomic 
dysfunction represents clinical challenges and may define 
additional subtypes. (Weintraub et al. 2022; Bloem et al. 
2021). Among the NMS of PD, dementia in the course of 
the disease (PDD), can lead to loss of everyday functioning, 
shortening of life expectancy due to faster progression and a 
significantly higher burden on family caregivers (Koros et al. 
2022). Unfortunately, the prognoses associated with these 
subtypes are inconsistent and over time a shift from prognos-
tically favorable phenotype to a more unfavorable subtype 
may occur—a phenomenon which could be explained by dif-
ferent individual predispositions or aggravators as outlined 
above (Lee et al. 2019; Mohl et al. 2017; Coelln et al. 2021).

Similar to the clinical phenotypes, numerous extras-
triatal pathologies have been described in recent years as 
pathophysiological correlates for NMS in addition to the 
known nigrostriatal dopaminergic denervation. With regard 
to the nervous system these include, but are not limited to 
cholinergic, serotonergic and noradrenergic pathways. The 
tremendous beneficial effects of dopamine replacement 
therapy certainly contributed to the initial focus on particu-
lar issues of dopamine metabolism and the vulnerability 
of dopaminergic neurons, but may have limited “out of the 
box “research efforts in the past. The notion that PD is by 
no means restricted to the substantia nigra pars compacta 
(SNpc) was corroborated and substantially advanced by 
Braak and co-workers’ findings and the hypothesis of an 
“ascending” pathology of Lewy bodies (LB). However, is 
not clear how LB pathology evolves over time in a given 
individual and not all patients brains display patterns of LB 
pathology, which comply with Braak’s staging: there is no 
dose-dependent correlation between Lewy pathology and 
cell loss or clinical features (Surmeier et al. 2017; Beach 
et al. 2021).

Although LB are considered hallmarks of synucleinopa-
thies, including PD, there is widespread histological het-
erogeneity with regard to their distribution. The correlation 
between LB pathology and neuronal loss is far from clear 
as is the additional role of amyloid plaques which have been 
shown to be associated with cognitive dysfunction in PDD 
and DLB (Halliday et al. 2011). Recently harmonized con-
sensus criteria employed the preferential distribution of LB 
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pathology in the neocortex, the limbic system, or the brain-
stem in correlation with the clinical PD or PDD presentation 
(Attems et al. 2021).

Mutations in different combinations can produce differ-
ent phenotypes with different rates of progression (Iwaki 
et al. 2019). In addition to a specific PD susceptibility, con-
comitant diseases may also contribute to the observed het-
erogenous patterns of symptoms and progression rates with 
implication for therapeutic approaches (Liu et al. 2021). A 
D2 receptor polymorphism can co-determine the response to 
rasagiline and an α-syn polymorphism or a glucocerebrosi-
dase (GBA) mutation can co-determine the efficacy of deep 
brain stimulation (Krüger et al. 2017; Masellis et al. 2016; 
Ligaard et al. 2019). If we assume that the degenerative pro-
cess is indeed initiated at a given timepoint in an individual’s 
lifetime by a trigger, it is conceivable that genetic variability 
and exogenous factors (facilitators and aggravators) underlie 
the inter-individual differences with regard to the spectrum 
of symptoms and their progression.

Recent advances in genetics, in particular the conduction 
of “genome-wide association studies” (GWAS) in ever larger 
and more diverse populations of patients (Nalls et al. 2019) 
and controls have allowed a deeper insight into the genetic 
underpinnings of apparently sporadic PD. These studies sug-
gest that overall heritability of PD accounts for 25–30%. 
From these data, so-called polygenic risk scores (PRS) can 
be constructed that can help predict an individual’s risk of 
developing PD. PRS are calculated by combining informa-
tion from multiple genetic variants that have been found to 
be associated with a particular trait or disease in a GWAS. In 
the case of PD, hundreds of genetic variants have been iden-
tified that contribute to disease risk. To construct a PRS, a 
lead single nucleotide polymorphism (SNP) from each asso-
ciated region is assigned a “weight” based on its effect size 
as determined by the association study. This information is 
then combined into a single score to predict an individual’s 
risk for PD.

In addition to predicting an individual's disease risk, PRS 
can theoretically also be used to study the relative contribu-
tion of different cellular pathways and function to disease 
pathogenesis in a given individual. For example, PRS can 
be constructed exclusively from variants linked to one of 
several incriminated cellular pathways, like the lysosomal-
endosomal protein degradation pathway or mitochondrial 
maintenance and quality control. However, the potential of 
such studies is still limited, as in most cases, the causative 
genes and variants in a genomic region associated with an 
altered risk for PD are still unknown, i.e. only a very limited 
number of genes and loci can be reliably included at this 
point. More research is needed to further dissect the high 
phenotypic variability of PD and to define reliable subtypes, 
based on clinical phenotyping, biomarkers, or -omics find-
ings. In addition to canonical genetics, epigenetic changes 

will have to be considered as well (Wüllner et al. 2016). Sev-
eral approaches are being explored in observational cohorts, 
including follow-up of cohorts with certain prodromal fea-
tures such as hyposmia, rapid eye movement sleep behav-
ior disorders, or IPD gene carriers (Mahlknecht et al. 2022; 
Marini et al. 2020), but, as of yet, no clear-cut approach has 
emerged.

Pathophysiological concepts, pathways 
and mechanisms

ɑ‑synuclein and Lewy bodies

ɑ-syn pathology is not specific for sporadic PD but is found 
also in Multiple Systems Atrophy (MSA) and Alzheimer 
Disease (AD) (Kaufmann and Goldstein 2010; Jellinger 
2020). In contrast, there is no evidence for the generation 
of LB in postencephalitic Parkinsonism (Cadar et al. 2021; 
Ling et al. 2016) and certain familial forms of PD like PINK 
1 autosomal recessive early PD (Takanashi et al. 2016) and 
some cases of LRRK2 (PARK8) late onset PD (Pont-Sunyer 
et al. 2017). Thus, LB pathology not necessarily coincides 
with clinical Parkinsonism. Neurodegeneration of the SNpc 
might precede LB pathology and whether LB pathology cor-
relates to dopaminergic cell loss in both, the SN and the 
striatum has been questioned (Beach et al. 2021; Parkkinen 
et al. 2011). In addition, only 30% of patients with a neuro-
degeneration disorder were diagnosed with ɑ-syn positive 
dorsal nuclei of the vagus, SN and/or basal forebrain nuclei 
(Parkkinen et al. 2005). In another study the dorsal nucleus 
of the vagus was preserved in about 7–16% of PD (Jellinger 
2019 for review). Mori et al. (2006) studied the relationship 
between accumulation of ɑ-syn and tyrosine hydroxylase 
(TH) immunoreactivity. These authors showed a close rela-
tionship of ɑ-syn accumulation, and loss of both TH-IR and 
neurons. 10% of pigmented neurons in the SN and 54.9% 
of those in the LC contained abnormal ɑ-synuclein aggre-
gates. Furthermore, 82.3% of pigmented neurons bearing 
ɑ-syn aggregates in the SN and 39.2% of those in LC lacked 
TH-IR (Mori et al. 2006). The heterogeneity of sporadic PD 
presumably also includes a variable participation of ɑ-syn 
at the pathological basis. To the best of our knowledge, LB 
are mature aggresomes, and therefore per se constitute a 
protective response of neurons to the accumulation of α-
syn aggregates and numerous other proteins and lipids, i.e. 
mitochondrial membrane debris in particular. Aggresomes 
are formed at the microtubule-organizing center whenever 
transport of aggregates supersedes autophagic degradation 
(Kopito 2000). The process of aggresome maturation and LB 
formation involves posttranslational modifications and inter-
actions with membranous intracellular structures, and does 
entail a series of functional cellular deficits. Consequently, 
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LB cannot be considered unequivocally protective (Mahul-
Mellier et al. 2020).

Interestingly, experimental studies using MPTP demon-
strated LB-like aggregations only after long-term MPTP 
application but not after acute MPTP intoxication (Burns 
et al. 1984; Meredith and Rademaker 2011), suggesting that 
α-syn pathology in sporadic PD could represent a second-
ary phenomenon, triggered by aberrant metabolic processes, 
which had been induced earlier. In addition to mitochondrial 
dysfunction, the most recent implication of α-syn in immune 
responses is interesting. Upregulation of α-syn following 
immune activation has been suggested as a possible trigger 
of PD, after earlier findings of Beckham and co-workers, 
showing that α-syn expression restricts RNA viral infections 
in the brain (Kasen et al. 2022; Beatman et al. 2015).

Misfolding, aggregation and cellular quality control 
mechanisms

Misfolding and aggregation of proteins are common phe-
nomena in neurodegeneration and both a propensity to 
aggregate in the first place and reduced capacity to discard 
misfolded proteins properly are important. Genetic deficits 
in either systems can trigger PD, as can multiplications or 
mutations of α-syn, which increase the likelihood of for-
mation of toxic fibrils. The complex issue, whether α-syn 
takes up a soluble tetrameric form in the first place and that 
conversion into monomeric α-syn constitutes the first step 
towards oligomeric intermediates and eventually fibrillar 
aggregates has not been finally resolved (Nuber et al. 2018). 
The cellular quality control mechanisms include the ubiqui-
tin–proteasome system and the auto-lysosomal system. Het-
erozygous (recessive) mutations in the lysosomal enzyme 
Glucocerebrosidase (GBA) gene constitute the most com-
mon genetic predisposition towards PD. Several steps are 
involved in aggregate clearance, starting with the recogni-
tion of misfolded proteins by ubiquitin ligases. Ubiquitinated 
monomers are degraded by the proteasome whereas larger 
accumulations of misfolded proteins require autophagy for 
degradation. In autophagy, ubiquitinated proteins are rec-
ognized by adaptor proteins, like p62 which interact with 
pre-autophagosomal membranes by binding to LC3. The 
autophagic membrane subsequently engulfs the aggregate 
and degradation occurs by fusion with lysosomes. In most 
cells, small aggregates are bound to dynein motor proteins 
through a second set of adaptor proteins, and thereby con-
centrated at the microtubule-organizing center. The subse-
quent steps of auto-lysosomal degradation are compartmen-
talized particularly in neurons: fusion to lysosomes occurs 
in the soma only. Autophagosomes formed in the distal axon 
need to be transported for degradation, which explains the 
presence of axonal α-syn deposits and the importance of 
transport deficits for PD pathogenesis.

The gut–brain axis and subtypes of disease

The peripheral autonomic nervous system is uniquely 
involved in LB disorders. Aggregated α-syn have been 
found in the enteric nervous system up to 20 years before 
diagnosis (Stokholm et al. 2016). The dual-hit hypothesis 
proposes that α-syn aggregation is triggered in the enteric 
nervous system and that it then spreads via the vagus nerve 
to the dorsal motor nucleus in all cases of PD (Hawkes et al. 
2007). In support, two epidemiology studies showed that 
full truncal vagotomy in humans reduced subsequent risk 
of PD by 4050% (Svensson et al. 2015; Liu et al. 2017). 
Animal studies confirm that gut-injected α-syn seeds leads 
to spreading of α-syn pathology and neurodegeneration in 
spatio-temporal patterns, which parallel the evolution of 
human PD (Berge et al. 2019; Kim et al. 2019).

It has been speculated that microbiome factors could be 
involved in initiating the first α-syn aggregation. The micro-
biome is altered in PD at the prodromal stage (Heinzel et al. 
2021). Certain bacteria, which are commonly present in the 
gut microbiome, can produce amyloid proteins such as curli. 
These proteins can initiate enteric α-syn aggregation in ani-
mal models (Chen et al. 2016). Several studies have shown 
that PD patients show signs of leaky gut syndrome, which 
could facilitate that detrimental microbiome-derived trigger 
factors, such as curli, can get into contact with the enteric 
nervous system (Forsyth et al. 2011). Inflammatory bowel 
disorders also increase the risk of subsequent PD, which may 
suggest that inflammation of many different types and ori-
gins may promote α-syn aggregation and therefore increase 
the risk of PD (Peter el al. 2018; Villumsen et al. 2019). 
However, disentangling the cause and effect of gut–brain 
axis factors in PD is complicated by the extended prodromal 
phase, which can span more than 10–20 years (Savica et al. 
2010). For instance, it is possible that leaky gut syndrome 
and alterations in the microbiome may be a secondary cause 
of PD, and not an upstream trigger of α-syn aggregation.

Recently, it has been hypothesized that LB disorders, 
including PD, DLB, iRBD, and PAF, can be divided 
according to a body-first and brain-first dichotomy (Borg-
hammer et al. 2021; Horsager et al. 2020). In body-first 
patients, LB pathology is triggered in the gut and spreads 
via the vagus and sympathetic spreading route to sympa-
thetic ganglia and trunk. Such patients therefore develop 
autonomic symptoms and neurodegeneration, and RBD 
before Parkinsonism emerges. In brain-first patients, LB 
pathology is triggered in the olfactory bulb and/or amyg-
dala and reaches the SN very rapidly. These patients there-
fore have a shorter prodromal phase and few or no non-
motor symptoms before diagnosis. This disease model is 
supported by clinical imaging studies, which shows that 
patients who developed RBD years before diagnosis, 
show marked loss of sympathetic cardiac denervation and 
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parasympathetic cholinergic innervation of the gut years 
before the SN starts to degenerate. In contrast, de novo 
PD patients, who are RBD-negative at diagnosis, gener-
ally show normal or near-normal sympathetic and para-
sympathetic innervation of peripheral organs, but marked 
nigrostriatal denervation (Knudsen et al. 2018; Horsager 
et al. 2020; Nishikawa et al. 2022; Kim et al. 2017). This 
dichotomy is supported by brain bank studies, which have 
shown that the large majority of cases with very early inci-
dental LB disease can be categorized into two types. One 
group has pathology in the amygdala and olfactory bulb, 
but no pathology in the lower brainstem or autonomic 
system. The other group has pathology in the autonomic 
systems and lower brainstem but little or no pathology in 
the amygdala and olfactory bulb (Tanei et al. 2021; Raunio 
et al. 2019; Borghammer et al. 2021, 2022).

LB disorders are complex and heterogeneous, so a 
dichotomous system is potentially an oversimplification, 
which was recently pointed out (Fearon et al. 2021; Borg-
hammer and Horsager 2021). Yet, the body-first vs. brain-
first model is based on an assumption, which makes this 
particular dichotomy logically consistent. It is proposed 
that LB pathology in most patients starts in a single loca-
tion, perhaps inside a single neuron, and then spreads from 
there. Since the nervous system by definition has two main 
compartments, the peripheral and the central, it follows 
that the first pathology will arise in either the peripheral 
compartment (gut) or the central compartment (olfac-
tory bulb or amygdala). Thus, whether or not this disease 
model is an oversimplification is dependent on the veracity 
of the underlying assumption of a single-location origin.

Interestingly, the idea of a single-location origin allows 
the body- vs. brain-first model to explain why some 
patients with LB disease have asymmetric Parkinson-
ism (Borghammer 2021). The connectome in mammalian 
brains is highly lateralized. Ipsilateral connections out-
number contra-lateral, commissural connections 100:1. 
Thus, if LB pathology arises in one olfactory bulb and 
spreads proportional to connection strength, it will lead 
to degeneration in the ipsilateral SN first. Thus, brain-first 
patients will generally show asymmetric dopamine loss. 
However, the vagus and sympathetic innervation of the gut 
show left–right overlap in innervation patterns. Thus, a 
single origin site in the gut leads to more symmetric prop-
agation through the left and right vagus, simultaneously. In 
body-first patients, the SN is therefore affected in a more 
symmetric fashion and such patients should therefore have 
more symmetric dopamine loss on imaging. These patterns 
of asymmetric vs. asymmetric dopamine loss in brain first 
vs. body-first patients, respectively, fits well with in vivo 
clinical imaging data (Knudsen et al. 2021; Walker et al. 
2004; Cao et al. 2020).

Oxidative stress, mitochondria, iron and melanin

Oxidative stress, i.e. a dysbalance between the produc-
tion of reactive oxygen species (ROS) and the biological 
system's ability to detoxify the reactive intermediates has 
been implicated in the progression of PD and other neuro-
degenerative diseases, in particular AD and Motor Neuron 
Disease (MND). In PD reduced glutathione (GSH) in sub-
stantia nigra tissue was identified 30 years ago and sparked 
multiple lines of research into mechanisms of ROS balance 
(Sian et al. 1994). We and others have shown that deple-
tion of GSH in animal models of PD renders dopaminergic 
neurons of the substantia nigra more vulnerable and that a 
chronic loss of GSH has severe consequences for mitochon-
drial function (Wüllner et al. 1999). Interestingly, these find-
ings implicate astrocytes, which are indispensable for GSH 
production and supply to neurons into the pathophysiologi-
cal concept of PD. On the other hand, subsequent experi-
ments revealed, that loss of GSH alone is not responsible 
for nigrostriatal damage in PD. Rather, GSH depletion may 
enhance the susceptibility of substantia nigra neurons to 
destruction by endogenous or exogenous toxins (Toffa et al. 
1997).

Oxidative stress is further enhanced by the metabolites 
of dopamine. Under physiological conditions cytoplasmic 
dopamine in part is metabolized by monoamine oxidase 
in the outer mitochondrial membrane to form 3,4-dihy-
droxyphenylacetaldehyde (DOPAL). DOPAL via aldehyde 
dehydroxygenase (ALDH) is converted to 3,4-dihydroxy-
phenylacetic acid (DOPAC). In PD, ALDH A1A is nearly 
absent and it has been suggested that an increase of DOPAL 
increases the risk neurodegenerative processes (Goldstein 
et al. 2013). DOPAL is more than 1000 times as potent as 
dopamine to induce mitochondrial damage. Hydrogen per-
oxide, another metabolite of oxidative deamination pro-
cesses, exerts toxicity via reactions with DOPAL to form 
hydroxyl radicals and reacts with iron, increasing the iron-
induced oxidative stress (Goldstein et al. 2013). Hydroxyl 
radicals peroxidate lipid membranes and the lipid peroxida-
tion product 4-hydroxynonenal inhibits ALDH, leading to 
further accumulation of DOPAL. Both, DOPAL and iron-
induced oxidative stress are prominent in their reaction with 
ɑ-syn. DOPAL has been reported to potently oligomerize 
ɑ-syn and iron-induced oxidative stress might oxidase the 
4-tyrosine rests of ɑ-synuclein, so that structural changes 
of the molecule hinder any proteasomal degradation (Burke 
et al. 2008; Riederer et al. 2021). Inhibition of monoamine 
oxidase therefore represents a valuable treatment option to 
decrease both DOPAL- and hydrogen peroxide formation 
and to reduce the burden of ROS leading to neurodegenera-
tion (Naoi et al. 2020).

Iron and neuromelanin (NM) show a significant increase 
in the SNpc with age; aging is a major risk factor for PD and 
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iron is significantly increased in the SNpc of PD patients 
(Foley et al. 2022, for review). The role of NM as a trigger 
of PD is of current interest as ɑ-syn and NM are promi-
nent hallmarks in the pathology of PD and ɑ-syn has been 
detected in NM isolated post mortem from PD SN (Tribl 
et al. 2005). NM exerts protective action by quenching tran-
sition metals, xenobiotics, lipids and various proteins but 
also contributes to degenerative processes under special 
intraneuronal conditions (Moreno-Garcia et al. 2021). The 
binding capacity of NM is limited and changes in the com-
position of the cytoplasmic fluid may release iron from NM, 
causing an increase of redox-active iron and iron-induced 
oxidative stress. NM increases with age and NM containing 
catecholaminergic neurons of the SN and the locus coer-
uleus are particularly vulnerable in PD (Cai et al. 2023). 
It is assumed that NM (which is absent in the SN of rats) 
could reduce the toxicity of iron. The importance of mito-
chondrial function and impairment for ROS generation and 
the pathophysiology of PD has been extensivly reviewed in 
several excellent recent publications (for review: Rehman 
et al. 2023) and has also been linked to important steps in 
neuroinflammation (Han and Le 2023; Magalhães, Cardoso 
2023).

As of yet however, clinical trials of antioxidants failed to 
prove efficacious in neurodegenerative diseases and a recent 
clinical study of the iron-chelator deferiprone even led to 
worsening of the verum treated PD patients (Devos 2020) 
and again the question arises, whether the inability to show 
disease modification in PD is due to preclinical research 
providing misleading encouragement.

Insulin and incretin signaling pathways

Epidemiological studies suggest that diabetes and hyper-
glycemia are associated with an increased incidence and 
severity of PD. Early case–control studies suggested a 
decreased risk for type 2 diabetes mellitus (T2DM) to 
develop PD (Powers et al. 2006). However, larger and 
more recent cohort studies have unequivocally shown that 
T2DM is associated with an increased risk of developing 
PD (Hu et al. 2007). A current meta-analysis including all 
above mentioned studies revealed an overall effect estimate 
with 95% confidence interval of 1.21 (1.07, 1.36) (Chohan 
et al. 2021). Diabetes was associated with motor and cog-
nitive progression in PD patients. In addition to diabetes, 
increased glycated hemoglobin (HbA1c) was associated 
with an unfavorable motor outcome in different PD cohorts 
(Zittel et al. 2021). Unsurprisingly, prevalent diabetes 
and high HbA1c levels were both linked with increased 
neuroaxonal damage quantified by neurofilament light 
chain (NfL) levels (Uyar et al. 2022). Different mecha-
nisms might underlie the increased neurodegeneration and 
aggravated PD pathology. DM has been associated with 

lower striatal dopamine transporter binding and increased 
tau pathology, both in patients with diabetes and w/o PD 
(Pagano et al. 2018). Altered glucose homeostasis could 
lead to mitochondrial dysfunction, increased endoplasmic 
reticulum (ER) stress, inflammatory processes and dys-
regulated protein degradation. Concerning PD specific 
mechanisms, insulin resistance and hyperglycemia can 
decrease dopamine levels and release, lead to dopaminer-
gic dysfunction and decrease striatal dopamine turn-over 
(Montefusco et al. 1983). Among anti-diabetic drugs, most 
studies have shown neuroprotective effects of metformin 
and especially glucagon-like-peptide 1 (GLP-1) agonists. 
In different PD mouse models, metformin attenuated the 
degeneration of the substantia nigra and improved motor 
deficits, probably through a positive effect on autophagy 
(Lu et al. 2016). In the last decade research has focused on 
the GLP-1 pathway as a distinct therapeutic target in PD.

GLP-1 is an endogenous hormone secreted from intesti-
nal cells and amplifies the insulin release upon food intake. 
GLP-1 binds to respective receptors which are expressed in 
several organs like gut, heart, lung, kidney and brain. GLP-1 
signaling can increase neurogenesis, reduce apoptosis, pro-
tect neurons from oxidative stress and reduce neuroinflam-
mation (Chen et al. 2023 for review). Subsequently, GLP-1 
is enzymatically degraded by dipeptidy peptidase-4 (DPP-4). 
Consequently, GLP-1 mimetics (i.e. GLP‑1 agonists) and 
enhancers (i.e. DPP-4 inhibitors) have been developed and 
approved for use in T2DM patients. Interestingly, a pop-
ulation-based cohort study revealed that PD incidence in 
patients with diabetes might vary according to their anti-
diabetic treatment and that especially the use of GLP‑1 ago-
nists and/or DPP-4 inhibitors are associated with a lower PD 
incidence (Brauer et al. 2020). Among approved GLP-1 ago-
nists, exenatide has emerged as a promising disease-modi-
fying drug in PD (Athauda et al. 2017). In a randomized, 
double-blind, placebo controlled trial, patients with mod-
erate stage PD treated with exenatide 2 mg once weekly 
for 48 weeks had an Movement Disorders Society Unified 
Parkinson’s Disease Rating Scale (MDSUPDRS) part 3 
score of 3.5 points less compared with the placebo group 
(28781108). Recruitment for the corresponding phase 3 trial 
with exenatide over a period of 2 years has been completed 
and results are expected in 2024. Clinical trials evaluating 
GLP-1 signaling are increasing (McFarthing et al. 2022). 
The clinical trial database reveals in addition to studies with 
exenatide lists studies with other GLP-1 agonists (liraglutide 
and semaglutide), which are or are going to be evaluated in 
PD patients. Similar to exenatide, liraglutide and semaglu-
tide conferred protective effects in rodent PD models with 
6-hydroxydopamine (6OHDA), 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and human A53T α-synuclein 
transgenic mice (Zhang et al. 2019). Despite its astonish-
ing effects in preclinical studies and clinical trials, the 
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underlying protective mechanisms of GLP-1 in PD remains 
unclear at the moment.

As the insulin/Insulin receptor pathway plays a major role 
in the etiopathogenesis of cognitive decline and particular 
in AD it has been speculated that disturbance of this path-
way is of particular importance in PDD (Salkovic-Petrisic 
et al. 2013).

T‑cell autoimmunity

T-cell autoimmunity constitutes the most recent addition to 
the collection of factors influencing—and potentially trig-
gering—a-syn pathology and PD. In a seminal paper, Sulzer 
and colleagues found that a-syn epitopes are displayed by 
the major histocompatibility complex and initiate a T-cell 
response in patients with PD (Sulzer et al. 2017). Specifi-
cally, IL-17 producing T lymphocytes mediated neuronal 
cell death in a combined model of patient and stem cell 
derived neurons with autologous T cells. Collectively, these 
findings indicate that the T-cell response might contribute 
to pathogenesis in PD. Importantly, this offers targets for 
protective interventions, like the FDA-approved anti-IL-17 
antibody, secukinumab (Sommer et al. 2018).

Resilience

One of the most intriguing questions is why neurodegen-
erative diseases, such as PD, occur largely in an aging 
population. The contribution of the natural aging process to 
neurodegeneration and the mechanisms which are lost over 
time that confer resilience to degeneration at younger age 
are unknown. Remarkably though, sex seems to confer neu-
roprotection: many neurodegenerative diseases, including 
PD, have a male predominance and it is likely that female 
individuals carry increased resilience (Moisan et al. 2016). 
Evidence from C. elegans suggests that the knockout of spe-
cific microRNA (mir-2) can attenuate α-syn neurotoxicity, 
suggesting that it’s molecular targets could act as neuropro-
tective modulators (Gaeta et al. 2022). In Drosophila, sex- 
and age-related differences in vulnerability of dopaminergic 
(DAergic) neurons could be related to the expression of the 
vesicular glutamate transporter (VGLUT). Male Drosoph-
ila show a stronger loss of DAergic neurons with age com-
pared to females. Interestingly, females have higher levels of 
VGLUT expression in DAergic neurons, which is also true 
for humans. Resilience in DAergic neurons could thus be 
modulated by VGLUT, which could also represent an inter-
esting therapeutic strategy (Buck et al. 2021). In C57BL/6 
mice, DAergic neuron firing decreases with age in males, 
whereas it is not affected in females (Howell et al. 2020). 
Interestingly, expression of PARK2 increased in males, 
which could contribute to this selective vulnerability. Not all 
findings observed in short-lived animals, such as C. elegans, 

Drosophila or mice can be translated to humans. Neverthe-
less, these molecular examples showcase the possibility to 
not only interact with pathology itself, but also exploit pro-
tective mechanisms to modulate neurodegeneration.

Conclusions

The discussion of the heterogeneity of symptoms and patho-
physiological mechanisms is a re-occuring, well-known 
topic not only in PD and other neurological conditions. 
Many other medical conditions have attracted “splitters and 
lumpers” for different, albeit well taken reasons (Espay et al. 
2020).

A particular line of thought may be worth to be (re-)con-
sidered (again). The exploration of the mechanisms impli-
cated in the various cascades of neurodegeneration outlined 
above may have led “off track” and we might have missed 
an “elephant in the room”: the exogenous infectious agents 
which might trigger sporadic PD in susceptible individu-
als upon entry via the olfactory bulb (brain first) or the gut 
(body-first) (Borghammer et al. 2021; Horsager et al. 2020). 
Viral and microbial agents have been reported to produce 
molecular hallmarks of neurodegeneration, such as the 
deposit of misfolded protein aggregates, oxidative stress, 
deficient autophagic processes and synaptopathies (De Chi-
ara et al 2012). The activation of inflammatory processes 
and host immune responses causes chronic damage resulting 
in alterations of neuronal function and viability. Midbrain 
dopamine neurons are believed to be particularly susceptible 
to inflammation and recent biomarker studies indeed sup-
port an ongoing systemic inflammation in PD (Johnson et al. 
2019; Yacoubian et al. 2023).

Convincing experimental evidence for a post-infectious 
cascade of events was provided as early as 2009, when Jang 
and Co-workers demonstrated that H5N1 influenza virus can 
enter the central nervous system and induce neuroinflamma-
tion and neurodegeneration (Jang et al. 2009). They showed 
that the virus traveled from the peripheral nervous system 
into the CNS to higher levels of the neuroaxis in line with 
Braak’s hypothesis of an ascending progression of pathol-
ogy. In regions infected by H5N1 virus, activation of micro-
glia, α-syn phosphorylation and aggregation persisted after 
resolution of the acute infection and a significant loss of 
dopaminergic neurons in the SNpc was noted after infection.

The currently available evidence on viral-induced Parkin-
sonism with a focus on potential pathophysiological mecha-
nisms and clinical features and the evidence of viral infec-
tions as a risk factor for developing PD has recently been 
reviewed by Chaudhuri and co-workers (Leta et al. 2022). 
It is conceivable that particular agents (among them prob-
ably neurotropic viruses) could initiate neurodegenerative 
disorders of protein aggregation, including PD. Very recent 
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findings even pointed to upregulation of α-syn following 
immune activation, suggesting that similar to what is being 
discussed in multiple sclerosis, a viral infection might be a 
necessary but not necessarily a sufficient insult for the ini-
tiation of PD (Kasen et al. 2022). Recently, this discussion 
was fueled by the COVID-19 pandemic and the question has 
been raised whether SARS-CoV-2 could be a trigger for neu-
rodegeneration (reviewed in Lingor et al. 2022). The above 
outlined heterogeneity including the various pathophysi-
ological pathways of sporadic PD in the course of disease 
might thus reflect the individuals’ specific predisposition and 
immunologic reactions towards the initial culprit.
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