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BACKGROUND: The role of chronic exposure to ambient air pollutants in increasing COVID-19 fatality is still unclear.
OBJECTIVES: The study aimed to investigate the association between long-term exposure to air pollutants and mortality among 4 million COVID-19
cases in Italy.
METHODS: We obtained individual records of all COVID-19 cases identified in Italy from February 2020 to June 2021. We assigned 2016–2019
mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10 lm (PM10), PM with aerodynamic diameter ≤2:5 lm (PM2:5), and
nitrogen dioxide (NO2) to each municipality (n=7,800) as estimates of chronic exposures. We applied a principal component analysis (PCA) and a
generalized propensity score (GPS) approach to an extensive list of area-level covariates to account for major determinants of the spatial distribution
of COVID-19 case–fatality rates. Then, we applied generalized negative binomial models matched on GPS, age, sex, province, and month. As addi-
tional analyses, we fit separate models by pandemic periods, age, and sex; we quantified the numbers of COVID-19 deaths attributable to exceedances
in annual air pollutant concentrations above predefined thresholds; and we explored associations between air pollution and alternative outcomes of
COVID-19 severity, namely hospitalizations or accesses to intensive care units.

RESULTS: We analyzed 3,995,202 COVID-19 cases, which generated 124,346 deaths. Overall, case–fatality rates increased by 0.7% [95% confidence
interval (CI): 0.5%, 0.9%], 0.3% (95% CI: 0.2%, 0.5%), and 0.6% (95% CI: 0.5%, 0.8%) per 1 lg=m3 increment in PM2:5, PM10, and NO2, respectively.
Associations were higher among elderly subjects and during the first (February 2020–June 2020) and the third (December 2020–June 2021) pandemic
waves.We estimated ∼ 8%COVID-19 deaths were attributable to pollutant levels above theWorld Health Organization 2021 air quality guidelines.
DISCUSSION: We found suggestive evidence of an association between long-term exposure to ambient air pollutants with mortality among 4 million
COVID-19 cases in Italy. https://doi.org/10.1289/EHP11882

Introduction
The COVID-19 pandemic is one of the most critical public health
crises the world has met in the contemporary age: as of 6
February 2023, >750million cases and >6:8million deaths have
occurred worldwide.1 Of them, a total of 25,453,789 confirmed
cases of COVID-19 (42,098 cases per 100,000), and 186,833
deaths (309 deaths per 100,000) have been recorded in Italy,
ranking it ninth highest in the world in number of cases, and the
sixth highest in number of deaths.1

When the COVID-19 pandemic reached Europe, the first and
most affected area was northern Italy, incidentally one of the
most polluted regions on the continent. Because the same pattern
was observed in China, this co-occurrence of a high number of
COVID-19 deaths and high levels of atmospheric pollution con-
tributed to generating the hypothesis that the spread of SARS-
CoV-2 and the severity of COVID-19 disease might be enhanced
by high atmospheric pollution.2–4

However, most epidemiological studies trying to associate
long-term air pollution exposure with SARS-CoV-2 incidence or

COVID-19 poor prognosis were based on geographical correla-
tions with low spatial resolution and were not designed to elicit
possible causal associations.5,6 This approach was taken in several
large-scale nationwide studies conducted in the United States,
England, and Germany that reported associations between average
air pollution levels in the years before the pandemic and COVID-
19 disease and case fatality.7–10 These studies were based on large
spatial units (city, county, province, state) and accounted for some
area-level covariates; however, they did not adequately control for
confounding from spatial-temporal patterns of air pollution and
COVID-19 health outcomes. As clearly pointed out by Villeneuve
and Goldberg, these studies were affected also by several other
potential fallacies, including: misclassification and underreporting
of incidence and mortality of COVID-19; not accounting properly
for the differences of jurisdictions on the pandemic curve; not
accounting for physical distancing and other public health inter-
ventions; serious problems from clustering of disease; possible
issues with spatial-temporal variations in the strains of COVID-19
that may affect sequelae differently; not being able to deal with
other determinants of COVID-19 mortality, especially occupation
and socioeconomic status; and spatial-temporal assignment of air
pollution correlatingwith socioeconomic status.5

Only a few recent studies have addressed some of these issues.
They were large-scale investigations such as the nationwide study
in England based on 32,844 small-area units of analysis11; an
individual-level study conducted in Mexico City, Mexico12;
population-based cohort studies in Catalonia, Spain,13 and Rome,
Italy14; a prospective cohort of SARS-CoV-2 cases in Ontario,
Canada15; a UK Biobank-based study16; and a statewide,
population-based study in California.17

The objectives of the EpiCovAir mortality study, coordinated
by the National Institute of Health (ISS) and the National System
for the Environmental Protection (ISPRA-SNPA), was to investi-
gate the association between long-term exposure to particulate
matter (PM)with aerodynamic diameter≤10 lm (PM10), PMwith
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aerodynamic diameter ≤2:5 lm (PM2:5), and nitrogen dioxide
(NO2), with mortality among the entire population of COVID-19
cases identified in Italy from February 2020 to June 2021. To over-
come some of the limitations of previous studies, we developed a
fine-scale spatiotemporal machine-learning model for exposure
assessment, we adopted a causal modeling framework to account
for potential confounding of individual and contextual variables, we
considered multiple interaction terms between temporal and spatial
components, we compared effect estimates across pandemic waves,
and we estimated associations with hospitalizations and accesses to
intensive care units as secondary outcomes. Last, we estimated the
COVID-19 deaths attributable to annual air pollutant concentrations
exceeding theWorld Health Organization (WHO) air quality guide-
lines (AQG) or the EuropeanUnion (EU) limit values.

Methods

COVID-19 Surveillance Data
The national COVID-19 surveillance system is the official source
of records of COVID-19 cases in Italy (https://www.epicentro.
iss.it/en/coronavirus/sars-cov-2-integrated-surveillance-data). This
system provides individual records of all subjects who tested posi-
tive for SARS-CoV-2 through reverse transcription polymerase
chain reaction (starting from 20 February 2020) or by antigen test
for SARS-CoV-2 infection confirmed in a regional authorized lab-
oratory or pharmacy (starting from 15 January 2021), for a total of
n=4,170,474 cases registered in Italy up to 16 June 2021. As part
of the ISS COVID-19 surveillance system, for each subject infor-
mation was available on age (at time of COVID-19 diagnosis),
sex, municipality of residence (city/town where the patient resided
at the time of diagnosis), date of testing, presence of symptoms at
onset (distinguished as asymptomatic: no apparent signs or symp-
toms of disease; paucisymptomatic: general mild symptoms, such as
generalmalaise, low-grade fever, and tiredness but no clear signs of dis-
ease; mild: clear signs and symptoms of disease, such as dry cough and
shortness of breath, but not severe enough to require hospitalization;
severe: clear signs and symptomsof disease, such as respiratorydisease,
and severe enough to require hospitalization; and critical: clear signs
and symptoms of disease and severe enough to require admission to an
intensive care unit), hospitalization (whether the patient was admitted
following the COVID-19 diagnosis), access to intensive care unit
[whether the personwas transferred to an intensive care unit (ICU) dur-
ing the index hospitalization], and vital status at the end of follow-up
(death or recovery).18 According to Italian guidelines, based on indica-
tions from theWHO, a death was considered related to COVID-19 if it
occurred in the presence of a clinical and instrumental picture sugges-
tive of COVID-19, in the absence of a clear cause of death different
fromCOVID-19 (e.g., road accident), and in the absence of a complete
clinical recovery from the disease.19Weexcluded all recordswithmiss-
ing information on age, sex, municipality of residence or area-level
covariates [n=44,156 (see later section titled “Area-Level Contextual
Covariates”)]; health care professionals (n=131,003); and municipal-
ities with <3 cases (n=113), for a total of 3,995,502 cases (124,346
deaths) included in the analysis (Figure S1), equal to 95%of the original
population. Health care professionals were excluded because theywere
considered at much higher risk of being infected by and potentially
dying fromCOVID-19, regardless their environmental exposures.

We had no detailed data on vaccines; however, the vaccina-
tion campaign started in Italy only at the end of January 2021.
Therefore, there is minimal overlap with our study period.

Air Pollution Data
Chronic exposure to ambient air pollution was assigned to the
municipality of residence of each COVID-19 case based on a

previously developed spatiotemporal exposure model that pre-
dicted mean concentrations of PM10, PM2:5, and NO2 for each
square kilometer of the Italian territory during 2016–2019.20
Specifically, we collected daily concentrations of the air pollutants
from ∼ 500 monitoring stations in Italy and trained a machine-
learning model, the random forest, using spatiotemporal (disper-
sion models, satellite-based aerosol optical depth, air temperature,
and other meteorological parameters from Copernicus, vegetation
indices), as well as spatial (elevation, road network, land cover,
population density administrative regions, light-at-night) predic-
tors. The models were carefully cross-validated by partitioning the
monitors into training and testing sets. Finally, the model output
was extrapolated to all 1 × 1-km grid cells of Italy and all days in
2016–2019.20 From these estimates, we derived 2016–2019
mean concentrations at each municipality (n=7,800) by averag-
ing the daily values of all the 1-km2 grid cells intersecting the
municipality with weights proportional to the population resid-
ing in each cell (population-weighted exposures). We could not
go back beyond 2016 (because estimates from the spatiotempo-
ral model were available only for the latest period), but we
assume that the spatial distribution of 2016–2019 population-
average pollutants adequately captured the chronic exposure of
the study population.

Area-Level Contextual Covariates
We collected data on 54 municipality-level variables classified
into five main domains aimed at describing the most relevant
determinants of the spatial distribution of COVID-19 cases and
deaths (Table S1):

1. Municipality characteristics: a set of 12 variables related to
municipality code, region and province, area size, eleva-
tion, altimetric zone, coastal/island location, urbanization
degree, and geographic coordinates

2. Population: five variables related to population size (years
2011 and 2019), population classes, population density and
percentage of population above 65 y old

3. Mobility: a set of 13 variables including:
a. Attraction Index: ratio between movements of individu-
als who work or study in the municipality, and total
individuals in the area

b. Self-containment Index: ratio between individuals who
work or study in the municipality, and total movements
in the area

c. Numbers of flights and passengers during 2019 and
2020

d. Movements in, out, and total: number of individuals
who moved outbound or inbound (and total) of the
municipality for work or study reasons

e. Code of Local Work System (Sistema Locale del
Lavoro, SLL): a composite index developed by the
Italian Institute of Statistics to characterize connections
among municipalities

f. Presence (yes/no) and number of rail stations
g. Number of airports within 30 km of the municipality

centroid.
4. Socioeconomic and health status: a set of 10 variables,

including income, number of enterprises per 1,000 inhabi-
tants, composite socioeconomic position index,21 cause-
specific hospitalization and mortality rates

5. Health care offer: a set of 14 variables, including, for each
municipality, numbers of hospitals, nursing homes or
emergency rooms; numbers of beds for different types of
wards; distances between the municipality centroid and the
closest facility, by type of facilities; and average number
of workers in healthcare residences.
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These variables were then synthesized in 12 principal compo-
nents (PCs), as described in Bauleo et al.22 and summarized in
the next section.

Principal Component Analysis (PCA)
A PCA was performed for each of the five domains separately.
The goal of the PCA was to reduce the large number of initial
correlated variables into a smaller number of components by pre-
serving most of their informative content. This process occurred
through a linear transformation of the original standardized varia-
bles into new ones that were orthogonal (i.e., independent) and
sorted in decreasing order of variance. The reduction of complex-
ity was achieved by retaining only the components with eigenval-
ues ≥1, for a total number of final components equal to 12,
distributed across the five domains.22

Statistical Analysis
The propensity score is the conditional probability of being
exposed, given the observed covariates.23 Originally developed
for binary treatments, it has been recently generalized to continu-
ous exposures, hence the term “generalized propensity score”
(GPS).24 In the continuous case, the GPS represents the condi-
tional likelihood of being exposed to the observed exposure level
given the covariates. Applied to our study, GPS represents the
conditional likelihood, at the municipality level, of exposure to
the observed level of air pollution, given observed area-level
covariates. We adopted different formulations of GPS corre-
sponding to different sets of covariates. In the main approach, we
used, as the only covariates, the four PCs pertaining the two
domains of a) socioeconomic and health status, and b) health
care offer. This choice was motivated by the rationale that only
these two domains are plausibly related to the spatial distribution
of fatal events among COVID-19 cases, whereas the other three
domains (municipality characteristics, population, mobility) are
responsible for the geographical distribution of SARS-CoV-2
cases (incidence).

The GPS model assumes the following formula:

EðYiÞ= a+ b1PC1i + b2PC2i + b3PC3i +b4PC4i, (1)

where Yi represents the long-term average air pollution (PM10,
PM2:5, or NO2, in turn) in municipality i, a is the model intercept,
b1. . .b4 are regression coefficients estimated for principal compo-
nents PC1 . . .PC4. PC1 is the first principal component of the
domain “socioeconomic and health status” and refers to socioeco-
nomic conditions of the municipality; PC2 is the second principal
component of the same domain and refers to overall population
health (annual mortality and morbidity rates for cardiovascular
and respiratory diseases); PC3 and PC4 are the first and second
principal components of the domain “health care offer,” and cap-
ture, respectively, availability (presence, number of beds, etc.)
and accessibility (distance) to health care facilities.

Once the previous model was defined, we built the actual
GPS as follows:

GPS1i ¼ MultiNormal Yi, mean ¼ fitted:values,ð
standard deviation ðSDÞ ¼ SD:residualsÞ, (2)

where GPS1i represents our main GPS in municipality i, defined
as a multinormal covariate of the original exposure values, cen-
tered in the fitted values of the previous model, with SD equal to
the SD of the residuals.

In sensitivity analysis 1, we defined the GPS based on the
entire set of 12 PCs for the 5 domains, whereas in sensitivity
analysis 2 we used as covariates for GPS estimation the 9 original

area-level covariates describing the 2 domains of socioeconomic
and health status and health care offer (rather than the corre-
sponding 4 PCs) (see Supplemental Material, Figures S5–S7 and
Excel Tables S3–S5).

The association between long-term exposure to air pollutants
and case–fatality rates was estimated with negative binomial
regression models. First, we aggregated COVID-19 cases (denom-
inators) and deaths (numerators) by municipality, year, month, age
(5-y classes), and sex. Second, we fit negative binomial regression
models with the number of deaths as the outcome variable, the
number of cases as the offset term, the air pollutant as the exposure,
and with increasing level of confounding adjustment, as detailed
below:

M1: GLM Di ∼ offsetðCasesiÞ+Ei, family= neg:binomð Þ,
where GLM identifies generalized linear models, Di and Casesi
represent, respectively, the count of deaths (numerator) and the
number of COVID-19 cases (denominator) in municipality i for
each age-sex-year-month stratum; Ei is the air pollution average
(PM10, PM2:5 or NO2, in turn) of municipality i; M1 represents
the crude (e.g., unadjusted) model.

M2: M1+ province:

M2 further adjusted for province of the case (categorical vari-
able of 110 provinces in total): The aim was to control for all
(known and unknown) covariates varying from province to prov-
ince but fixed in time.

M3: M1+ province× year×month:

M3 further adjusts for all interactions between categorical
variables of year and month (i.e., pandemic phase) and province:
The aim was to control for all (known and unknown) covariates
varying from province to province differently over time.

M4: M1+ province× year×month× age class:

M4 further adjusts for all interactions between time trends,
province, and age classes (5-y groups): The aim was to con-
trol for all covariates varying from province to province dif-
ferently over time and by age groups of COVID-19 cases and
deaths.

M5: M1+ province× year×month× age class× sex:

M5 further adjusts for all interactions between time trends,
province, age class, and sex.

M6: M1+ province× year×month× age class×

sex×GPS ventiles:

M6 represents our “main” model. In addition to accounting
for all the above interactions, it also accounts for GPS distribu-
tion by matching on ventiles (i.e., quantiles that partition GPS in
20 equal-sized groups) of the GPS. The aim of this model was to
restrict the inference on comparisons among municipalities
belonging to the same province, at the same pandemic stage, with
same age and sex distribution, and with approximately the same
values of the GPS (matching on ventiles).

Although Models 1–6 represent nested models with increas-
ing degrees of confounding adjustment, models 7–13 below rep-
resent alternative ways to adjust for the confounding role of area-
level covariates:

n M7 adjusts for GPS as a linear term in the model (instead
of matching on ventiles).
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n M8 directly adjusts for the four PCs defining the main
GPS.

n M9 adjusts for GPS by using inverse probability weights.
n M10 matches by percentiles (instead of ventiles) of the

main GPS.
n M11 matches by deciles (instead of ventiles) of the main

GPS.
n M12 matches by ventiles of the GPS described above in

sensitivity analysis 1.
n M13 matches by ventiles of the GPS described above in

sensitivity analysis 2.
In each of thesemodels, the air pollutant was added preliminary

with a linear term, and associations are expressed as the percent
increase of fatality rate (%IR), and corresponding 95% confidence
intervals (CI), per unit increment of exposure, by transforming the
regression coefficient with the following formula:

%IR= f½exp ðbÞ�− 1g×100: (3)

We performed a number of additional analyses. First, we
defined three pandemic waves in agreement with indications from
the Italian Institute of Health, as: first (20 February 2020–31 May
2020), second (15 September 2020–15 December 2020) and third
(16 December 2020–15 June 2021), and we fit separate models by
pandemic waves. Second, we fit separate models by age class, sex,
presence of symptoms at onset (asymptomatic vs. all the others),
and geographical area (Po valley), to identify population sub-
groups or areas potentially more vulnerable to the adverse effects
of chronic exposure to air pollution. Third, we modeled air pollu-
tants with natural splines with three degrees of freedom to describe
the shape of the exposure–response functions. Fourth, we ran two-
pollutant models, where pairs of air pollutants (PM2:5 and NO2,
PM10 and NO2) were entered simultaneously in the regression
model. Fifth, we quantified the numbers of COVID-19 deaths at-
tributable to exceedances in annual air pollutant concentrations
above predefined thresholds corresponding to WHO AQG or EU
limit values, as described in the next section. Sixth, we investigated
the association between air pollution and hospitalizations or
accesses to ICUs among COVID-19 cases. Seventh, we included
health care professionals in the analyses to test the robustness of
themain results to their inclusion/exclusion.

Attributable Cases
The associations estimated above from our main model 6 (either
single-pollutant or two-pollutant) were used to quantify the num-
bers of deaths attributable to exceedances in PM and NO2 above
predefined thresholds.

For the single-pollutant case, we applied the following formula:

ACi =
Xn:munic
i=1

Di × 1−
1

eb Ei − tð Þ Ei > tð Þ

� �
, (4)

where:
n ACi quantifies the total number of deaths attributable to con-
centrations of air pollutant Ei exceeding the threshold t
(t=15, 20, 25, 30, 35, 40lg=m3 for PM10; t=5, 10, 15, 20,
or 25 lg=m3 for PM2:5; and t=10, 20, 30, or 40lg=m3 for
NO2).

n Di is the count of deaths among COVID-19 cases in the
municipality i.

n b is the regression coefficient representing the log(relative
risk) of death per unit increment in exposure. For the compu-
tation of attributable cases, we have used the b resulting
from the base model M6, where exposure was modeled with
a linear term.

For the two-pollutant case, we applied the following formula:

ACi =
Xn:munic
i=1

Di ×
n
1−

1
e b Ei − t1ð Þ Ei > t1ð Þ+ c Fi − t2ð Þ Fi > t2ð Þ½ �

o
,

(5)

where:
n ACi quantifies the total number of deaths attributable to con-
centrations of air pollutant Ei exceeding the threshold t1 and,
at the same time, air pollutant Fi exceeding the threshold t2;

n Di is the count of deaths among COVID-19 cases in the
municipality i;

n b is the regression coefficient representing the log(relative
risk) of death per unit increment in exposure E, and c is the
regression coefficient representing the log(relative risk) of
death per unit increment in exposure F. In this case, for the
computation of attributable cases, we used the b and c result-
ing from the base model M6 where both pollutants were mod-
eled simultaneously (two-pollutant model) with linear terms.
All statistical analyses have been performed with the R statisti-

cal software (version 4.1.2; R Development Core Team). We
excluded observations with missing data from the analyses, which
amounted to 54,269 (1.3%) of the eligible population. All maps
have been produced with ArcGIS software (ESRI ArcGIS
Desktop: Release 10; Environmental Systems Research Institute),
using the shapefile of year 2019 municipalities released by ISTAT
as base layer.

Results
We analyzed data on 3,995,202 COVID-19 cases and 124,346
deaths (Table 1 and Figure 1; Excel Table S1). Most of the cases
were diagnosed in the second and third pandemic waves (38% and
56%, respectively), although mortality was much higher in the first
period (176/1,000 in the first wave, against 27/1,000 and 21/1,000
in the second and third, respectively). Cases were mostly diag-
nosed among young and adult subjects (79%, 0–64 y old), whereas
mortality increased exponentially with age (72%, 75+ y old), with
no major differences by sex. COVID-19 fatality rates were higher
in symptomatic cases than among asymptomatic subjects (45 vs.
13/1,000). Finally, we did not detect differential susceptibility by
socioeconomic status,with case–fatality rates homogeneous across
categories of the deprivation index (Table 1).

The spatial distribution of deaths shows much higher fatality
rates in northern Italy (Figure 2), mostly driven by deaths in the
first wave, whereas distributions were more homogeneous in the
second and third periods (Figure S2). Similarly, municipality-
specific rates of hospitalization and access to ICUs showed
higher values in northern Italy (Figure S3).

The spatial distribution of air pollutants concentrations shows
much higher exposures in northern Italy and specifically in the
Po valley region, incidentally the same geographical area where
the SARS-CoV-2 outbreak initially started (Figure S4).

The results of the association between chronic exposure to air
pollutants and case–fatality are presented in Table 2: In our main
model (model 6, adjusted for multiple interactions between year-
month, province, age class, sex, and ventiles of the main GPS),
1-lg=m3 increments in PM2:5, PM10, and NO2 were associated
with increases in case–fatality rates of 0.7% (95% CI: 0.5%, 0.9%),
0.3% (95% CI: 0.2%, 0.5%), and 0.6% (95% CI: 0.5%, 0.8%),
respectively. Effect estimates substantially dropped with increas-
ing degree of confounding adjustment, especially once spatial pat-
terns (model 2 for PM2:5 and PM10) and age-specific distributions
(model 4 for all pollutants) were accounted for. Further adjustment
for GPS by matching (model 6, the main model) slightly reduced
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the effect estimates for PM in comparison with model 5, whereas it
did not change associations with NO2. For all pollutants, results
were robust to alternative ways of adjusting for the main GPS
(models 7–11), as well as to adjustment for the two alternative GPS
(models 12–13). In addition, results were robust to inclusion/exclu-
sion of health care professionals (Table S2).

Similar results are presented for rates of hospitalization
(Table S3) and access to ICUs (Table S4): We estimated
increases in hospitalization rates of 0.9% (95% CI: 0.7%, 1.1%),
0.6% (95% CI: 0.5%, 0.8%), and 0.7% (95% CI: 0.6%, 0.8%), per
1-lg=m3 increment in PM2:5, PM10, and NO2, respectively.
Corresponding increases in rates of access to ICUs were 1.6%
(95% CI: 1.3%, 1.9%), 1.5% (95% CI: 1.3%, 1.7%), and 1.0%
(95% CI: 0.8%, 1.1%). For both outcomes, results were largely
robust to alternative models of confounding adjustment.

The associations between air pollutants and case–fatality
were highest in the first and third pandemic waves (PM only),
increased substantially with age (all pollutants), were similar
between men and women, and were similar among subjects with

or without symptoms at onset of COVID-19 disease. Finally,
associations in the Po valley were similar to, if not smaller than,
those estimated in the rest of the country (Table 3). Associations
by individual-level characteristics specific for each pandemic
wave are reported in Table S5.

The association between NO2 and COVID-19 fatality was ro-
bust to PM adjustment, whereas associations with PM2:5 or PM10
became null after adjustment for NO2 (Table S6). The exposure–
response functions displayed in Figure 3 and in Excel Table S2
are consistent with linear associations, with case–fatality rates
increasing significantly already at very low PM2:5 and NO2
concentrations.

Finally, we estimated 10,514 (95% CI: 7,007; 13,902), 4,582
(95% CI: 2,512; 6,607) and 10,155 (95% CI: 8,295; 11,973)
deaths among COVID-19 cases exposed to annual concentrations
of PM2:5, PM10, or NO2 exceeding the WHO 2021 AQG of 5, 15,
and 10lg=m3, respectively (Tables 4 and 5). Corresponding esti-
mates from two-pollutant models are: 9,163 (95% CI: 394;
17,182) for PM2:5 and NO2 simultaneously exceeding the WHO
2021 AQG values (Table 4) and 7,430 (95% CI: 326; 14,008) for
PM10 and NO2 simultaneously above the WHO 2021 AQG val-
ues (Table 5), demonstrating large overlap of COVID-19 deaths
due to exceedances of the three air pollutants.

Discussion
We found statistically significant associations between long-term
exposure to air pollution and mortality, hospital admissions, and
access to intensive care units in a large national study of 4 million
COVID-19 cases documented in Italy in three epidemic waves
from February 2020 to June 2021. The associations with mortality
were robust to alternative choices of confounding adjustment,
were stronger among elderly subjects, did not differ by sex or by
presence of symptoms, and were higher during the first and the
third pandemic waves. We estimated ∼ 10,000 (8%) deaths attrib-
utable to exceedances in annual air pollutant concentrations above
theWHO2021AQG.

Figure 1. Time trends of COVID-19 cases (black) and deaths (light gray)
between February 2020 and 15 June 2021 in Italy. Relevant data in Excel
Table S1. Dashed lines delimit different pandemic waves: first (20 February
2020–31 May 2020), second (15 September 2020–15 December 2020) and
third (16 December 2020–15 June 2021).

Table 1. Descriptive statistics of the study population: distribution of the covariates and air pollutant concentrations among COVID-19 cases and among
deceased subjects. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases with nonmissing data).

Cases [n (%)] Deaths [n (%)] Fatality rate (per 1,000)

Original population 4,038,677 125,238 31
Population (without missing) 3,995,202 (100.0) 124,346 (100.0) 31
Wave of the COVID-19 pandemic
1st: 20 February 2020–31 May 2020 201,210 (5.0) 35,440 (28.5) 176
2nd: 15 September 2020–15 December 2020 1,534,950 (38.4) 41,620 (33.5) 27
3rd: 16 December 2020–15 June 2021 2,259,042 (56.5) 47,286 (38.0) 21
Covariates
Age (y)
0–64 3,173,243 (79.4) 11,879 (9.6) 4
65–74 369,907 (9.3) 23,164 (18.6) 63
75–84 282,527 (7.1) 44,914 (36.1) 159
85+ 169,525 (4.2) 44,389 (35.7) 262
Sex (females) 2,021,052 (50.6) 54,060 (43.5) 27
Clinical state at onset
Asymptomatic 1,740,258 (43.6) 23,252 (18.7) 13
Symptomatic 2,254,944 (56.4) 101,094 (81.3) 45
Socioeconomic deprivation index (quintiles)
Lowest 1,164,100 (29.1) 37,922 (30.5) 33
Low 784,627 (19.6) 25,420 (20.4) 32
Medium 790,333 (19.8) 24,023 (19.3) 30
High 718,853 (18.0) 22,016 (17.7) 31
Highest 537,289 (13.4) 14,965 (12.0) 28
Exposures [mean (IQR)]
PM2:5 (lg=m3) 17.1 (8.5) 17.8 (9.0) —
PM10 (lg=m3) 25.6 (8.9) 26.1 (9.9) —
NO2 (lg=m3) 23.1 (11.9) 23.6 (12.0) —

Note: —, fatality rates for continuous covariates cannot be computed; IQR, interquartile range; NO2, nitrogen dioxide; PM, particulate matter; PM2:5, particulate matter with aerody-
namic diameter ≤2:5 micrometers; PM10, particulate matter with aerodynamic diameter ≤10 micrometers.
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Bozack et al. analyzed patient-level data from seven New
York City hospitals and found that higher residential exposures
to PM2:5 concentrations were associated with an increased risk of

mortality and ICU admission [relative risk ðRRÞ=1:11 (95%
CI= 1:02, 1:21) and RR=1:13 (95% CI= 1:00, 1:28) per
1-lg=m3 increase in PM2:5, respectively].25 The associations

Figure 2.Map of COVID-19 case–fatality rates by municipality, Italy 20 February 2020–31 May 2020 and 15 September 2020–15 June 2021. Municipalities
with fewer than three cases are in white.

Table 2. Effect of air pollutants on mortality, main approach, and sensitivity analyses: percent increase in mortality risk (%IR), and 95% CI per 1-lg=m3 incre-
ment in air pollutants. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths).

Model Description PM2:5 %IR (95% CI) PM10 %IR (95% CI) NO2 %IR (95% CI)

Increasing adjustment levels
M1 Crude 3.2 (3.0, 3.4) 2.3 (2.1, 2.4) 2.4 (2.2, 2.5)
M2 M1+province 1.7 (1.3, 2.1) 1.4 (1.1, 1.7) 2.6 (2.4, 2.8)
M3 M2+month 1.5 (1.1, 1.9) 1.2 (0.5, 1.5) 2.2 (2.1, 2.4)
M4 M3+age 0.9 (0.6, 1.2) 0.7 (0.5, 0.9) 0.5 (0.4, 0.6)
M5 M4+sex 1.0 (0.7, 1.2) 0.7 (0.5, 0.9) 0.5 (0.4, 0.7)
M6 Main model: M5+GPS (matched on ventiles) 0.7 (0.5, 0.9) 0.3 (0.2, 0.5) 0.6 (0.5, 0.8)

Sensitivity models
M7 M5+GPS (linear term) 1.0 (0.8, 1.3) 0.7 (0.5, 0.9) 0.5 (0.4, 0.7)
M8 M5+4CPs added as covariates 1.3 (1.0, 1.6) 1.0 (0.8, 1.2) 0.8 (0.6, 0.9)
M9 M5+GPS (inverse weights) 1.3 (1.0, 1.5) 1.0 (0.8, 1.1) 0.7 (0.5, 0.8)
M10 M5+GPS (matched on percentiles) 1.0 (0.7, 1.3) 0.6 (0.4, 0.7) 0.4 (0.3, 0.6)
M11 M5+GPS (matched on deciles) 0.6 (0.3, 0.8) 0.6 (0.4, 0.7) 0.7 (0.6, 0.9)
M12 M5+alternative GPS #1 1.3 (1.1, 1.5) 0.6 (0.5, 0.8) 1.0 (0.9, 1.1)
M13 M5+alternative GPS #2 1.0 (0.8, 1.2) 0.8 (0.7, 0.9) 0.9 (0.8, 1.0)

Note: CI, confidence interval; GPS, generalized propensity score; IR, increase of risk; M, model; NO2 nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5
micrometers; PM10, particulate matter with aerodynamic diameter ≤10 micrometers.
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estimated by Bozack et al. are consistent with those found in
some large-scale ecological analyses. For example, an analysis of
COVID-19 mortality across 3,143 U.S. counties found that a
1-lg=m3 increase in PM2:5 exposure was associated with an 8%
increase in COVID-19 mortality rate.7 When the effect of ecolog-
ical bias is minimized by exploiting the variability of the expo-
sure at high geographical resolution and increasing degree of
confounding adjustment, the effect estimates are closer to our
results: A nationwide cross-sectional study in England estimated
small but statistically significant associations between long-term
exposure to NO2 or PM2:5 with COVID-19 mortality, with
percentage increased mortality= 0:5% (95% CI: 0.2, 1.2), and
1.4% (95% CI: 2.1, 5.1), per 1-lg=m3 increment, respectively,
after adjusting for confounding and spatial autocorrelation.11

However, the hospital setting and ecological design of these stud-
ies limit causal interpretation and do not allow an optimal com-
parison with findings on our population sample. Our study results
are similar, in strength and direction, to those found in a cohort
of 151,105 confirmed SARS-CoV-2 infections in Ontario,
Canada.15 Chen et al. estimated, for each interquartile range
increase in exposure to PM2:5 (1:70lg=m3), odds ratios of 1.06

(95% CI: 1.01, 1.12), 1.09 (95% CI: 0.98, 1.21) and 1.00 (95%
CI: 0.90, 1.11) for hospital admission, ICU admission, and death,
respectively, whereas smaller estimates were observed for
NO2.15

English et al., using individual-level patient data and highly
localized PM2:5 exposure estimates in 3:1million SARS-CoV-2
cases and 49,691 COVID-19 deaths that occurred in California,
found a 3.8% increased mortality risk per 1 lg=m3 when comor-
bidity conditions were considered.17 A study from Mexico City
using individual-level data showed that the risk of dying from
COVID-19 increased by 0.77% per 1-lg=m3 increase in 2000–
2018 average PM2:5 concentration, after adjustment for individ-
ual- and municipality-level covariates.12

A meta-analysis estimated positive comparable associations
between COVID-19 mortality and 1-lg=m3 increases in NO2
(RR=1:03, 95% CI: 1.01, 1.06) and PM2:5 (RR=1:05, 95% CI:
1.02, 1.07), from studies that adequately adjusted for the confound-
ing effects of population density and air temperature, whereas no
association was found with other air pollutants, like nitrogen
oxides (NOx), ozone (O3), or PM10.26 A prospective, individual-
level cohort study (COVICAT) conducted in Catalonia, Spain,

Table 3. Effect of air pollutants on mortality by pandemic wave, individual-level covariates, and geographical area: percent increase in mortality risk (%IR),
and 95% CI, per 1-lg=m3 increment in air pollutants. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths).

n PM2:5 %IR (95% CI) PM10 %IR (95% CI) NO2 %IR (95% CI)

All 3,995,202 0.7 (0.5, 0.9) 0.3 (0.2, 0.5) 0.6 (0.5, 0.8)
Wave
1st 201,210 1.1 (0.5, 1.6) 0.7 (0.4, 1.0) 0.7 (0.4, 1.0)
2nd 1,534,950 0.1 (−0:4, 0.5) 0.1 (−0:2, 0.4) 0.6 (0.4, 0.8)
3rd 2,259,042 0.9 (0.6, 1.3) 0.3 (0.0, 0.5) 0.7 (0.5, 0.8)
Age (y)
0–64 3,173,243 −0:7 (−1:1, −0:2) −0:5 (−0:7, −0:2) 0.3 (0.1, 0.5)
65–74 369,907 −0:2 (−0:9, 0.5) 0.0 (−0:5, 0.5) 0.3 (0.0, 0.7)
75–84 282,527 1.0 (0.3, 1.6) 0.5 (0.0, 0.9) 0.9 (0.5, 1.2)
85+ 169,525 1.7 (1.0, 2.5) 0.8 (0.4, 1.3) 0.8 (0.4, 1.1)
Sex
Female 2,021,052 0.9 (0.5, 1.2) 0.4 (0.2, 0.6) 0.6 (0.4, 0.7)
Male 1,974,150 0.6 (0.2, 0.9) 0.3 (0.1, 0.5) 0.7 (0.5, 0.9)
Clinical state at onset
Symptomatic 2,254,944 0.9 (0.6, 1.1) 0.4 (0.3, 0.6) 0.6 (0.4, 0.7)
Geographical area
Po Valley 1,888,148 0.5 (0.2, 0.8) 0.2 (0.1, 0.4) 0.3 (0.1, 0.4)

Note: Results of main model 6, adjusted for interactions between year and month, province, age classes, sex and ventiles of the generalized propensity score. Pandemic waves are
defined as first: 20 February 2020–31 May 2020; second: 15 September 2020–15 December 2020; third: 16 December 2020–15/06/2021. CI, confidence interval; IR, increase of risk;
NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 micrometers; PM10, particulate matter with aerodynamic diameter ≤10 micrometers.

Figure 3. Exposure–response functions: percentage increase in case–fatality risk (%IR), and 95% confidence intervals (95% CI), per increasing levels of air pol-
lutants, from natural spline models. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths). Relevant data in Excel Table
S2. Y axes of the top graphs display percentage increases of risk, x axes of the top graphs report air pollutants concentrations. Bottom graphs show histograms
of air pollutants’ distributions. Results from the main model, adjusted for interaction terms between month, province, age, sex, and ventiles of the generalized
propensity score.
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also found significant associations between residential air pollution
concentrations and both hospitalizations from COVID-19 disease
and self-reported symptoms, with adjusted RRs of 1.00 (95% CI:
1.00, 1.02) and 1.09 (95% CI: 1.02, 1.16) per 1-lg=m3 increases in
NO2 and PM2:5, respectively, and associations being stronger for
more severe forms of the disease.13

Our results showed that, using the exposure–response coeffi-
cients estimated in our main models, ∼ 10 000 (8%) deaths
were attributable to exceedances in annual air pollutant concen-
trations above the WHO 2021 AQG. The hypothesized links
between air pollution and COVID-19 make the public health
consequences of the pandemic more critical, because ambient
air pollution is the seventh global risk factor for mortality, re-
sponsible for ∼ 3:8million deaths worldwide in 2019 (12% of
the overall global burden).27

In our study, long-term exposure to air pollution shows a
weaker effect on COVID-19 fatality rate during the second wave
when compared with the first and the third wave. We have no de-
finitive explanation for this finding, but we can speculate that in
the first wave the most affected areas were the northern regions
(with also higher air pollution levels), and the surveillance system
possibly detected mainly severe cases, because only symptomatic
people could be tested for SARS-CoV-2 infection; the second
wave affected the Italian regions in a more homogeneous way,
but most fragile cases, for which the long-term effect of air pollu-
tion was a priori more plausible, had already been affected in the
previous wave; in the third wave, the dominant strain became the
Delta variant, making the effect of air pollution closer to what
was observed in the first wave. Furthermore, we cannot exclude a
possible role of air temperature in the differential effects of air
pollution across waves, as suggested in a recent study.28

A large body of evidence has accumulated over the past sev-
eral years, demonstrating that air pollution affects almost all

organ systems29,30 and causes a broad variety of effects, span-
ning from asthma symptoms and exacerbation to illness and
death from ischemic heart disease, lung cancer, COPD, lower-
respiratory infections, stroke, type 2 diabetes, and adverse birth
outcomes.31,32

The global spread of the COVID-19 outbreak contributed to a
renewed attention to the adverse effects of air pollution for three
main reasons: a) PM has been hypothesized to be a carrier for the
SARS-CoV-2 virus and therefore able to increase the conta-
gion2,3; b) long-term exposure to NO2 and PM2:5 has been associ-
ated with overexpression of ACE-2 receptors, to which the
SARS-CoV-2 spike protein binds, increasing the virus suscepti-
bility and the severity of COVID-19 disease33,34; c) air pollu-
tion–related chronic health conditions, such as diabetes,
cardiovascular disease, and chronic obstructive pulmonary dis-
ease (COPD), have also been associated with increased vulner-
ability to COVID-19.35–38 Concerning the last point, long-term
exposure to air pollution can worsen the prognosis of COVID-19
by increasing the risk of chronic diseases associated with
COVID-19, both by directly suppressing or influencing early
immune responses to SARS-CoV-2 infection and by altering the
host’s immunity toward respiratory infections, and these mecha-
nisms have been shown to be biologically plausible.39–41 In addi-
tion, researchers have found that many preexisting chronic
comorbidities, such as diabetes, cardiovascular disease, cancer,
and kidney diseases, are also important risk factors for more
severe COVID-19.42,43

This study has several strengths. First, to the best of our knowl-
edge, it is the only study ever conducted in Italy with individual
records on the entire population of COVID-19 cases. Wewere able
to analyze data on 4 million cases diagnosed between February
2020 and June 2021, with individual-level information on sociode-
mographic characteristics and clinical state at onset. Such data

Table 4. Deaths attributable to PM2:5 and NO2 concentrations above predefined thresholdsa: results from both single-pollutant and two-pollutant models. Each
cell reports attributable cases and 95% confidence interval. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths).

PM2:5 thresholds

NO2 thresholds Single pollutant PM2:5: Deaths
(95% CI)10: Deaths (95% CI) 20: Deaths (95% CI) 30: Deaths (95% CI) 40: Deaths (95% CI)

5 9,163 (394; 17,182) 2,121 (−3,840; 7,616) 186 (−1,984; 2,187) −131 (−832; 512) 10,514 (7,007; 13,902)
10 10,762 (4,338; 16,728) 3,278 (−1,017; 7,304) 612 (−946; 2,072) −15 (−544; 481) 6,513 (4,321; 8,650)
15 9,235 (5,391; 12,838) 3,598 (999; 6,065) 917 (−43; 1,830) 100 (−267; 450) 3,080 (2,036; 4,105)
20 6,963 (4,907; 8,908) 3,349 (2,015; 4,628) 1,053 (522; 1,565) 213 (2, 418) 1,023 (673; 1,370)
25 594 (462, 720) 319 (242, 394) 100 (76, 124) 17 (13, 21) 14 (9, 19)
Single pollutant NO2 10,155 (8,295; 11,973) 4,187 (3,410; 4,951) 1,136 (924; 1,346) 239 (194, 285) —
Note: Results of main model 6, adjusted for interactions between year and month, province, age classes, sex, and ventiles of the generalized propensity score. —, no data; AQG, air
quality guidelines; CI, confidence interval; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 micrometers; PM10, particulate matter with aerodynamic
diameter ≤10 micrometers; WHO, World Health Organization.
aWHO 2021 AQG levels: 5 lg=m3 for PM2:5, 10 lg=m3 for NO2; WHO 2005 AQG levels: 10 lg=m3 for PM2:5, 40 lg=m3 for NO2; EU (European Union) air quality standards:
25 lg=m3 for PM2:5, 40 lg=m3 for NO2.

Table 5. Deaths attributable to PM10 and NO2 concentrations above predefined thresholdsa: results from both single-pollutant and two-pollutant models. Each
cell reports attributable cases and 95% CI. Italy, 20 February 2020–15 June 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths).

PM10 thresholds

NO2 thresholds Single pollutant
PM10: Deaths10: Deaths (95% CI) 20: Deaths (95% CI) 30: Deaths (95% CI) 40: Deaths (95% CI)

15 7,430 (326; 14,008) 1,404 (−3,297; 5,798) −51 (−1,787; 1,573) −195 (−759, 331) 4,582 (2,512; 6,607)
20 8,588 (3,324; 13,512) 2,513 (−908; 5,749) 370 (−898; 1,570) −78 (−512; 333) 2,699 (1,476; 3,903)
25 7,303 (3,999; 10,410) 3,021 (858; 5,084) 730 (−110; 1,534) 38 (−271; 335) 1,267 (691; 1,837)
30 4,878 (3,176; 6,484) 2,494 (1,401; 3,541) 838 (373; 1,287) 152 (−38; 336) 393 (214, 571)
35 1,073 (555; 1,544) 683 (250; 1,083) 338 (40; 618) 46 (−153; 236) 231 (126; 333)
40 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Single pollutant NO2 10,155 (8,295; 11,973) 4,187 (3,410; 4,951) 1,136 (924; 1,346) 239 (194, 285) —
Note: Results of main model 6, adjusted for interactions between year and month, province, age classes, sex and ventiles of the generalized propensity score. —, no data; AQG, air-
quality guidelines; CI, confidence interval; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 micrometers; PM10, particulate matter with aerodynamic
diameter ≤10 micrometers; WHO, World Health Organization.
aWHO 2021 AQG levels: 15 lg=m3 for PM10, 10 lg=m3 for NO2; WHO 2005 AQG levels: 20 lg=m3 for PM10, 40 lg=m3 for NO2; EU (European Union) air quality standards:
40 lg=m3 for PM10, 40 lg=m3 for NO2.
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were complemented by an extensive list of contextual variables on
municipality topography, population density, mobility, socioeco-
nomic and health status, and access to health care resources. This
information allowed strict control for all major individual and
area-level determinants of COVID-19 severity in the epidemiolog-
ical analyses. Second, we adopted a causal modeling framework,
the GPS, to adjust for the potential confounding of contextual
covariates. We still refrain from considering our association esti-
mates as causal; however, we believe that our methodology, paired
with the inclusion in the statistical models of multiple interaction
terms between temporal and spatial components as well as the
extensive list of sensitivity models, provides suggestive evidence
of a plausible causal link between chronic exposure to air pollution
and COVID-19 poor prognosis. This belief is further supported by
the consistent associations we found with alternative outcomes,
such as rates of hospitalization and access to ICUs. Finally, we
were able to characterize long-term exposure to different air pollu-
tants on the basis of a sophisticated machine-learning model
trained on a large set of spatial and spatiotemporal predictors.

Several limitations should also be acknowledged. First, indi-
vidual residence was assessed at the municipality level; therefore,
we had to aggregate cases and deaths and adopt an ecological study
design. This approach has been criticized as prone to residual con-
founding, as opposed to individual-level prospective longitudinal
studies.5,6 However, the availability of individual-level data on
age, sex, and clinical state at onset allowed a further stratification
for such variables. In addition, our analysis of COVID-19 cases
(rather than the general population) eliminated the potential con-
founding role of unmeasurable determinants of SARS-CoV-2
spread (person-to-person contacts, fine-scalemobility, etc.), allow-
ing us to focus our study hypothesis on COVID-19 poor prognosis.
A second limit of our database is the inherent difficulty of the sur-
veillance system to intercept asymptomatic cases, especially at the
early stages of the pandemic. Even though information on the
symptomatic state at onset was available for most cases, it is likely
that many infected individuals, especially those with no or mild
symptoms, were not included in the analysis. Therefore, our results
are not representative of the total truly infected population. Third,
we lacked information on the quality of care received by each hos-
pitalized case. The quality of care could be, in principle, a strong
determinant of prognosis, regardless of the severity of the disease,
with potential differences over space and time. However, it is
unlikely for this factor to be related with the spatial distribution of
air pollution, once time trends of case–fatality rates by province
have been accounted for in the models. A fourth limitation is
related to the definition of GPS from the principal components:
Because only a few components were selected from the original
list of contextual covariates, the GPS was ultimately estimated
based on four variables only, with limited ability to capture the
complex relationship between area-level characteristics and
COVID-19 case–fatality. However, application of alternative
GPSs or adjustment for individual covariates did not alter the main
findings. Fifth, despite the fact that the surveillance system also
collected data on preexisting diseases, these were largely unavail-
able (>50% missing, data not shown), preventing their use in the
epidemiological analyses. However, they are not expected to bias
the studied association because they might act as mediators, rather
than confounders, of the air pollution–COVID-19 fatality associa-
tion. Finally, some of the deficiencies underscored by Villeneuve
and Goldberg in most of the early epidemiological studies on air
pollution and COVID-19 could not be entirely addressed in our pa-
per, namely potential misclassification and underreporting of inci-
dence and mortality of COVID-19; lack of adjustment for physical
distancing and other public health interventions; problems from
clustering of disease or deaths (such as cases occurring in nursing

homes) leading to potential spatial autocorrelation in COVID-19
cases; and potential residual confounding from poor adjustment of
other individual-level determinants of COVID-19 mortality, espe-
cially occupation and socioeconomic status. However, we believe
that our strategy of adjusting for multiple interaction terms
between spatial (provinces), temporal (months), individual-level
(age and sex) and area-level (ventiles of GPS) covariates may have
minimized the potential residual confounding from these factors.

Despite the different strengths of this study, the highlighted
limitations suggest that studies of air pollution and COVID-19
require a multidisciplinary approach that include models bor-
rowed from infectious disease epidemiology combined with envi-
ronmental epidemiology study designs. Further research should
confirm our findings and provide a better understanding of the
possible mechanisms linking air pollution to COVID-19 severity.
We estimated a significant association between long-term expo-
sure to air pollution and mortality among 4 million cases, and we
quantified on the order of 10,000 the number of COVID-19
deaths attributable to annual exposures above the WHO 2021
AQG thresholds.44 These findings provide additional support for
the broad public health benefits of reducing levels of outdoor air
pollution in Italy.
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