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Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the
effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to
the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in
the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties. However, whether hydrogen can
enhance the effect of BMSC transplantation in the treatment of SCI has not yet been reported. This study was aimed at
investigating whether hydrogen promotes the therapeutic effect of BMSC transplantation in the treatment of SCI in rats. In
vitro, BMSCs were cultured in a normal medium and a hydrogen-rich medium to study the effect of hydrogen on the
proliferation and migration of BMSCs. BMSCs were treated with a serum-deprived medium (SDM), and the effects of
hydrogen on the apoptosis of BMSCs were studied. In vivo, BMSCs were injected into the rat model of SCI. Hydrogen-rich
saline (5ml/kg) and saline (5ml/kg) were given once a day via intraperitoneal injection. Neurological function was evaluated
using the Basso, Beattie, and Bresnahan (BBB) and CatWalk gait analyses. Histopathological analysis, oxidative stress,
inflammatory factors (TNF-α, IL-1β, and IL-6), and transplanted cell viability were detected at 3 and 28 days after SCI.
Hydrogen can significantly enhance BMSC proliferation and migration and tolerance to SDM. Hydrogen and BMSC codelivery
can significantly enhance neurological function recovery by improving the transplant cell survival rate and migration.
Hydrogen can enhance the migration and proliferation capacity of BMSCs to repair SCI by reducing the inflammatory
response and oxidative stress in the injured area. Hydrogen and BMSC codelivery is an effective method to improve BMSC
transplantation in the treatment of SCI.

1. Introduction

The incidence of spinal cord injury (SCI) has varied from
14.6 to 60.6 per million in China in recent decades [1]. Traf-
fic accidents and industrial accidents are the top two leading

causes of SCI [2]. The treatment of SCI has always been a
worldwide problem [3]. Traditional surgery and correspond-
ing adjuvant therapy have not made breakthrough progress
in SCI, causing serious family and social burdens [4]. In
recent decades, the development of tissue engineering has
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provided prospects for the repair of the nervous system
[5–7]. Stem cell transplantation can significantly improve
neurological outcomes in experimental animals and clinical
patients [8, 9]. The mechanism of stem cell transplantation
for the treatment of SCI is complex and still unclear. Replac-
ing damaged neuronal cells, reducing glial scar formation,
and promoting axonal regeneration and synapse formation
in residual neuronal cells are possible mechanisms [10]. All
these possible mechanisms are crucially important for the
repair of damaged nerve cells. Stem cell transplantation
holds great promise for SCI treatment [11, 12].

Although stem cell transplantation holds great promise
for SCI treatment, some hurdles need to be addressed to
improve its efficacy. The microenvironment of the injured
spinal cord is complicated and unbalanced [13]. Microenvi-
ronment imbalance of the injured spinal cord is defined as
an increase in the inflammatory response [14] and oxidative
stress [15, 16]. The microenvironment imbalance is the main
cause of the poor regeneration and recovery of SCI, which
also leads to low survival rates and poor viability of the stem
cells transplanted into injured spinal cord areas [17]. Studies
have shown that the acute phase of SCI is the best period for
stem cell transplantation [18, 19]. Imbalanced microenvi-
ronments (inflammatory response and oxidative stress) were
the most severe during this period, which led to low cell via-
bility and insufficient secretion of the transplanted stem cells
[16]. The main methods of cell transplantation for the treat-
ment of SCI include spinal cord local injection, intrathecal
transplantation (ICT), and intravenous injection [20, 21].
Despite the different transplantation routes, the cell viability
was low and could not survive for a long time. How to
improve the transplanted cells’ survival and viability is the
key problem to be solved.

Hydrogen (H2) therapy has attracted extensive attention
due to its antioxidant and anti-inflammatory effects [22]. H2
possesses excellent permeability and biosafety and has been
shown to attenuate intracellular reactive oxygen species-
(ROS-) induced cytotoxicity and inflammatory responses
[22]. H2 has shown good therapeutic effects in the treatment
of various diseases, such as diabetes, sepsis, atherosclerosis,
hypertension, and cancer [23–25]. H2 direct inhalation and
hydrogen-rich water have been used in the treatment of
SCI with good therapeutic effects [26–30]. H2 can improve
the microenvironment imbalance by suppressing inflamma-
tory responses and oxidative stress levels in SCI areas. Thus,
we hypothesized that hydrogen can enhance the effect of
BMSC transplantation in the treatment of SCI, which has
not yet been reported. In this study, we confirmed the
hypothesis that H2 can promote the effect of BMSC trans-
plantation in the treatment of SCI by reducing the inflam-
matory response and oxidative stress.

2. Materials and Methods

2.1. Preparation of Hydrogen-Rich Saline (HRS) and
Hydrogen-Rich Cell Culture Medium (HRM). HRS and
HRM were prepared according to the method reported pre-
viously [31, 32]. High-purity hydrogen (99.99%) was slowly
poured into the normal saline and cell culture medium, and

the pressure reached 0.4MPa for 6 h. HRS and HRM were
prepared. The H2 content was confirmed using the method
described by Ohsawa et al. [22]. The H2 concentration of
HRS and HRM was maintained above 0.6mmol/L. Fresh
HRS and HRM were produced weekly and stored in a refrig-
erator at 4°C.

2.2. Animals. All animal experiments were reviewed and
approved by the Ethics Committee of Experimental Animal
Management of the Naval Medical University. Female Spra-
gue Dawley (SD) rats (180–220 g, about 8 weeks) and trans-
genic SD rats expressing green fluorescent protein (GFP)
were purchased from the Experimental Animal Center of
the Naval Medical University. The rats were housed in an
animal room (5/cage, 20–22°C, 12h light/dark cycle, 50–
60% relative humidity) and had ad libitum access to food
and water for 1 week prior to the experiment to adapt to
the environment. SD rats were used for animal experiments.
GFP rats were used to extract GFP-labeled bone marrow
mesenchymal stem cells (BMSCs-GFP) for in vivo trans-
plantation cell tracking.

2.3. Culture and Characterization of BMSCs and BMSCs-
GFP. The culture and characterization of BMSCs and
BMSCs-GFP were performed as we had previously reported
[33]. SD rats were killed via CO2 asphyxia and sterilized with
75% alcohol for 10min, and the bilateral femur and tibia
were taken out aseptically. Both ends of the epiphyseal plate
were severed. DMEM (Gibco; Thermo Fisher) was used to
irrigate the marrow cavity. The cells were collected and
seeded in a 10ml T75 flask (Corning) and cultured in a 5%
CO2-saturated humidity incubator at 37°C. After 24 h, the
culture medium was replaced, and the medium was then
replaced every 2 days. The CD90, CD105, CD73, CD45,
CD34, CD11b, and CD19 antibodies (Guge, Nanjing, China)
of cells were tested for cell purity via flow cytometry
(FAC500, Beckman Coulter, USA) [34, 35]. Adipocyte,
chondrocyte, and osteocyte differentiation media (ScienCell,
San Diego, California, USA) were mixed with the medium
that was replaced every 3 days. After 3 weeks, the cells were
fixed and stained with Alizarin red, Oil Red O, and Alcian
blue (Sigma-Aldrich, St. Louis, MO, USA) to examine their
osteogenic, lipogenic, and chondrogenic properties, respec-
tively. The cell morphology was evaluated under an optical
microscope (Olympus, Japan) and fluorescence microscope
(Leica, Germany).

2.4. The Effect of H2 on the Proliferation of BMSCs Detected
via CCK-8 and EdU Staining. The effect of H2 on the prolif-
eration of BMSCs was detected via the CCK-8 and EdU
staining methods. P3 BMSCs were cultured in normal
medium and HRM for 6, 12, 24, and 48 h. The CCK-8 kit
(Biyuntian, China) was used in strict accordance with the
detection steps in the kit instructions, and a microplate
reader (BioTek, USA) was used to detect the proliferation
of BMSCs via H2 at an ultraviolet wavelength of 450 nm.
After P3 BMSCs were cultured in a normal medium and
HRM for 48h, BMSCs were incubated in a medium with a
20μM EdU working solution for 6 h and then were
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incubated with an EdU fluorescent solution for 30min in the
dark. The percentage of EdU+BMSCs was calculated based
on images obtained using fluorescence microscopy. The
experiment was repeated three times.

2.5. The Effect of H2 on the Migration of BMSCs Detected via
the Transwell Assay. In this experiment, a Transwell assay
(pore size 8.0μm) was used to detect the effect of H2 on
the migration of BMSCs. 5 × 104 cells/well of BMSCs were
seeded in the upper chamber of the Transwell assay (Milli-
pore, USA, 8.0μm), and 600μl of normal medium and
HRM was added to the lower chamber. The Transwell assay
was tested after 6, 12, and 24 h. Cells were stained with 0.1%
crystal violet (Sevier, Wuhan, China) for 20min and then
captured with a microscope (Olympus, Japan). The experi-
ment was repeated three times.

2.6. The Effect of H2 on the Tolerance to Serum-Deprived
Medium (SDM) of BMSCs Detected via Flow Cytometry.
The effect of H2 on the apoptosis rate of BMSCs and toler-
ance to SDM was detected via flow cytometry. P3 BMSCs
were cultured in a normal medium and HRM for 12h. The
apoptosis of adherent cells was detected via flow cytometry.
The Annexin V-PI Apoptosis Detection Kit (BD, USA) was
used in strict accordance with the operation steps of the kit,
and the effect of H2 on apoptosis was detected via flow
cytometry (Beckman Coulter FC 500, USA). All staining
procedures were completed according to the flow antibody
instructions. The experiment was repeated 3 times.

2.7. Establishment of the Rat Model of SCI and H2-BMSC
Administration. A total of 60 SD female rats (180–220 g)
were used to establish SCI models. The SCI animal model
was established using the classical vertical blow method
[36, 37]. Rats were randomly divided into 4 groups: the
sham group, which underwent laminectomy only (n = 15);
the SCI group, which received intraperitoneal normal saline
every 24 h (5ml/kg, n = 15); the BMSC group, which
received BMSCs and intraperitoneal injection of saline every
24 h (5ml/kg, n = 15); and the H2-BMSC group, which
received BMSCs and intraperitoneal injection of HRS every
24 h (5ml/kg, n = 15). After general anesthesia, the rats were
fixed in a Jiangwan type II rat immobilizer. The skin, spi-
nous process, and lamina were incised to fully expose the
spinal cord of the T10 segment. A 10 g metal rod was
allowed to free fall from a height of 50mm, and the spinal
cord of the T10–12 segment was impinged upon. The rat tail
and lower limb spasm during the operation indicated that
the modeling was successful. Penicillin (500,000 units/intra-
muscular injection) was administered to prevent infection.
The postoperative abdominal massage was performed
(12 h/time) to assist in urination until the rats could urinate
on their own. ICT was used for BMSC transplantation fol-
lowing SCI immediately at lumbar vertebrae L3–5 [38].
BMSCs (1× 106) suspended in 20μl of PBS were injected
over 5min to prevent cell leakage.

2.8. Functional Behavior Evaluation and CatWalk Gait
Analysis. The Basso, Beattie, and Bresnahan (BBB) grading
[39] was used to observe the functional recovery of lower

limbs in the 4 groups (n = 10) before and 1, 3, 7, 10, 14,
21, and 28 days after SCI. Footprint analysis was performed
as previously reported in the literature 28 days after SCI
[30]. 28 days after SCI, CatWalk gait was used to evaluate
the function of the hindlimbs in detail [40].

2.9. The Effect of H2 on the Survival and Migration of
Transplanted BMSCs. Three and 28 days after SCI, the spinal
cord at 3mm in the center of the injured spinal cord was
harvested (n = 5). The spinal cord tissues were cryosec-
tioned (10μm), stained with hematoxylin-eosin (HE),
and observed under an optical microscope (Olympus,
Japan). Sections were stained by 4′,6′-diamino-2-phenylin-
dole (DAPI) (Harvey, USA). The transplanted BMSC-GFP
observed under a fluorescence microscope showed sponta-
neous green fluorescence. The sections were examined
under a fluorescence microscope (Leica, Germany). The
GFP-BMSCs were detected and observed. Ten fields were
randomly selected from each group under a high-power
field, and the number of positive cells and the distribution
of cells were calculated.

2.10. The Effect of H2-BMSCs on Spinal Cord Inflammatory
Factors (TNF-α, IL-1β, and IL-6) Detected via Enzyme-
Linked Immunosorbent Assay (ELISA). SCI rats were sacri-
ficed 3 and 28 days after SCI, and the lamina was opened
rapidly. The spinal cord in the region 3mm from the center
of the injured spinal cord was harvested, frozen in liquid
nitrogen, and placed in a −80°C freezer (n = 5). In each
group, the collected spinal cord tissue was thawed, quantita-
tively weighed, and homogenized immediately according to
published methods [41]. The levels of TNF-α, IL-1β, and
IL-6 of the spinal cord supernatant were detected using an
ELISA kit (R&D Systems, Minneapolis, MN, USA) in accor-
dance with the kit instructions.

2.11. The Effect of H2-BMSCs on Spinal Cord Oxidative Stress
Detected via Superoxide Dismutase (SOD) and
Malondialdehyde (MDA) Kits. To confirm the effect of H2/
BMSCs on spinal cord oxidative stress, injured spinal cord
tissue was collected and subjected to the SOD and MDA kits
3 and 28 days after SCI. The central area of the injured spi-
nal cord tissue (100mg) was homogenized immediately
according to the testing instructions. The SOD activity (U/
mg) and MDA concentration (mol/mg protein) of the
injured spinal cord were measured by using SOD and
MDA kits (Jiancheng Bioengineering Institute, Nanjing,
China) according to the testing instructions.

2.12. Statistical Analysis. SPSS 21 software (IBM, Chicago,
IL, USA) and GraphPad Prism 5 software (GraphPad Soft-
ware, Inc., La Jolla, CA, USA) were used for data analysis
and graphing, respectively. Continuous variables are pre-
sented as the mean ± SD. The mean values were compared
by using repeated-measure ANOVA and Fisher’s LSD post
hoc test. Differences were considered statistically significant
at P < 0:05.
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3. Result

3.1. Characterization of BMSCs. The morphology of BMSCs
was observed under a light microscope, which showed that
the cells were uniform in shape, with a spindle shape, and
the cell purity was high (Figure 1(a)). BMSC-GFP showed
strong green fluorescence under a fluorescence microscope
(Figure 1(b)). After a 3-week culture, the purified BMSCs
exhibited osteogenic, lipogenic, and chondrogenic differenti-
ation abilities (Figures 1(c)–1(e)). Flow cytometry showed
that the positive rates of CD90, CD105, and CD73 in P3
BMSCs were higher than 95%, and those of CD45, CD34,
CD11b, and CD19 were lower than 4%, indicating that the
obtained P3 BMSCs were of high purity (Figure 1(f)). The
P3 BMSCs obtained in the experiment were of high purity
and showed strong green fluorescence, implying that they
can be used for subsequent experiments.

3.2. H2 Promotes the Proliferation Ability of BMSCs. The
results of CCK-8 and EdU staining showed that H2 could
significantly promote the proliferation ability of BMSCs.
BMSCs were cultured for 6, 12, 24, and 48 h under HRM
conditions. The CCK-8 kit was used to detect the prolifera-
tion of BMSCs, which showed that the cell proliferation in
the H2-BMSC group was significantly higher than that in
the BMSC group at 6, 12, 24, and 48 h (Figure 2, P < 0:05).
The results of EdU staining showed that when BMSCs were
cultured in HRM for 48h, the cell proliferation in the H2-
BMSC group (1:45 ± 0:16) was significantly increased com-
pared with that in the BMSC group (1:01 ± 0:10, P < 0:05).
These results suggested that H2 can promote the BMSC pro-
liferation ability in vitro.

3.3. H2 Promotes the Migration Ability of BMSCs. H2 signif-
icantly promoted BMSC migration. The results of Transwell
cell migration experiments showed that with the extension
of the culture time, more cells migrated. After 6 and 12 h
of culture, the number of cells passing through the mem-
brane in the H2-BMSC group increased significantly com-
pared with that in the BMSC group (Figure 3, P < 0:05).
After 24 h of culture, the number of cells that passed through
the membrane in both groups was greater, and the difference
was not statistically significant (P > 0:1), indicating that
most of the cells in the two groups had passed through the
membrane after 24 h of culture. H2 significantly increased
the migration ability of BMSCs.

3.4. H2 Increases BMSC Tolerance to SDM as Detected via
Flow Cytometry. BMSC tolerance to SDM was reflected by
cell apoptosis detected via flow cytometry. The apoptosis
rate was calculated as the early apoptosis plus late apoptosis
rate. The results of flow cytometry showed that both groups
had lower apoptosis before serum-free culture, and there was
no statistical difference (Figure 4, 6:04 ± 1:53 vs. 4:74 ± 0:69,
P > 0:05). After 24 h of culture in serum-free conditions, the
apoptosis rate of the BMSC group was significantly higher
than that of the H2-BMSC group (28:20 ± 2:66 vs. 20:08 ±
2:47, P < 0:05). The FCM test results showed that H2 was
sufficient to decrease the BMSC apoptosis rate in response

to serum deprivation for 24 h. BMSCs cultured in HRM
showed much higher tolerance to SDM.

3.5. H2 Enhances the Effect of BMSC Transplantation in the
Treatment of Motor Function in the Rat Hindlimb after
SCI. The BBB scale, footprint analysis, and CatWalk gait
analysis (Supplementary video 1) were used to investigate
the effect of H2/BMSC in the treatment of motor function
in rat hindlimbs after SCI. Footprint analysis and CatWalk
gait analysis were performed 28 days after SCI. The BBB
scores were assessed before and after 1, 3, 7, 10, 14, 21, and
28 days of SCI. The BBB score was notably lower in the
SCI, BMSC, and H2-BMSC groups than in the sham group
after SCI (P < 0:05). Rats that received H2-BMSC had signif-
icantly higher BBB scores than those in the BMSC group 14,
21, and 28 days after SCI (Figure 5(e), P < 0:05). The rats in
the BMSC groups showed relatively continuous stumbling of
the hindlimbs (red ink), while rats in the H2-BMSC group
were able to partly move the joints of the hindlimbs and
walked with discontinuous trajectories (Figure 5(a)).
Although it was shorter than that of the sham group, the
stride length of the H2-BMSC group was significantly longer
than that of the SCI and BMSC groups (Figure 5(b)). The
striding time of the BMSC and H2-BMSC groups was signif-
icantly longer than that of the SCI group but shorter than
that of the sham group. Compared with the BMSC group,
the striding time of the H2-BMSC group was much longer
(Figure 5(c), P < 0:05). The brake time showed the reverse
trend among these groups, as shown in Figure 5(d). The
BBB scale, footprint analysis, and CatWalk gait analysis
indicated that H2 enhances the effect of BMSC transplanta-
tion in the treatment of motor function in the rat hindlimb
after SCI.

3.6. Histopathological Analysis. The results of HE staining
showed that the boundary between the gray matter and
white matter of the spinal cord in the SCI, BMSC, and H2-
BMSC groups was unclear, with hemorrhage, liquefaction,
inflammatory cell infiltration, nerve fiber disorder, and neu-
ronal necrosis and atrophy 3 days after SCI. In the H2-
BMSC group, the amounts of both neuronal cells and
inflammatory cells were less than those in the BMSC group
(Figure 6). 28 days after SCI, syringomyelia was observed
in the SCI group, with unclear boundaries between the gray
and the white matter and infiltration of inflammatory cells.
The syringomyelia was smaller, and inflammatory cell infil-
tration was less in the BMSC and H2-BMSC groups
(Figure 6). BMSC transplantation can significantly reduce
the pathological injury of the spinal cord at the SCI site.
Compared with the BMSC group, H2-BMSCs had less cell
death, less bleeding, and less inflammatory cell infiltration.
The histopathological analysis showed that H2 can signifi-
cantly enhance the ability of BMSC transplantation to repair
spinal cord tissue in SCI rats.

3.7. H2 Enhances the Migration and Survival of BMSCs after
Transplantation. Three and 28 days after SCI, the number
and distribution of BMSC-GFP in the spinal cord were
observed using immunofluorescence staining (Figure 7).
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Figure 1: The characterization of BMSCs. (a) BMSCs were observed using a microscope. BMSC-GFP cells showed green fluorescence (b)
under a fluorescence microscope. (c–e) The result of BMSCs cultured in osteogenic, lipogenic, and chondrogenic media for 3 weeks. (f)
The rates of CD90, CD105, CD73, CD45, CD34, CD11b, and CD19 positivity on P3 BMSCs.
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GFP positivity was used to identify transplanted BMSC-
GFP. Immunofluorescence results showed that there were
no green fluorescent cells in either the sham group or the
SCI group. Three days after cell transplantation, green fluores-
cent cells were observed in both the BMSC group and the H2-
BMSC group, and the number of green fluorescent cells in the
H2-BMSC group (501:60 ± 67:32) was much higher compared
with that in the BMSC group (259:80 ± 68:42). After 28 days
of cell transplantation, no green fluorescent cells were found
in the BMSC group (0), but green fluorescent cells were still
visible in the H2-BMSC group (156:60 ± 62:61). H2 signifi-
cantly increased the number of BMSCs in the injured spinal
cord (Figure 7, P < 0:05). On the one hand, the possible reason
is that H2 can enhance the anti-injury ability of transplanted
BMSCs, allowing them to survive better in the injured spinal
cord, and on the other hand, it enhances the migration ability
of transplanted BMSCs, allowing more transplanted cells to
enter the injured spinal cord.

3.8. H2 Can Enhance the Ability of BMSCs to Suppress
Inflammation in SCI. The levels of IL-1β, TNF-α, and IL-6
were detected at 3 and 28 days after SCI via ELISA

(Figure 8). The levels of TNF-α, IL-1β, and IL-6 in the SCI
group increased significantly compared with those in the
sham group (P < 0:05). The TNF-α, IL-1β, and IL-6 content
in the BMSC and H2-BMSC groups were much lower than
that in the SCI group (P < 0:05). In addition, the levels of
TNF-α, IL-1β, and IL-6 decreased significantly in the H2-
BMSC group compared with the BMSC group (P < 0:05).
All these results indicated that H2 can enhance the ability
of BMSCs to suppress inflammation in SCI.

3.9. H2 Can Enhance the Ability of BMSCs to Suppress
Oxidative Stress in SCI. The content of MDA and SOD
reflects the level of spinal cord oxidative stress. The levels
of MDA and SOD were measured 3 and 28 days after SCI
(Figure 9). After 3 and 28 days, the SOD activity at the injury
site of SCI rats was significantly decreased, and the MDA
content was increased significantly, especially 3 days after
SCI. Compared with the SCI group, the SOD activity was
significantly increased, and the MDA level was significantly
decreased in BMSC and H2-BMSC after 3 and 28 days
(P < 0:05). In addition, compared with the BMSC group,
MDA decreased significantly, and SOD activity increased
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Figure 2: H2 promotes the proliferation ability of BMSCs. (a) The proliferation of BMSCs detected by using EdU staining. (b)
Immunofluorescence cell count in EdU detection. (c) Cell proliferation after 0, 6, 12, 24, and 48 h detected by using CCK-8. Data as
mean ± SD, ∗P < 0:05 vs. BMSC group (n = 6).
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significantly in the H2-BMSC group (P < 0:05). H2 markedly
enhanced the ability of BMSCs to suppress oxidative stress
in SCI after SCI.

4. Discussion

This study was aimed at investigating the hypothesis that H2
can promote BMSC transplantation in the treatment of SCI
in rats. Our study confirmed that BMSC transplantation had
a good effect on the treatment of SCI, which was consistent
with published studies [42, 43]. In addition, we found that
H2 can significantly enhance the therapeutic effect of BMSCs
on SCI. This study confirmed that H2 promotes the thera-
peutic effect of BMSC transplantation in the treatment of
SCI in rats. It provides a simple and effective measure for
stem cell transplantation in the treatment of SCI.

The treatment of SCI is still a worldwide problem [44,
45]. Studies have shown that excessive production of free
radicals, such as reactive oxygen species (ROS) in the early
stage of SCI, can lead to oxidative damage to DNA, lipids,
and proteins, resulting in 8-hydroxydeoxyguanosine (8-
OHdG), 4-hydroxynonenal (4-HNE), and nitrotyrosine
(NTY) [46]. In the early inflammatory response stage of

SCI, a large number of microglia proliferate and activate,
leading to the occurrence of an inflammatory cascade,
resulting in the occurrence of secondary SCI [47]. Changes
in the spinal cord microenvironment may not only cause
further damage to the spinal cord but also lead to low viabil-
ity of transplanted cells and limited therapeutic effects. The
key to the recovery of the nervous system function is the sur-
vival of nerve cells and the regeneration of axons. Reynolds
et al. extracted neural stem cells with differentiation poten-
tial from rat nerve tissue and applied them to the treatment
of SCI, bringing hope to the treatment of SCI [48]. At pres-
ent, most animal experiments have shown that the acute
phase of SCI is the best period for stem cell transplantation
[18, 19]. In clinical trials, some scholars found that the effect
of BMSCs on acute and subacute SCI was significantly better
than that on chronic SCI [49]. The special microenviron-
ment in the acute phase of SCI can not only aggravate the
degree of SCI but also lead to problems such as a low sur-
vival rate of transplanted stem cells, insufficient secretion,
and poor directional differentiation ability [16]. At present,
there are many ways to treat SCI with BMSCs, including
intralesional transplantation, ICT, and intravenous trans-
plantation [50]. Clinical trials have confirmed the safety of
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Figure 3: H2 promotes the migration ability of BMSCs. (a) shows the cell migration in the BMSC and H2-BMSC groups at 6 h
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the clinical transplantation cells via ICT [51, 52]. Though the
more effective therapy for cell transplantation is ICT, the
effectiveness of delivery cells to the injured lesion is 4.1%
at 4 days and drops to 3.4% at 21 days [53]. The reasons
for the low survival rates postadministration of the trans-
planted cells remain unclear. Multiple factors affect cell sur-
vival, including inflammation, oxidative stress, immune
reactions of the host, and the interplay with grafted cells
[54]. Studies have shown that early engraftment cell survival
can be significantly improved by reducing inflammation and
oxidative stress in the SCI area [55]. The effect of immune

reactions of the host, the interplay of grafted cells with trans-
planted cells, and the effect of H2 on local immune responses
need to be further investigated [50, 56].

Different scholars have made many attempts to solve
the problems of the low survival rate of transplanted cells
and the poor therapeutic effect. Our previous study found
that hypoxic preconditioning can increase the effects of
BMSC on SCI in rats [17]. Luo et al. studied the cotrans-
plantation of neural stem cells and olfactory ensheathing
cells and found that cotransplantation could promote the
survival of neural stem cells and improve hyperalgesia
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[57]. Gong et al. found that the transfection of BMSCs
through lentivirus-mediated neurotrophic factor 3 can sig-
nificantly improve the effect of cell transplantation in the

treatment of SCI [58]. Yazdani et al. achieved a certain
effect through the combined transplantation of autologous
Schwann cells and BMSCs in the treatment of chronic SCI
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[59]. Although these methods have enhanced the effect of
cell transplantation in the treatment of SCI to a certain
extent, there are problems such as complicated operations
and unsatisfactory effects. The present study combined H2
with BMSC strategies in experiments to enhance the sur-
vival rate, migration, and neurological recovery of trans-
planted cells.

H2 is a common small-molecule gas in nature. There are
hydrogen-producing bacteria in the human intestine. In the
past, it was believed that hydrogen could not react biologi-
cally with organisms in the body [60]. In 2007, Ohsawa
et al. found that hydrogen can selectively scavenge hydroxyl
radicals (·OH) and peroxidative nitrate anions (ONOO-),
showing a strong antioxidant effect, which started the

upsurge of research on hydrogen in medicine [22]. Unlike
most well-known antioxidants, the key of H2’s role is to neu-
tralize free radicals, which has the following advantages: (1)
H2 has a selective antioxidant effect and does not affect the
molecular action through signaling mechanisms, (2) H2
itself and its reaction products are nontoxic, and (3) H2
can easily pass through the blood-brain barrier and pene-
trate deep into the cell. H2 not only plays an antioxidant role
by scavenging free radicals but also has anti-inflammatory
and antiapoptotic effects [61–63]. At present, the adminis-
tration methods of H2 to treat diseases mainly include inha-
lation of H2 [64], HRS injection [62, 65–67], and drinking
HRS. Among them, H2 inhalation was the first to be used,
but because H2 is flammable and explosive, there are certain
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risks, and the requirements for equipment are relatively
high, which limits the application of this method [64]. In
animal studies, intraperitoneal injection of HRS is more
commonly used because of its convenient application and
controllable dose. H2 therapy has been successful in various
animal models of ischemia–reperfusion injury, Alzheimer’s
disease, carbon monoxide toxicity, delayed encephalopathy,
and atherosclerosis [23–25]. Therefore, this experiment also
adopted the way of intraperitoneal injection of HRS. H2 has

been widely used in the treatment of SCI with good results
[26–30, 68, 69]. To solve the problem of the low local con-
centrations of hydrogen, we designed a pH-responsive deliv-
ery of H2 to treat SCI and achieved good results [30]. The
mechanism of H2 in the treatment of SCI is mainly to
improve the local microenvironment of the injured spinal
cord and to reduce the local inflammatory response, oxida-
tive stress, and glial scar formation. However, H2 has no
obvious regeneration effect on damaged neurons and axons.
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Therefore, in this experiment, the method of using H2 com-
bined with stem cell transplantation to treat SCI achieved a
good therapeutic effect and greatly prolonged the survival
time and quantity of transplanted cells in the spinal cord.

There are several deficiencies in this experiment. First,
many studies have shown the therapeutic effect of hydro-
gen on SCI, but the mechanism of action is unclear. The
specific molecular mechanisms involved in this process
require further basic research. Second, rats were used in
this study because of their maturity, and the operation is
simple, safe, and reproducible with the rat SCI-modeling
technology. However, there are differences between
humans and rats. Further studies are needed to confirm
the therapeutic effect of H2-BMSC in humans. Third,
whether H2 promotes the effectiveness of BMSC transplan-
tation in rats with SCI in a dose-dependent manner needs
to be further explored. The reason we did not perform the
H2 dose-dependent assay in the cellular experiments was
that HRM with different H2 concentrations was difficult
to prepare and could not be precisely controlled, resulting
in experimental error. We speculated that H2 promoted
the proliferation and migration ability of BMSCs in a
dose-dependent manner. However, the conclusions need
to be proven by further experiments.

In conclusion, we reported a novel strategy to treat SCI
by combining hydrogen and BMSC transplantation. Hydro-
gen can enhance the migration and proliferation of BMSCs
to repair SCI. Hydrogen and MSC codelivery is an effective
and simple method to improve BMSC transplantation in
the treatment of SCI.
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