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Abstract

Background: Manual contouring is very labor-intensive, time-consuming, and subject to 

intra- and inter-observer variability. An automated deep learning approach to fast and accurate 

contouring and segmentation is desirable during radiotherapy treatment planning.

Purpose: This work investigates an efficient deep-learning-based segmentation algorithm in 

abdomen computed tomography (CT) to facilitate radiation treatment planning.

Methods: In this work, we propose a novel deep-learning model utilizing U-shaped Multi-

Layer Perceptron Mixer (MLP-Mixer) and convolutional neural network (CNN) for multi-organ 

segmentation in abdomen CT images. The proposed model has a similar structure to V-net, while 

a proposed MLP-Convolutional block replaces each convolutional block. The MLP-Convolutional 

block consists of three components: an early convolutional block for local features extraction 

and feature resampling, a token-based MLP-Mixer layer for capturing global features with high 

efficiency, and a token projector for pixel-level detail recovery. We evaluate our proposed network 

using: 1) an institutional dataset with 60 patient cases, and 2) a public dataset (BCTV) with 30 

patient cases. The network performance was quantitatively evaluated in three domains: 1) volume 

similarity between the ground truth contours and the network predictions using the Dice score 

coefficient (DSC), sensitivity, and precision; 2) surface similarity using Hausdorff distance (HD), 

mean surface distance (MSD) and residual mean square distance (RMS); 3) the computational 

complexity reported by the number of network parameters, training time, and inference time. The 

performance of the proposed network is compared with other state-of-the-art networks.

Results: In the institutional dataset, the proposed network achieved the following volume 

similarity measures when averaged over all organs: DSC = 0.912, sensitivity = 0.917, 

precision=0.917, average surface similarities were HD = 11.95mm, MSD = 1.90mm, RMS = 

3.86mm. The proposed network achieved DSC = 0.786 and HD = 9.04mm on the public dataset. 

The network also shows statistically significant improvement, which is evaluated by a two-tailed 
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Wilcoxon Mann-Whitney U test, on right lung (MSD where the maximum p-value is 0.001), 

spinal cord (sensitivity, precision, HD, RMSD where p-value ranges from 0.001 to 0.039), and 

stomach (DSC where the maximum p-value is 0.01) over all other competing networks. On the 

public dataset, the network report statistically significant improvement, which is shown by the 

Wilcoxon Mann-Whitney test, on pancreas (HD where the maximum p-value is 0.006), left (HD 

where the maximum p-value is 0.022) and right adrenal glands (DSC where the maximum p-value 

is 0.026). In both datasets, the proposed method can generate contours in less than five seconds. 

Overall, the proposed MLP-Vnet demonstrates comparable or better performance than competing 

methods with much lower memory complexity and higher speed.

Conclusions: The proposed MLP-Vnet demonstrates superior segmentation performance, in 

terms of accuracy and efficiency, relative to state-of-the-art methods. This reliable and efficient 

method demonstrates potential to streamline clinical workflows in abdominal radiotherapy, which 

may be especially important for online adaptive treatments.
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1. Introduction

Radiation treatment planning requires segmentation on computed tomography (CT) images 

of tumor targets as well as all organs within or near planned radiation fields. Contour 

accuracy is of critical importance as treatment planning aims to spare these normal 

organs while delivering maximal radiation dose to the tumor. Contour errors may result in 

excessive dose to normal tissues or geographic miss of tumor targets. Manual contouring 

is a labor-intensive and time-consuming task, typically requiring an hour or more of 

dedicated physician effort with results ultimately influenced by the judgment and individual 

experience of the treating physician. Manual contouring therefore represents a bottleneck 

in the treatment planning workflow that additionally introduces inter-observer variance. For 

sites such as the abdomen, studies have demonstrated that image-guided online adaptive 

radiation therapy can enhance target coverage while maximally sparing organs-at-risk 

(OARs) by accounting for physiologic motion (e.g. respiration and changes in bowel 

filling).1,2 While manual replanning is possible to account for these changes, it is expensive 

and time-consuming. Therefore, an automated deep learning approach to fast and accurate 

contouring and segmentation is desirable.3,4

Automated image segmentation is currently dominated by architectures based on fully 

convolutional neural networks (CNNs), which learn dataset-specific features from the 

available datasets. Models based on U-shape symmetric CNNs (Unets5 for 2D images 

and Vnets6 for 3D volumes) demonstrate useful accuracy in various CT-based organ 

(e.g. Abdominal organs, Head and Neck organs, Kidney tumors and more) segmentation 

tasks7–11. These models have two components: an encoder consisting of multiple 

convolutional blocks that gradually down-sample the input scans to learn the semantic 

features from the different resolutions, which is followed by a convolutional decoder that 

recovers the semantic features at the size of the original input and assembles an N-organ 

segmentation mask. In addition, a skip connection strategy concatenates the outputs of the 
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encoder and decoder in a resolution-wise manner in order to forward the information lost in 

the down-sampling process to the decoder, thus improving segmentation accuracy.

The fundamental U-shape architecture has been further extended, as in Unet++12 

and nnUnet13, or augmented with auxiliary modules3,4,14–17 implementing residual 

connections18, self-attention19, and deep supervision15, to yield better segmentation 

performance. Despite their success, the locality of the convolutional block in U/Vnets 

limits the network’s ability to learn long-range dependency across images, thereby 

limiting segmentation accuracy. Vision transformers (ViTs)20, which effectively capture 

long-distance features, have recently been explored as a potential solution to this problem. 

Chen et al.21 deployed a ViT in Unet to segment multiple organs in 2D abdominal images. 

They utilized multiple ViT layers after the Unet convolutional encoder to model long-range 

representation and reported better performance than traditional CNNs. Hatamizadeh et al.22 

reported state-of-the-art segmentation accuracy on the 3D CT BCTV abdomen dataset 

using a ViT encoder in place of the convolutional encoder in Vnet. Zhou et al.23 also 

achieved improved accuracy on the BCTV dataset by replacing most of the convolutional 

blocks in Vnet with a 3D sliding window ViT model that implemented a 3D extension 

of efficient Swin-like transformer layers24. Not limited to the networks mentioned above, 

more transformer-based segmentation networks25–30 were proposed and demonstrated state-

of-the-art performance in different medical segmentation tasks.

Transformer-based models demonstrate promising performance by capturing global features, 

but this performance comes at a cost: the number of parameters in the transformer layers 

grows quadratically with the dimension of the input scans/feature maps31. As a result, most 

transformer-based models are computationally-intensive with burdensome requirements for 

GPU memory and training and inference time, especially when applied to 3D medical 

image segmentation. The Multi-Layer Perceptron Mixer32 (MLP-Mixer) was proposed as 

a solution to linearize this computational complexity and accelerate computing speeds 

while maintaining effective modeling of global features. Instead of learning features by 

convolutions or self-attentions, the MLP-Mixer is constructed on multi-layer perceptrons 

(MLPs) to learn relationships across the input’s spatial channels and feature channels. 

Therefore, the MLP-Mixer can learn global feature while avoiding the computational 

complexity from the self-attentions. An MLP-Mixer model proposed by Valanarasu et al.33 

for 2D skin cancer segmentation reported comparable accuracy with the state-of-the-art 

transformer-based models but with much lower computational complexity. Motivated by 

this work, we propose an MLP-Mixer-based network for efficient multi-organ segmentation 

in 3D abdominal CT scans. To our knowledge, this is the first MLP-Mixer segmentation 

network for 3D CT images.

To this end, we propose a Token-based MLP-Mixer Vnet (MLP-Vnet) for segmentation of 

multiple organs on abdominal CT images. While this work follows the framework of MLP-

Vnet, it is distinguished by the formulation of novel token-based MLP blocks, which learn 

global representations when inserted in the late layers of the encoder and decoder. These 

MLP blocks achieve segmentation performance superior to ViTs with orders-of-magnitude 

gains computational efficiency. Two datasets are used to evaluate the network: 1) we first 

segment the heart, kidney, liver, lung, spinal cord, and stomach in an institutional dataset 
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collected from 60 patients; 2) to aid in standardized comparison to competing methods, 

we then segment the aorta, gallbladder, kidney, liver, pancreas, spleen, and stomach from 

30 patients comprising the BCTV dataset. Quantitative evaluations and analysis, including 

volume accuracy, surface accuracy, and computation complexity, are presented for both 

datasets.

2. Method

MLP-Vnet deploys a 3D U-shaped symmetric encoder-decoder architecture (Fig. 1a). The 

encoder is a contracting path consisting of one convolutional layer with kernel size 1 and 

one residual convolutional block13, followed by three down-sampling token-based MLP 

blocks to capture the compressed semantic context in the input scans (Fig. 1b). The decoder 

is a symmetric expanding path which has two token-based MLP blocks followed by two 

residual convolutional blocks. An additional 1 × 1 × 1 convolutional layer and a Softmax 

activation function transforms the decoder’s features into an N-class segmentation mask. 

Each token-based MLP block consists of 1) an early convolutional block, 2) a tokenizer, 

3) four MLP-Mixer layers, and 4) a token projector in the encoder and decoder. Encoder 

features across resolutions are connected to layers of equal resolution in the decoder. This 

design is motivated by recurrent tokenization34. The MLP-Mixer blocks are inserted in the 

deep layers of the encoder and decoder, since early successive convolutional layers encode 

more precise pixel-level information than transformers23.

2.A.I Token-based MLP-Mixer block

In our token-based MLP-Mixer block, input scans or features are defined as a 4D map 

X ∈ ℝH × W × L × D, where H, W, L represent the dimensions of the input, and D represents 

feature map channel. Following the pipeline shown in Fig. 1b, inputs are first passed 

to an early resampling convolutional block, which aims to extract local representations 

from X. We flatten the resampled local features across dimensions before feeding the 

flattened feature Xc into a tokenizer to obtain a group of compact semantic tokens Tin. 

In linear-layer-based networks, tokenization of features allows the network to focus on 

regions essential to performance, accelerating convergence during training while improving 

inference generalization. Multiple MLP-Mixer layers take the tokens Tin as inputs and 

Tout as outputs to learn local interactions between voxels within each token and global 

interactions between tokens. Finally, a token projector refines the tokens Tout by adding 

pixel-level detail via the features Xc.

2.A.I.a Early convolutional block—We first perform a local spatial feature extraction 

on the inputs using a convolutional layer, instead of directly splitting the input into fixed-size 

patches as in the vanilla MLP-Mixer. An early convolutional layer facilitates optimization 

convergence of the linear-layer-based networks and improves training stability. In each 

layer of the encoder, input scans or feature maps X yield higher-dimensional features 

Xout ∈ ℝ
H
2 × W

2 × L
2 × 2D, to learn down-sampled semantic concepts. With multiple down-

sampling layers, the encoder can learn hierarchical representations in different image scales. 

Formally, in the encoder, the down-sampling layers in each MLP block is a convolution with 

kernel size 3 × 3 × 3 and stride size 2 × 2 × 2. Instance normalization and a Gaussian Error 
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Linear Unit (GELU) c activation function is applied following the convolutional layer. In the 

decoder, each up-sampling layer is a transposed convolution with kernel size 2 × 2 × 2 and 

stride size 2 × 2 × 2. The convolutional blocks of the decoder mirror those of the encoder, 

resulting in up-sampling interpolation. Convolution channel D was chosen as 32, 64, 128, 

and 256 for the first to fourth layers in the encoder, and likewise 256, 128, 64, 32 were 

selected for the decoder.

2.A.I.b Tokenizer: Sparse tokenization—After local features Xout are flattened 

to Xc ∈ ℝ
H × W × L

8 × 2D, a tokenizer pools the feature maps into a compact set of 

visual tokens T in ∈ ℝN × 2D, where N is the number of tokens, and N ≪ H × W × L
8 . 

This tokenization strategy, initially proposed in Token-based Transformer34, accelerates 

convergence in training and improves generalization during inference by reducing irrelevant 

information from the input features. In our encoder, the tokenization is generated by a 

filter-based tokenizer:

T in = SoftmaxHW L XcW F + BF
T XcW A + BA (1)

where W F ∈ ℝ2D × N, BF ∈ ℝ1 × N denotes weights and bias of a fully-connected layer, 

W A ∈ ℝ2D × DMLP, BA ∈ ℝ1 × DMLP denotes another fully-connected layer, and SoftmaxHWL 

represents a Softmax function across the first dimension. In practice, since any linear layer 

can be efficiently approximated by a convolutional layer with 1 × 1 × 1 filters, we implement 

WF in this way.

In the decoder, we take advantage of the Unet skip connection to further refine the 

tokenization of the feature maps. Unlike typical skip connections which implement matrix 

concatenation for detailed information forwarding, we apply recurrent-based tokenization as 

in Token-based transformer. Recurrent-based tokens utilize the preceding encoder’s tokens 

to guide decoder token generation resulting in better representations. The formulation of the 

recurrent-based tokens is:

T in = SoftmaxHW L XcW R1T prevW R2 + BR
T(XcW B + BB) (2)

where W R1 ∈ ℝ2D × N, W R2 ∈ ℝDMLP × DMLP, denotes weights from two fully-connected 

layers, and BR ∈ ℝ1 × N, BB ∈ ℝ1 × N are bias from the last fully-connected layer. In the 

encoder, the numbers of tokens were empirically chosen as 384,196,98 for the first to the 

third token-based MLP-Mixer blocks, respectively. The numbers of tokens in the decoder 

are then set to 196 and 384 likewise. The embedding dimension DMLP was set to 512 

for all layers. Layer normalizations are applied to both the filter-based and recurrent-based 

tokenizers.

2.A.I.c MLP-Mixer layer—We then deploy four MLP-Mixer layers of identical size 

to calculate the global interactions within and between tokens. Each MLP-Mixer layer 

is composed of 1) a token-mixing MLP that calculates the information shared across 
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all features (the voxels in columns) and 2) a channel-mixing MLP that calculates the 

information shared across all channels (the voxels in rows):

U = T in + λ(W 2 · σ W 1 · T in + B1 + B2) (3)

T out = T in + λ(W 4 · σ W 3 · Utranspose + B3 + B4) (4)

where W 1 ∈ ℝDs × N, W 2 ∈ ℝN × Ds, W 3 ∈ ℝDc × N, W 4 ∈ ℝN × Dc are four linear weights 

of four linear layers, respectively; B1 ∈ ℝ1 × Ds, B2 ∈ ℝ1 × D, B3 ∈ ℝ1 × Dc, B4 ∈ ℝ1 × D are 

corresponding biases, σ is a GELU activation function, λ is a layer normalization, and 

Utranspose is a transposed version of the output U from Eq. (3). In practice, MLP channel Dc 

is empirically set to 768 (three times of the 256 input channels), and token channel Ds is set 

to the number of the corresponding input’s token. For each MLP-Mixer layer, a drop path35 

with rate of 0.2 is applied to reduce overfitting.

2.A.I.d Tokenizer: Token projector—Tout is then fused with corresponding input 

features Xc through a token projector. We aim to recover the pixel-level details, which 

may be necessary for segmentation, but could be lost in the tokenization process, to emend 

the final feature map. For each token Tout, we calculate:

Xout = Xc + SoftmaxN XcW Q + BQ T outW k + BK
T T outW v + Bv (5)

where W Q ∈ ℝ2D × N, W K ∈ ℝDMLP × N, W K ∈ ℝDMLP × 2D, BQ ∈ ℝ1 × N, BK ∈ ℝ1 × N, 

Bv ∈ ℝ1 × 2D are weights and biases, and softmaxN denotes a Softmax activation function 

across the last dimension. A layer normalization and GELU activation is then applied to 

each Xout.

2.B Post processing: connected components suppression

Connected component-based post-processing13 is applied to the final network output to 

eliminate small false positives generated by the network. For each organ, we detect all 

connected components by using a connectivity of 26 in three dimensions. We then remove 

all but the largest connected components.

3. Data Acquisition and Preprocessing

3.A Institutional dataset

We aim to segment the heart, left and right kidney, liver, left and right lung, spinal cord, 

and stomach using the institutional dataset contains 59 patients. CT scans were acquired 

on Siemens SOMATOM Definition AS CT scanner with tube voltage at 120 kVp. The 

voxel size is 1×1×1.5 mm with 512×512 voxels at each slice. Organs were contoured on 

CT images by physicians in our department during the initial treatment planning process. 

Two expert physicians went over all the contours and had an agreement with organ 

delineations for each patient. Each CT scans were centered and boundary-cropped to reduce 

non-body voxels. Abdominal CT scans and matching physician-generated manual ground 
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truth contours were resampled to 2 × 2 × 3 mm. In each training iteration, four patches 

with size 160 × 160 × 64 are randomly selected from a CT scan, conditioned on each patch 

containing at least six organ classes. During inference, segmentation is predicted using a 

sliding window approach in which the window size is set equal to the patch size, overlap 

is 80% of patch size, and Gaussian weighting is applied to the edges of the windows. 

Data augmentation undertaken to improve generalization includes rotation through −20 

to 20 degrees, rescaling from −0.2x to 0.2x original size, and elastic deformation with 

deformation grids of size 2 generated by a normal distribution with a standard deviation of 

5. In addition, augmented and original images were mixed using Mixup augmentation36 with 

Mixup parameter 0.2. For both training and inference, the voxel intensities of all scans were 

independently normalized to the interval [−1, 1]. The dataset was split into five groups, with 

each of four groups contains 12 patients and one group contains 11 patients. Four of the 

groups were used for training and the rest one group were used for inference. The process 

was repeated five times until all 59 patients were used for inference. During inference, the 

probability map generated by the network is recovered to the original spacing of the input 

images and a Softmax function and argmax function are applied to convert the probability 

map into segmentation results.

3.B Public dataset: Beyond the Cranial Vault MICCAI Challenge 2015

Results on the public dataset from the Beyond the Cranial Vault (BCTV)37 segmentation 

challenge presented in 2015 at the 18th International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI), are also provided for 

benchmark performance comparison. The dataset contains 13 organs: spleen, right and left 

kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, portal and splenic 

veins, pancreas, and the right and left adrenal glands (RAG and LAG). It consists of 30 

labeled patient CT scans, each with 13 annotated organs. Each CT scans comprises 80 to 

225 axial slices, each with 512 × 512 pixels. All scans were resampled to voxel spacing 

of 0.76 × 0.76 × 3 mm. We adopted the same patch-based input for training and the same 

sliding window prediction for inference. The patch size was chosen as 96 × 96 × 96. The 

data augmentation, normalization and resampling methods described above as applied to the 

institutional dataset were likewise applied to this public dataset.

4. Implementation detail and performance evaluation

4.A Implementation details

All experiments were implemented using the PyTorch framework in Python 3.8.11 on a 

workstation running Windows 11 and executed on a single NVIDIA RTX 6000 GPU with 

48GB memory. The Adam optimizer38 was employed with an initial learning rate of 3e-4 

and weight decay of 3e-5 across 800 epochs, each representing a complete iteration through 

the entire training dataset.

4.B Accuracy evaluation

We evaluate the proposed network in terms of both accuracy and efficiency. We calculate 

volume-based similarities and surface-based similarities between the predicted and ground 

truth segmentations for accuracy evaluations. The volume-based similarities include Dice 
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similarity coefficient (DSC), sensitivity (the proportion of organ pixels correctly classified), 

and precision (the ratio of non-organ pixels correctly classified). Volume-based similarities 

of greater value indicate high accuracy. Surface-based similarities are described as distance 

metrics between predicted and ground truth segmentations. Therefore, smaller values 

indicate greater accuracy. These include the 95-percent Hausdorff distance (HD), mean 

surface distance (MSD), and residual mean square distance (RMSD). Five-fold cross-

validation was applied to the evaluation of the institutional dataset. Final performance 

is reported as the average accuracy and efficiency across the five folds. For the BCTV 

dataset, we follow the procedure of TransUnet and UNETR: the model is trained on 

18 images and performance is evaluated on the remaining 12 scans.21,23 We compared 

the network’s performance with other state-of-the-art networks, including two CNN-based 

networks: Vnet and nnUnet, and two transformer-based networks: UNETR and nnFormer. 

The competing network’s configuration are shown in Appendix. D in the supplementary 

material. To standardize the comparison, we matched the choice of optimizer, learning 

rate, data augmentation strategy and patch input size for all networks. To evaluate the 

performance of the proposed network against that of competing methods, a two-tailed 

Wilcoxon Mann-Whitney U test was used with a α=0.05.

4.C Efficiency evaluation

To evaluate computational efficiency, total training time of 800 epochs, and inference 

time per patient. Ablation studies are reported utilizing the first cross-validation split of 

the institutional dataset. We first evaluate the effect of MLP-Mixer layers: we compare 

MLP-Vnet vs. transformer-Vnet by replacing the MLP-Mixer layers with transformer 

layers inside each MLP-Mixer block. We then compare the entire MLP-Mixer block 

with Swin-transformer-Vnet by replacing the entire block with Swin-transformer layers. 

Tokenization is evaluated by replacement with a typical patch embedding process with input 

features split into patches with size 2 × 2 × 220 and the projection is replaced by patch 

upsampling processing. The output patches are resampled to the original input size by one 

de-convolutional layer with kernel size and stride of 2. The network details can be found in 

the Appendix. E in the supplementary material.

5. Result

5.A Contribution of MLP-Mixer layer and tokenization

To demonstrate the contribution of the proposed MLP-Mixer layer and tokenization, we 

first compare MLP-Vnet against transformer-Vnet (T-Vnet) and Swin-transformer-Vnet (ST-

Vnet) using the institutional dataset. We then evaluate the performance of MLP-Vnet with 

and without (N-Vnet) tokenization. Results are shown in Table. S-B1 in Appendix. B. 

Computational complexity results are shown in Table. 1. More details, including violin plots, 

which show networks’ performance distributions, and volume-based analysis, can be found 

in Appendix E, F, and G.

5.A.I: Comparison with T-Vnet and ST-Vnet—The proposed MLP-Vnet achieved 

superior result or one of the superior results on heart, left kidney, liver, left lung, right lung, 

and spinal cord in terms of DSC, sensitivity, and precision. It achieved the second-best 

Pan et al. Page 8

Med Phys. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



result among all competing networks for right kidney and stomach. Compared to T-Vnet and 

ST-Vnet, in terms of all the organs, there is no significant performance difference between 

the proposed network and T-Vnet or ST-Vnet.

For surface-based accuracy, MLP-Vnet achieved the best or the second-best HD/MSD for 

left and right kidney, liver, left and right lung, spinal cord, and the best or the second-best 

RMSD for left lung and spinal cord, although these differences did not reach statistical 

significance relative to T-Vnet/ST-Vnet (p > 0.05). We conclude that the MLP-Mixer layer 

adopted here provides superior or comparable accuracy relative to transformer-based layers.

During computational complexity analysis, it was found that the MLP-Vnet requires 18% 

fewer parameters than T-Vnet to achieve this performance. As a result, MLP-Vnet is 

approximately 20% faster in training and inference compared to T-Vnet. On the other 

hand, although MLP-Vnet requires more parameters than ST-Vnet, MLP-Vnet is much 

faster in training and inference. The proposed MLP-Mixer layer presented here effectively 

improves computational speed over traditional transformer and Swin-transformer layers. In 

conclusion, the MLP-Vnet can maintain better or comparable accuracy with the T-Vnet and 

ST-Vnet while providing better computational efficiency

5.A.II: Comparison with the N-Vnet—Due to the structure of its tokenization strategy, 

MLP-Vnet achieves lower surface-based distance error on most organs and superior volume-

based accuracies over N-Vnet on all organs except stomach. Compared to the T-Vnet, ST-

Vnet, and MLP-Vnet, the N-Vnet obtains non-negligible worse accuracies on most organs. 

Accordingly, directly applying MLP-Mixer layers in the proposed network can adversely 

affect the segmentation performance. Therefore, a tokenization strategy is necessary to 

improve the generalization of the MLP-Mixer layers and achieve state-of-the-art results. 

Despite MLP-Vnet containing a similar number of parameters, it greatly reduces the time 

required for training and inference relative to N-Vnet due to a reduction of convolutional 

layers.

5.B Comparison with state-of-art methods

We present the quantitative and statistical comparison between MLP-Vnet and other state-

of-the-art methods.

5.B.I Accuracy comparison in the institutional abdomen dataset—A 

performance comparison between MLP-Vnet and other state-of-the-art networks in the 

institutional dataset is presented in Table. S-C1 in Appendix. C. The visual comparison of 

the results of the proposed network with ground truth segmentations and all other competing 

networks are shown in Fig. 2. The proposed MLP-Vnet demonstrates superior results on 

nearly all organs as measured by DSC. In addition, MLP-Vnet achieves at least the second-

best performance in terms of sensitivity and precision. Despite numerical inferiority in some 

measures, these differences are not statistically significant (p > 0.05), so it is concluded that 

MLP-Vnet is comparable to the best competing networks in these measures.

MLP-Vnet also achieves at least second-best surface-based similarity for all organs. In 

organs where it performs with numerical inferiority, statistical significance is not detected 
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when compared to the highest performing model (p > 0.05). We conclude MLP-Vnet 

achieves performance comparable with competing networks in terms of surface-based 

evaluation.

Combining these results with observations from the complexity analysis (Sec. 5.C), we 

conclude MLP-Vnet can achieve results comparable with state-of-the-art networks, with less 

memory consumption and much higher training and inference speed.

5.B.II Comparison in the BCTV dataset—We present the DSC and HD, the official 

evaluations for the BCTV dataset25, in Table 2. Visual comparisons of the proposed network 

with ground truth segmentations and all other competing networks are shown in Fig. 3. 

The proposed MLP-Vnet achieved the best DSC and HD for most organs. MLP-Vnet 

demonstrates statistically significant improvements over the best competing method on 

pancreas (in HD), LAG (in HD) and RAG (in DSC) with no significant difference from the 

best competing network for the other organs.

5.C Efficiency comparison in both datasets

The computational efficiency of the proposed MLP-Vnet is reported in Table 3. Due to 

the self-adaptation mechanism in nnUnet, its memory complexities vary across datasets. 

We report its complexity in both datasets. For the remaining networks, complexities are 

unchanged across datasets. The proposed network achieves the shortest time for training 

and inference for both datasets. Compared to CNN-based networks such as V-net and 

nnUnet, MLP-Vnet reduces time spent in training and inference due to fewer convolutional 

layers while also requiring much less memory compared to the transformer-based networks 

(UNETR and nnFormer) due to the implementation of MLP-Mixer layers in place of 

attention layers.

6. Discussion

We introduce a novel and efficient MLP-Vnet for multi-organ segmentation. To the best of 

our knowledge, we are the first to present:

1. a 3D MLP-Mixer-based network for multi-organ segmentation.

2. a tokenization strategy to facilitate MLP-Mixer layers’ learning in segmentation 

tasks.

The MLP-Vnet consists of two sequential models as shown in Fig. 1: an encoder comprising 

four down-sampling MLP-Mixer blocks to learn hidden features from different resolutions 

of the abdominal scans, followed by a symmetric decoder comprising four up-sample 

MLP-Mixer blocks to reconstruct the segmentation masks of different organs from the 

hidden features. The MLP-Mixer block contains four components (Fig. 1b): 1) an early 

convolutional-based up/down-sample layer to learn local features from the input; 2) a 

tokenizer to sparsely group the features into a few tokens to reduce the computational 

complexity and improve generalization, 3) an MLP-Mixer layer to efficiently learn global 

features from the global features, 4) and finally a token projector which reconstructs the 

MLP-Mixer’s features back to the size of the local feature, to recover pixel-level details for 
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segmentation. In the ablation fraction of the institutional dataset, the proposed MLP-Vnet 

achieve performance which is average among all organs as: DSC = 0.912, sensitivity = 

0.916, precision = 0.920, HD = 7.84mm, MSD = 1.68mm, and RMSD = 3.44mm. As 

shown in Table. S-B1, The proposed MLP-Vnet (using token-based MLP-Mixer layers) 

achieves quantitively better or comparable organ-level performance with the T-Vnet (using 

transformer layer) and ST-Vnet (using Swin transformer layer). At the same time, the 

network takes 18.07 hours for training and is able to generate segmentation maps within 

4.03 seconds for each patient. It shows much higher training and testing efficiency than the 

competing networks (Table. 1). The MLP-Vnet also showed better performance than the 

N-Vnet (using the traditional MLP-Mixer layer) by a large margin. The proposed MLP-Vnet 

also demonstrates improvements in segmentation performance in terms of accuracy (Tables. 

S-B1) and efficiency (Table. 1) compared to state-of-the-art networks. MLP-Vnet obtains 

statistically significant improvement (p<0.05) to all other networks in the right kidney 

(MSD), right lung (MSD), spinal cord (precision), and stomach (DSC) of the institutional 

dataset. It also significantly improved the pancreas (HD), right (DSC), and left adrenal 

glands (HD). The MLP-Vnet does not provide sufficient evidence for the other organs 

to demonstrate significant accuracy improvement compared to the other networks, while 

it achieves higher training and testing efficiency. The result demonstrates potential to 

be a useful tool for automated multi-organ abdomen segmentation within an abdominal 

radiotherapy clinical workflow.

In the entire institutional and public dataset, the MLP-Vnet also achieves state-of-the-art 

results: 1) In the institutional dataset, by average among all the organs, the network achieves 

DSC as 0.912, sensitivity as 0.917, precision as 0.917, HD as 9.04mm, MSD as 1.90mm 

and RMSD as 3.86mm. 2) The network achieves a DSC of 0.786 and HD of 11.74mm in 

the public dataset. The network requires 18.07 hours and 9.36 hours for training, and 4.03 

seconds and 62.29 for generating segmentation per patient in the institutional and public 

datasets, respectively. As shown in the Table. S-C1 and Table. 2, MLP-Vnet demonstrates 

several quantitative and statistical improvements in volume- and surface-based accuracies 

relative to the V-net and UNETR while reducing computational time (Table 3). MLP-Vnet 

also shows comparable accuracies to nnUnet and nnFormer, while using less memory and 

computational time. MLP-Vnet may therefore be applied in radiotherapy clinical treatment 

planning as well as future algorithm development and may accelerate the dose prediction 

network used in pancreatic radiation therapy39.

In our ablation studies, we further prove the utility of two components of the proposed 

MLP-Vnet: 1) the MLP-Mixer layer demonstrates comparable performance with much 

higher efficiency relative to a vanilla transformer or Swin-transformer layer (Table. S-B1 and 

Table. 1) and 2) the tokenization process (a sparse tokenizer with token projector) improves 

volume-based and surface-based accuracy (Table. S-B1). These improvements demonstrate 

the importance of these components in achieving the presented results and suggest greater 

potential to become state-of-the-art techniques in other segmentation tasks.

Despite these gains, we recognize remaining limitations of the MLP-Vnet. MLP-Vnet 

underperformed both nnUnet and nnFormer by 7% in DSC for the pancreas in the BCTV 

dataset as reported in nnFormer23. Furthermore, the MLP-Vnet demonstrates slightly worse 
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performance in all other organs. There are several possible explanations for this observation. 

nnUnet and nnFormer performance in our experiments does not reach that previously 

reported for these networks.23 Because we only modified the data augmentation and pre-

processing routines, we infer these networks are sensitive to changes in these procedures. 

Further optimization of the pre-processing routine for MLP-Vnet, therefore, may also be 

possible. We aim to incorporate more advanced data pre-processing and augmentation 

techniques in future work. Segmentation performance could also be adversely affected 

by poor soft tissue contrast characteristic of CT images, obfuscating organ boundaries. 

Superior soft-tissue contrast could be leveraged from synthetic MRI to guide more accurate 

segmentation. In production, we would intend for all segmentation results to be subject to 

final physician review for quality assurance. In future work, dosimetric evaluation will be 

incorporated to further evaluate the utility of MLP-Vnet in radiation treatment planning. 

The demonstrated memory efficiency and speed during inference further suggests a potential 

role for MLP-Vnet in online adaptive radiation therapy. Further investigations will determine 

whether MLP-Vnet might be reasonably applied to daily cone-beam CT images to provide 

rapid patient organ-at-risk delineation during treatment. Such a strategy would be expected 

to reduce the cost and time delay incurred by manual daily treatment replanning.

7. Conclusion

This work presents a Token-based MLP-Mixer Vnet (MLP-Vnet) for segmentation of 

multiple organs on abdominal CT images. It features the novel token-based MLP blocks, 

which learn global representations when inserted in the late layers of the encoder and 

decoder. The proposed network is demonstrated to achieve better quantitative and statistical 

performance relative to the chosen state-of-the-art segmentation networks in terms of some 

evaluation metrics for limited organs on both institutional and public datasets. On the 

other hand, the proposed MLP-Vnet demonstrated, quantitatively, no better or even slightly 

worse performance compared to the competing networks in the other metrics and other 

organs. However, the MLP-Vnet can bring much higher computational efficiency to the 

segmentation. The presented method allows for efficient and reliable abdominal organ 

segmentation on CT images. It may facilitate the organ delineation during radiotherapy 

treatment planning by saving time from clinicians, as well as daily dose evaluation in 

adaptive radiotherapy by providing real time organ contours.
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Figure 1: 
Network structure: A input scan is fed into an encoder (the first to the fifth layers) to 

learn features, then the features are forwarded to the decoder (the sixth to the tenth layers). 

(b)MLP-Mixer layers: each layer consists of a convolutional layer, a tokenizer, four MLP-

Mixer layers, and a projector. The details of the residual convolutional layer, tokenizer, 

MLP-Mixer, and the projector refer to Fig. S-A1 in Appendix. A.

Pan et al. Page 15

Med Phys. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Segmentation result on the institutional dataset including three patients. The manual 

contours (row 1), MLP-Vnet (row 2) and competing networks (row 3–6) are presented 

column-wise. Three patients’ examples are presented in totally four columns in order: slices 

of one patient are presented in every two columns. Each patient contains slices, including the 

heart (red), lung (light blue and deep orange), spinal cord (blue), kidneys (green and orange), 

liver (yellow), and stomach (purple). For patient #1, a zoom-in region containing the heart is 

displayed. For patient # 2, a zoom-in region shows differences in heart and stomach contours 

among the competing networks.
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Figure 3: 
Segmentation result on BCTV dataset including three patients. Manual contours (column 1) 

as well as results from MLP-Vnet (column 2) and all competing networks (column 3–6) are 

presented column-wise. Each patient’s slices are presented in two rows. For each patient, in 

its first row, central slices containing the spleen (deep red), left kidney (orange), right kidney 

(green), liver (light blue), stomach (blue), aorta (purple), inferior vena cave (cyan), vein 

(magenta), pancreas (light yellow), RAG (red), LAG (deep blue), and gallbladder (yellow) 

are shown. It’s second row presents slices for the esophagus (blue).
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Table 1.

Computational efficiency of the proposed network and competing networks. The training time (in hours) of 

total of 800 epoch and the average inference time (in seconds) of each patient are reported. The least memory 

consumption and the shortest time are presented in bold. The second least memory and the second shortest 

time are underlined.

Memory complexity Computation complexity in Institution dataset

Method Parameter (Million) Training time (Hour) Inference time (Second)

T-Vnet 67.32 23.44 5.19

ST-Vnet 10.13 51.73 11.83

N-Vnet 87.61 20.25 4.97

MLP-Vnet 55.18 18.07 4.03
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Table 2.

Quantitative analysis of segmentation results on the BCTV dataset: Follow the Table 1, the best network(s) and 

the second-based network(s) are bolded and underlined, respectively, for each organ. (Displayed with 2-digit 

precision). P-values are between the results of MLP-Vnet and the best one from the rest competing methods.

DSC V-net nnUnet UNETR nnFormer MLP-Vnet P-values

Spleen 0.89±0.13 0.90±0.16 0.87±0.13 0.91±0.07 0.90±0.13 0.175

Right kidney 0.85±0.28 0.85±0.28 0.83±0.26 0.84±0.28 0.86±0.28 0.436

Left kidney 0.85±0.26 0.86±0.28 0.84±0.28 0.86±0.28 0.87±0.28 0.707

Gallbladder 0.64±0.15 0.66±0.15 0.66±0.16 0.70±0.14 0.76±0.11 0.237

Esophagus 0.69±0.11 0.72±0.13 0.70±0.15 0.70±0.10 0.73±0.15 0.507

Liver 0.95±0.02 0.96±0.01 0.95±0.01 0.96±0.01 0.96±0.01 0.977

Stomach 0.81±0.13 0.76±0.19 0.76±0.20 0.86±0.06 0.84±0.13 0.707

Aorta 0.86±0.03 0.91±0.02 0.87±0.06 0.89±0.03 0.91±0.03 0.707

Vena cava 0.81±0.05 0.88±0.04 0.81±0.07 0.83±0.06 0.86±0.04 0.470

Vein 0.67±0.10 0.72±0.07 0.63±0.17 0.68±0.11 0.73±0.12 0.436

Pancreas 0.68±0.07 0.71±0.10 0.63±0.13 0.70±0.07 0.79±0.05 0.214

RAG 0.60±0.07 0.61±0.10 0.61±0.14 0.61±0.08 0.67±0.09 0.026

LAG 0.54±0.19 0.66±0.10 0.53±0.28 0.63±0.09 0.69±0.07 0.795

Average 0.76 0.79 0.75 0.78 0.81

HD (mm) V-net nnUnet UNETR nnFormer MLP-Vnet P-values

Spleen 11.62±28.86 36.17±120.80 13.55±29.27 13.59±28.02 13.53±29.93 0.152

Right kidney 17.18±49.22 14.51±40.23 15.23±39.24 14.94±41.39 18.14±54.18 0.112

Left kidney 23.20±61.34 18.92±59.55 22.14±53.88 19.02±42.71 17.11±53.84 0.475

Gallbladder 10.29±3.46 7.80±2.70 9.06±6.52 5.99±2.68 5.97±4.14 0.621

Esophagus 8.44±7.62 5.78±2.09 7.71±7.66 5.40±2.61 6.03±3.86 0.862

Liver 5.14±2.92 3.15±0.57 4.98±1.72 5.34±4.93 4.68±3.98 0.838

Stomach 16.43±11.32 25.84±52.39 19.25±21.73 20.74±42.09 13.34±12.97 0.285

Aorta 13.75±23.19 3.31±4.96 10.21±20.32 24.01±52.91 2.20±1.55 0.921

Vena cava 7.75±4.57 3.96±1.66 6.35±2.50 5.25±2.66 4.93±2.64 0.296

Vein 13.74±8.79 11.13±8.79 21.41±16.55 14.97±15.06 9.04±8.05 0.355

Pancreas 14.57±8.29 9.25±4.60 21.44±29.94 18.62±35.9 5.73±1.76 0.006

RAG 6.66±3.47 6.30±3.92 6.85±5.06 5.65±4.40 4.20±2.84 0.082

LAG 37.47±72.89 6.16±4.05 37.20±79.92 6.47±4.05 4.02±2.22 0.022

Average 15.00 11.73 15.06 12.34 8.39
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Table 3.

Computational efficiency of the proposed network and competing networks. The total training time of 800 

epochs in hours and the average inference time of one patient in seconds are presented. For the memory 

complexities of nnUnet, we report its complexity in the institutional dataset followed by its complexity in the 

BCTV dataset inside parentheses. The best network(s) and the second-based network(s) are bolded and 

underlined.

Memory complexity Computation complexity in institutional dataset Computation complexity in BCTV dataset

Method Parameter (Million) Training time (Hour) Inference time 
(Second) Training time (Hour) Inference time 

(Second)

V-net 45.63 26.23 8.28 12.57 131.25

nnUnet 30.76 (30.99) 22.74 7.77 12.17 139.84

UNETR 92.79 19.56 4.72 10.44 68.85

nnFormer 149.51 20.19 4.86 10.59 84.33

MLP-Vnet 55.18 18.07 4.03 9.36 62.29
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