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Abstract

The chirality of small metabolic molecules is important in controlling physiological processes 

and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in 

biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. 

Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse 

drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains 

difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical 

procedures, in part owing to their large variety and low concentration. In this Review, we describe 

current and emerging techniques that detect and quantify small-molecule enantiomers and their 

biological importance.
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Introduction

The identification and detection of distinct biomarkers is important for the diagnosis of 

disease, evaluating disease progression and even the development of therapeutics1–3. Small 

molecules (<1,000 Da) — for example, sugars, fatty acids and amino acids — are gaining 

prominence as novel biomarkers4, largely owing to the ‘omics’ revolution in the past 

decade5. In contrast to other biomarkers, such as proteins and genetic materials, small 

molecules can reflect not only downstream results of the genome but also upstream inputs 

from drugs. This allows scientists to monitor the onset and progress of diseases, as well as 

responses to drugs6.

An advantage of small-molecule biomarkers is that many of them are chiral7. Such 

molecules are referred to as enantiomers, which can be said to exist in ‘right-handed’ 

and ‘left-handed’ forms. Common chiral small molecules in humans (and other species) 

include carbohydrates (for example, glucose), organic acids (for example, lactate and 2-

hydroxyglutarate (2-HG)) and amino acids (for example, serine, aspartate and alanine)8. 

Normally, chiral molecules with specific types of ‘handedness’ will dominate over the other 

types in biological systems9. For example, chiral amino acids exist mainly as L-enantiomers, 

whereas the D-enantiomers of carbohydrates are dominant in all living things10. Such basic 

chemical components are fundamental for stereoselective protein formation. The chirality 

of these small molecules also affects biochemical processes, such as molecular binding, 

molecular synthesis and signalling in cell communication11. Interestingly, the chirality 

of small molecules depends on the physiological status of animals, including humans. 

Internal or external influential factors (Fig. 1), such as toxins, mutations, racemization, 

enzyme deficiencies, infection and radiation, can induce enantioselective changes, leading to 

abnormal chirality of molecules in biofluids or tissues12–14.

Because of the strong correlation between molecular chirality and pathological processes, 

abnormal concentrations of chiral small molecules are increasingly being identified as 

biomarkers for disease monitoring and treatment15,16. For example, many types of cancer 
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cells have a greater enantiomeric excess of D-2-HG than healthy cells. These small 

molecules can be used for disease prognosis and can be used to inform the most effective 

treatment approach17. Similarly, the determination of the D-enantiomers of glutamine and 

isoleucine may help identify patients with early gastric cancer for surgery or specific 

chemotherapies16,17. Diabetic complications and sepsis are linked to enantiomers of lactate, 

the measurement of which has the potential to identify patients who are candidates for 

intensive therapies18. The other main disease area in which chiral small molecules are 

implicated is brain disease. For example, D-serine (D-Ser) accounts for one third of the 

total serine in the brain19,20 and works as a physiological ligand of a key neurotransmitter 

receptor, N-methyl-D-aspartate receptor (NMDAR)21–24. This D-amino acid is synthesized 

by serine racemase25 and has release mechanisms26,27 and catabolic pathways28,29. D-Ser 

is associated with the pathophysiology of several diseases, including traumatic brain 

injury30,31, stroke damage32, neuropsychiatric disorders33,34, epilepsy35,36 and amyotrophic 

lateral sclerosis37,38, and is a potential biomarker for renal disease39. These are just a few 

examples that demonstrate the importance of measuring the enantiomeric composition of 

specific molecules in the diagnosis and prognosis of diseases, monitoring of drug effects and 

prediction of patient responses to treatments40.

This Review focuses on how chiral biomarkers are identified and analysed using the 

different molecular measurement techniques available. First, we describe the identification 

of chiral biomarkers and their correlations with diseases, followed by the difficulties in 

measuring low enantiomeric concentrations in clinical settings. We then discuss the working 

principles, strengths and limitations of the different analytical methods. We conclude by 

discussing the challenges and future perspectives of existing methods in achieving cost-

effective and accurate detection and identification of enantiomers for biomedical research 

and clinical applications.

Chiral molecules in diseases

There are two major strategies for discovering and identifying chiral biomarkers. One 

is to hypothesize the existing potential chiral biomarkers based on chirality-dependent 

physiological pathways and then to validate the hypothesis through targeted biomarker 

detection41. The other strategy is to identify metabolites (a subset of which are chiral 

small-molecule biomarkers) in human bodies in an untargeted way42. Chiral biomarkers 

can then be identified by establishing correlations between metabolite profiles and disease 

status43,44. In this section, we discuss established correlations between chiral biomarkers 

and diseases for three categories of disease (brain diseases, kidney disease and diabetes, and 

cancer), and how these biomarkers were identified.

Brain physiology and pathology

NMDARs are major excitatory receptors in the brain and are activated by the binding 

of glutamate to GluN2 and a co-agonist to the GluN1 subunit45. The binding events 

between endogenous neurotransmitters and NMDARs in synapses are pivotal for 

neurotransmission23,45,46. Overstimulation or hypofunction of NMDARs by endogenous 

modulators can lead to synaptic dysfunction and cognitive impairments47. Recent studies 

Liu et al. Page 3

Nat Rev Chem. Author manuscript; available in PMC 2023 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have shown that certain amino acids and chiral organic acids can enantioselectively bind to 

NMDARs. In this section, we review the most important of these: D-Ser, D-aspartate (D-Asp), 

D-alanine (D-Ala), D-lactate and L-2-HG and D-2-HG.

D-Serine.—D-Ser, but not L-Ser, binds to the co-agonist site of NMDARs, resulting in 

activation of the channel21,22,48. Targeted deletion of serine racemase — the biosynthetic 

enzyme for D-Ser — leads to NMDAR hypofunction and behavioural abnormalities49–51, 

indicating that maintaining a proper concentration of D-Ser in the brain is critical 

to modulate neurotransmission. However, overstimulation of the NMDARs through 

excessive D-Ser and glutamate leads to massive calcium influx into the cells and 

promotes neurotoxicity52,53. D-Ser-mediated cell death through NMDAR activation has been 

associated with several brain diseases, including stroke, epilepsy, chronic pain, amyotrophic 

lateral sclerosis and Alzheimer disease54,55. By contrast, NMDAR hypofunction caused by 

low D-Ser concentrations can lead to cognitive impairments, reminiscent of diseases such 

as schizophrenia33,50,56 or normal ageing57–59. Low D-Ser concentrations have also been 

reported in disorders of serine biosynthesis, such as 3-phosphoglycerate dehydrogenase 

deficiency and phosphoserine phosphatase deficiency60. The understanding of the role of 

D-Ser in such biochemical processes gave researchers the impetus to detect it in human 

biosamples.

D-Ser has been tested as a therapeutic agent for the treatment of schizophrenia and 

has been shown in murine models and human patients to improve several schizophrenia 

symptoms when used in combination with conventional antipsychotics61–66. For example, 

the administration of D-Ser to mice improves recognition tasks and working memory64. 

Moreover, in patients with schizophrenia, the serum concentrations of D-Ser are positively 

associated with cognitive gains induced by intensive cognitive training65.

D-Ser has also proved effective in the treatment of other neurological diseases and 

conditions. For example, a pilot randomized controlled trial found improvement in 

symptoms of post-traumatic stress disorder in patients who were treated with D-Ser67. 

Another pilot study indicated that the basal plasma concentrations of D-Ser correlate with 

response to the antidepressant ketamine68. In line with the decrease in brain D-Ser in ageing 

mice57–59, administration of D-Ser reverses the age-related decrease in cognitive flexibility 

and restores functional brain connectivity and neuronal morphology69.

D-Ser was proposed to be a suitable biomarker in Alzheimer disease, but the results are 

inconsistent. Concentrations of D-Ser in the cerebrospinal fluid (CSF) of patients were 

reported to increase the sensitivity and specificity of the diagnosis of Alzheimer disease70. 

However, much smaller or no changes were observed in another cohort of patients71. 

Recently, Sachi and co-workers found a correlation in a larger number of subjects between 

serum concentrations of D-Ser and patients with Alzheimer disease72. As an internal control, 

they showed that D-Asp concentrations do not change in the patients. Studies in larger 

cohorts and with more standardized techniques are still needed to address some of the 

inconsistencies in the use of D-Ser, as well as other D-amino acids, as biomarkers of 

Alzheimer disease.
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D-Aspartate.—D-Asp is also found in the brain and is synthesized, at least in part, 

by the serine racemase73. D-Asp is mostly present in neurons and decreases rapidly in 

the neonatal period74 owing to the expression of its catabolic enzyme D-Asp oxidase75. 

D-Asp also binds to the glutamate-binding site of NMDARs and, when in excess, may 

mediate NMDAR neurotoxicity76. Transgenic mice engineered to overexpress D-Asp 

oxidase during the prenatal period exhibit lower brain D-Asp and changes in brain 

morphology77, indicating that D-Asp has a role in normal brain development. Similar to 

D-Ser, people with schizophrenia have lower concentrations of D-Asp78,79, which might 

contribute to the NMDAR hypofunction in disease development80. In Parkinson disease, 

D-Asp concentrations decrease in the substantia nigra of patients81, which may reflect the 

loss of dopaminergic neurons in this region. Although these findings are encouraging, the 

use of D-Asp as a biomarker requires further research in larger patient cohorts.

D-Alanine and other D-amino acids.—D-Ala is a co-agonist of the glycine and D-

Ser site of NMDARs82. However, physiological concentrations of D-Ala in the brain are 

at least one order of magnitude lower than those of D-Ser82, making it unlikely that 

this D-amino acid interacts physiologically with NMDARs. D-Ala has been tested as a 

therapeutic agent for schizophrenia but requires much higher dosages than D-Ser to achieve 

the same therapeutic effect83. Higher concentrations of D-Ala were detected in the white 

matter of brains among patients with Alzheimer disease84. However, in a rat model of 

Alzheimer disease, plasma D-Ala concentrations were lower than in controls. In this study, 

concentrations of D-Ser, D-Asp, D-leucine (D-Leu) and D-proline (D-Pro) were also lower 

than in controls, whereas D-phenylalanine (D-Phe) concentrations increased85. Although 

these observations suggest that D-amino acids may be biomarkers for Alzheimer disease, 

these changes are not consistent across disease models and need to be confirmed in further 

studies in animals and humans. The research on D-amino acid biomarkers will likely involve 

investigating D-cysteine (D-Cys), recently identified as a major product of serine racemase 

enzyme activity towards L-Cys. This endogenous D-amino acid is very high in neonatal 

brains and is a negative regulator of cell proliferation; its potential as a biomarker is yet to 

be investigated86. Despite the progress made in recent years regarding the physiological and 

pathological roles of D-amino acids in the nervous system, much remains to be learned about 

their suitability as biomarkers, in part because of the difficulties in detecting small amounts 

of enantiomers in various body fluids.

L-2-Hydroxyglutarate and D-2-hydroxyglutarate.—A strong correlation between 

chiral organic acids and inherited neurometabolic diseases was found in the neonatal 

period87. In particular, accumulation of L-2-HG and D-2-HG in body fluids can cause 

L-2-hydroxyglutaric aciduria and D-2-hydroxyglutaric aciduria, respectively, which are 

accompanied by many neurological symptoms, such as psychomotor retardation, hypotonia, 

ataxia and seizures17,88. In early studies, despite unclear physiological pathways, untargeted 

metabolic profiling in human tissues led to the discovery of correlations between L-2-HG 

or D-2-HG and brain diseases17. Recently, in vitro studies revealed that increased D-2-

HG enhances the glutamate uptake in synaptosomes and, therefore, potentially affects 

the excitatory neurotransmission in the central nervous system89. Studies in transfected 

cells indicate that D-2-HG exerts its harmful effect by activating NMDARs and causing 
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dysregulation of intracellular calcium and mitochondrial dysfunction90. For L-2-HG, the 

pathophysiology can be similar to that of D-2-HG17. However, characteristic patterns of 

brain magnetic resonance imaging abnormalities and neurologic symptoms suggest that 

L-2-hydroxyglutaric aciduria affects different brain regions than D-2-HG. Despite intensive 

research on the aetiology, the pathophysiology is still under investigation17,91.

Kidney disease and diabetes

The kidneys regulate the chemical balance of vertebrate animals by selectively filtering 

and reabsorbing metabolites from blood. Estimation of the glomerular filtration rate (GFR) 

as an indicator of kidney function is crucial for early diagnosis and follow-up of chronic 

kidney disease92. However, routine laboratory techniques (for example, creatinine clearance) 

for estimating GFR are inaccurate at high GFR values and depend on muscular mass92. 

Normally, L-amino acids are reabsorbed much more efficiently than D-amino acids at 

the proximal tubules93. D-Ser accumulates in high concentrations in urine because L-Ser 

displaces D-Ser during amino acid reabsorption94.

Increases in plasma D-Ser are found in renal failure caused by IgA nephritis95, diabetic 

nephropathy95, hypertensive nephropathy96 and systemic lupus erythematosus97. For 

example, in one case of rapidly progressive glomerulonephritis due to systemic lupus 

erythematosus, the concentration of D-Ser in the patient’s plasma was extremely high and 

comprised 19% of whole blood serine in the acute phase97. The concentration of D-Ser in 

the plasma better correlates with the actual GFR, which is decreased in these diseases, and 

is independent of common clinical factors that affect routine laboratory techniques, such 

as muscular mass, age and sex98. Monitoring the urinary D-Ser to L-Ser ratio rather than 

plasma has advantages in detecting renal failure. In an acute model of kidney ischaemia, 

measurement of the urinary D-Ser to L-Ser ratio was more sensitive than the serum D-Ser 

to L-Ser ratio and all other commonly used laboratory tests to detect renal dysfunction99. 

Thus, for kidney ischaemia, the measurement of D-Ser could provide a useful clinical marker 

that outperforms the usual assays, provided that techniques for enantiomeric detection in 

body fluids are widely available. It is noteworthy that the concentrations of other D-amino 

acids, such as D-Phe, D-tyrosine (D-Tyr), D-asparagine (D-Asn) and D-Pro, also increase in the 

plasma in chronic kidney injury and may represent new disease biomarkers100.

Untargeted metabolic profiling has revealed an excess of D-amino acids in patients with 

diabetes mellitus. In particular, the ratios between D and L-enantiomer concentrations of four 

amino acids (that is, alanine, valine, isoleucine and leucine) in the nails of patients with 

diabetes were higher than those of healthy volunteers101. One study also found increased 

urinary D-Phe concentrations in patients with gestational diabetes102. However, further 

studies are needed to confirm this finding. Given that the gut microbiome is also involved 

in the development of obesity and obesity-related complications, such as type 2 diabetes 

mellitus, it is tempting to speculate that microbiome-derived D-amino acids may have a 

role in the diabetic pathogenesis103. Despite this potential pathophysiological pathway, 

further work is needed to evaluate the utility of D-amino acids as biomarkers in diabetes 

mellitus. In addition, higher concentrations of two D-carboxylic acids (that is, D-lactate and 

L/D-2-HG) were also found in the saliva, urine and plasma of patients with diabetes104. 
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Moreover, elevated D-lactate — a product of methylglyoxal metabolism — can contribute 

to acidosis and a high anion gap (a medical term that describes the gap between negatively 

and positively charged electrolytes in serum) in diabetic ketoacidosis105. Interestingly, L/

D-2-HG not only modulates intracellular communication, as mentioned in the previous 

section, but also serves as a metabolic by-product to control cell growth106,107. Given the 

structural similarity between 2-HG and α-ketoglutarate, 2-HG is a potent competitor of 

α-ketoglutarate at the catalytic site of metabolic enzymes108. One example is its inhibition 

of α-ketoglutarate-dependent dioxygenases, which are critical for chromatin modifications 

required for normal gene expression104,109.

Cancer

Cancer cell growth is highly influenced by the intracellular and extracellular environment. 

Metabolic profiling revealed abnormal concentrations of certain D-amino acids and 

their potential use as biomarkers for different cancer types110. For example, elevated 

concentrations of D-amino acids, such as D-Ala and D-Pro, in gastric juice are associated 

with early gastric cancer111. By contrast, the concentrations of other D-amino acids, such 

as D-glutamic acid (D-Glu) and D-glutamine (D-Gln), decrease in the serum of patients with 

hepatocellular carcinoma112. Metabolic profiling of human breast cancer cells (MCF-7) 

and non-tumorigenic human breast epithelial cells (MCF-10) showed upregulation of some 

D-amino acids in MCF-7, including D-Asp and D-Ser113.

The concentrations of D-Asp and D-Ser in some cancer cells are thought to be controlled 

by their synthesis by serine racemase and uptake from the extracellular medium73. Serine 

racemase is upregulated in colorectal adenoma and adenocarcinoma, where it produces D-Ser 

and also promotes cancer cell growth by dehydrating serine to pyruvate114. Many other 

cancer types upregulate serine racemase mRNA, but the role of serine racemase and D-Ser as 

biomarkers or in the pathology of these tumours remains to be investigated115. Cancer cells 

also overexpress neutral amino acid transporters, such as ASCT2 (also known as SLC1A5), 

SNAT1 (also known as SLC38A1) and SNAT2 (also known as SLC38A2)116. In addition to 

L-Gln, which is required for cancer growth, these transporters also use D-Ser as a substrate 

and can transport D-Ser into cells117 and, in the case of ASCT2, exchange intracellular D-Ser 

for extracellular amino acids118. At high intracellular concentrations, neutral D-amino acids 

are degraded by D-amino acid oxidase (DAAO) into hydrogen peroxide (H2O2), ammonia 

and the corresponding α-keto acid119,120. Given the cytotoxicity of H2O2, treatment of 

cancer cells with D-amino acids has been proposed as a strategy to inhibit cancer growth121. 

However, this enzyme is mainly expressed in the kidneys, liver and cerebellum, and there 

is little information on its enzymatic activity in different cancer cells122. The accumulation 

of D-amino acids in cancer cells suggests low endogenous degradation by DAAO in cancer 

tissue110.

Although NMDARs are highly expressed in the central nervous system, their upregulation 

also occurs in tumours and cancer cells outside the brain123,124. Blockade of NMDARs 

decreases cell proliferation in a wide variety of cancer cells125. Consequently, binding of 

D-Ser or D-Asp (either produced by cancer cells or present in the extracellular medium) 

to non-neuronal NMDARs could influence cancer cell proliferation126. Collectively, the 
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concentrations of D-amino acids may increase or decrease in different cancers, and 

further research is needed to evaluate their effectiveness as biomarkers and in anticancer 

therapy113,119,124,126–128.

The growing understanding of the biochemical consequences of protein mutations has 

also led to the discovery of novel chiral biomarkers. In particular, mutations of isocitrate 

dehydrogenase 1/2 (IDH1/2), which controls cellular metabolism, are frequently observed in 

various cancers such as glioma, cholangiocarcinoma, acute myeloid leukaemia, lung cancer, 

colorectal cancer and nasopharyngeal carcinoma129. Mutations in IDH1/2 prevent the 

catalytic conversion of isocitrate to α-ketoglutarate, resulting in D-2-HG accumulation130. 

Moreover, D-2-HG inhibits α-ketoglutarate-related diooxygenases, including several histone 

demethylases, leading to changes in DNA methylation and gene expression108,130–133.

Summary

Identification of novel chiral biomarkers is important for developing new avenues for disease 

diagnosis and prognosis, as well as pharmacological studies and therapeutic innovations. 

The correlation between chiral biomarkers and diseases discovered by untargeted metabolic 

profiling may also accelerate our understanding of pathological pathways in various 

diseases. Table 1 summarizes many of the identified disease-related chiral biomarkers and 

their concentrations in various tissues and fluids. As discussed in the following sections, 

there are no standardized instruments and protocols for chiral measurements and data 

analysis. Therefore, the concentrations in different studies may vary owing to differences 

in sample preparation and detection methods56,72,134.

Difficulties in clinical detection

The detection of low-concentration chiral biomarkers for diseases in clinical settings is 

challenging135. Herein, we discuss the main factors that make it difficult to discover new 

chiral biomarkers and complicate the clinical application of chiral separation techniques for 

known chiral biomarkers.

Variation among chiral small molecules

There are thousands of different chiral small molecules in the human body. A technique 

that can specifically and accurately detect as many of these as possible is desirable for 

multiplexed chiral analysis to improve disease diagnosis and prognosis. However, the 

large variation in their molecular properties (for example, charge, mass and functional 

groups) makes it challenging for a single technique to be universally applied to all relevant 

species136,137. Further, depending on the species and the detection method, analytes may 

be analysed in native or derivatized forms138. There are many possible derivatization agents 

available, each of which has advantages and disadvantages in terms of extraction and pre-

concentration, chiral separation and compatible detection approach(es). Szökö et al. provide 

an extensive table focusing on how the molecular properties of chiral small molecules affect 

the requirements and utility of the available detection techniques137. For example, different 

derivatization approaches in mass spectrometry are required for compounds with amine 

groups and those with carboxylate groups. Grossman and Colburn indicate that different 
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chiral selectors are required for compounds with different charge, functionality and 

size in capillary electrophoresis (CE)139. The effective dynamic range of cutting-edge 

metabolomics techniques is nearly five orders of magnitude140. However, this is still 

insufficient for quantification of some small chiral molecules, the concentration range of 

which can exceed five orders of magnitude (Table 1).

Low concentration in clinical samples

Many chiral small molecules are present at micromolar or lower concentration in human 

biofluids, which necessitates the use of a highly sensitive detection technique141. Moreover, 

the changes in chiral biomarkers between normal and disease states may be small, especially 

at the onset of a disease. As shown in Table 1, the average concentration of L-2-HG in the 

plasma of healthy subjects and patients with cancer may differ by only 0.2 μM. Therefore, 

detecting changes of 0.2 μM or even less in enantiomeric concentration is essential in such 

cases for early diagnosis and prognosis of diseases. This detection limit is challenging 

for some existing techniques (for example, polarimetry142,143, which can barely quantify 

concentrations below 1 μM (ref.144), and circular dichroism (CD) spectroscopy145).

The presence of salts in high concentration and other constituents (for example, proteins, 

viruses, cells, L-amino acids and D-sugars) in clinical samples can interfere in the detection 

of low-concentration chiral small molecules146. For example, the 22 most abundant 

proteins account for more than 99% of the dry mass of human plasma, with chiral small 

molecules making up the remaining 1% of the mass147. Therefore, it is necessary to 

conduct pre-detection sample preparation steps (for example, separation and filtration) to 

remove interfering constituents. However, poor sample preparation and pre-concentration 

techniques can result in the loss of low-concentration metabolites or changes in their relative 

concentrations, resulting in low detection sensitivities and/or inaccurate determination of the 

targeted metabolites in biological samples148,149.

Clinical samples collected from the human body are often limited in quantity. With 

the exception of urine, of which up to 1 l can be collected per day, the collection of 

biosamples (for example, CSF, brain tissue and blood samples) is limited in volume, and can 

involve pain and sometimes life-threatening risks. Specifically, because of human health-risk 

considerations, the maximum quantity of CSF from the brain and blood from a healthy 

adult human body that can be collected within a 24-h period should be below 20 ml 

(refs.150,151). For paediatric patients and patients in critical conditions, the acquirable sample 

volume is much smaller. Therefore, it is important for an effective technique to use as 

little biosample as possible to achieve accurate enantioselective detection. Unfortunately, 

some of the prevailing analytical techniques (for example, polarimetry142,143 and CD 

spectroscopy145) cannot meet the quantity requirement for paediatric patients and patients in 

critical conditions.

Frequency of testing and high cost

For some diseases, diagnosis, treatment monitoring and prognosis via detection of chiral 

biomarkers will require long duration and frequent testing. For example, in a mouse study, 

routine chiral testing over 40 h led to a deeper understanding of the pathophysiology and 
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biochemical consequences of renal failure99. However, comparable routine chiral testing 

has not been conducted on human subjects, and there is no consensus on the standardized 

frequency and methods of such testing. Considering the frequency of conventional chronic 

kidney disease and cancer testing, the potential frequency of chiral testing can vary between 

0.5 and 1 year, or more often, depending on the disease severity147.

To detect chiral molecules at low concentrations (for example, <1 μM), costly 

instrumentation (for example, liquid chromatography–tandem mass spectrometry) might be 

necessary to achieve high sensitivity (down to picomoles) and selectivity (up to 18 chiral 

amino acids)152. The number of samples to be analysed per individual can be large when 

chronic diseases such as certain cancers and diabetes are involved, given the long duration 

of treatments and potential for relapse. This results in high testing costs. Tremendous efforts 

are required to develop high-throughput techniques that can routinely and accurately detect 

chiral biomarkers at lower cost to reduce the financial burden on patients and healthcare 

systems while increasing patient access.

Summary

Owing to these existing challenges, there is still no standardized chiral detection technique 

for disease applications. Usually, there are tradeoffs in several parameters (for example, 

sensitivity, accuracy, speed of analysis, cost). For example, certain aromatic tagging agents 

can render amino acids and carboxylates fluorescent or amenable to chiral analysis137. 

Therefore, several chiral detection techniques have been developed to satisfy specific 

parameters.

Detection techniques

In this section, we examine the existing techniques for identifying and measuring chiral 

biomarkers. We focus on the working principles and clinical applications of the most 

common of these techniques and highlight their unique features. A brief description of 

sample preparation is also provided because this is necessary to reduce the complexity of 

clinical samples for analytical chirally selective techniques.

Sample preparation

It is often necessary to include sample preparation steps prior to the detection and analysis of 

small chiral molecules. Human biofluids contain millions of small and large molecules. To 

specifically detect the often low-concentration chiral molecules of interest, it is important to 

purify the sample and separate specific targeted molecules from the biofluid (Fig. 2).

Sample collection.—Sample collection is the first step in the detection and analysis of 

chiral biomarkers. The reliability of the testing depends on several environmental and human 

factors during collection, minor variations of which can change metabolite concentrations. 

Consistent collection times and fasting status are vital to maintain similar conditions for 

all samples. It has been shown that at least 19% of the metabolites in human plasma 

— especially amino acids, corticosteroids and bilirubin — exhibit substantial time-of-day 

variation153. The time-of-day variations in urine metabolites can be even greater than those 
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of plasma154. Therefore, sample collection for chiral metabolites should typically be done in 

the morning after 8–12 h of fasting155.

Another important factor is contamination during sample collection. Sample collection 

should be conducted quickly to avoid airborne contamination. Furthermore, all sample 

collection tubes must be kept sterile and dust-free. This is because microbial contamination 

can rapidly alter concentrations of small-molecule metabolites by adsorption and 

metabolism. In addition, dust particles are well-known sources of amino acids and adsorb 

many small-molecule metabolites156. Sample tubes containing plasticizers and polymers 

have been found to be the major sources of contamination in mass spectrometry analysis157. 

Depending on sample type, ethylenediaminetetraacetic acid (EDTA)-containing, heparin-

containing and citrate-containing tubes are most commonly used for serum to prevent 

coagulation of blood in a clinical setting. In particular, EDTA sample tubes were found to 

present a higher content of amino acids (for example, aspartate, histidine and glutamine) 

than citrate ones158. Unlike serum containers, which require specialized materials, urine 

sample containers can be simple polypropylene tubes159.

Sample pre-processing.—After sample collection, pre-processing steps must be 

performed on samples before chiral analysis, while ensuring that the original chiral 

metabolite concentrations are preserved. In general, this involves centrifugation, filtration 

and addition of pre-servatives. The aim of centrifugation or filtration is to remove the 

cells, bacteria and large proteins. Typically, cells and cell debris are removed from biofluid 

by centrifuging at low speed (~1,000–3,000 g) for between 15 and 30 min (refs.160,161). 

Some studies showed that the centrifugation speed and time affect the metabolomic profiles 

of plasma samples162, whereas others showed no significant differences based on these 

centrifugation parameters163. It should be noted that the speed and time of centrifugation 

should not be too high or too long to prevent the rupturing of blood cells, which can alter 

the concentrations of metabolites164. After the first centrifugation, the supernatant liquid 

is taken. To further extract small chiral metabolites (for example, amino acids), 5–15% 

sulfosalicylic acid and trichloroacetic acid (TCA) should be added to the supernatant to help 

precipitate and remove proteins165. This is followed by a second high-speed centrifugation 

(~10,000–15,000 g)160,166. This second supernatant layer contains mostly small molecules. 

Further purification can be conducted through cation or anion exchangers by derivatizing 

polar small molecules; or using solid-phase extraction with a more hydrophobic solid phase; 

or by liquid–liquid extraction167.

The preparation processes for serum and plasma are similar, except that an additional 

coagulation process is required for serum prior to centrifugation, which has been shown 

to affect metabolite concentrations168. Higher lactate and amino acid amounts and lower 

glucose concentrations have been found in serum than in plasma169. However, there is 

still no general selection rule for the most suitable matrix. The bottom line is to maintain 

consistency of sample type throughout a study. The pre-processing procedures for urine and 

saliva are similar to those of serum and plasma, and also require centrifugation and TCA 

precipitation170–172. For tissue samples and cell cultures, extra steps before centrifugation 

are required to collect the desired small molecules. These steps involve the breakdown of 
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the tissue matrices into liquid suspensions through homogenization173. For more details, 

additional discussion about serum and plasma can be found elsewhere174,175.

In summary, sample preparation steps are essential for measuring chiral biomarkers. Several 

factors in the sample preparation, including small-molecule recovery rates, filtration 

efficiency and procedural complexity, need to be balanced to achieve accurate, reproducible 

and cost-effective chiral detection176. The addition of an internal standard greatly improves 

accuracy and reproducibility. Standardization of pre-processing approaches is still under 

debate and can depend on the nature of the sample and the diseases of interest.

Chromatography

Liquid chromatography.—Liquid chromatography is a commonly used separation 

technique for small molecules177. When different small molecules in a solution 

migrate in a chromatography column, they are separated — owing to their different 

affinities towards the solid phase — and have molecule-dependent retention times. The 

detection and quantification of specific molecules can then be achieved by coupling the 

chromatography to a mass spectrometry detector or a fluorescence detector. Conventional 

liquid chromatography–mass spectrometry can achieve separation of molecules in a mixture 

based on their mass to charge ratio, but cannot distinguish between enantiomers, which 

have identical mass. Different separation strategies can be used to achieve enantiomeric 

separation and detection of small chiral molecules (Fig. 3).

The oldest approach to achieve enantiomeric separation and detection is to pre-derivatize 

the clinical analytes of interest with an enantiomerically pure chiral derivatization reagent 

(CDR) before chromatography152,178. The resulting diastereomeric products from the 

enantiomers can be separated based on their different affinities with the achiral stationary 

phase in a chromatography column. For example, a chiral o-phthalaldehyde-N-acetyl-l-

cysteine CDR can react with the primary amine groups of most amino acids179. With 

this approach, 15 pairs of enantiomers of chiral amino acids were resolved using high-

performance liquid chromatography (HPLC). Liquid chromatography with CDRs has led to 

the discovery of fivefold and threefold increases in the concentrations of D-Ser and D-Asp, 

respectively, in CSF samples from patients with Alzheimer disease, compared with healthy 

control groups, whereas the concentrations of L-amino acids remained almost the same180. 

Chiral organic acids, such as 2-HG, can be separated using O-acetyl-di-(o)-2-butyl esters 

as the CDR in liquid chromatography. Their use for chiral detection in urine, plasma and 

CSF from patients with aciduria led to the observation of a 150–200-fold increase of the 

measured concentration of D-2-HG, which is related to aciduria181. Liquid chromatography 

with a CDR also has the advantage of being low cost. Disadvantages include the requirement 

for the CDR to be enantiomerically pure, which is rarely the case. Reagent chiral impurities 

result in spurious diastereomeric peaks and poor quantification182. Incomplete derivation, 

for kinetic reasons, can result in altered diastereomeric ratios, and diastereomers do not 

have to have identical detector responses183. Moreover, not all molecules of interest have 

appropriate functional groups to derivatize. In addition, different CDRs need to be developed 

for different types of analytes. Finally, unwanted side reactions might lead to strong 
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background noise and interfering spectra during data acquisition. For these reasons, this 

approach is rarely used today.

The other strategy is to use chromatography columns with a chiral stationary phase or, less 

commonly, to use a chiral mobile-phase additive with an achiral stationary phase152,177. 

Chiral mobile phases must not interfere with detection (for example, they must be non-UV 

absorbing and volatile if using mass spectrometry detection) and be enantiomerically pure, 

as is the case for CDRs183. Moreover, a considerable amount (several grams) of the chiral 

mobile-phase additive may be needed for separations. Nevertheless, it has been shown that 

liquid chromatography with a chiral mobile phase allowed the separation and subsequent 

detection of 18 chiral amino acids in plasma at picomolar concentrations. Such amino acid 

profiling enabled the observation of clear association between Alzheimer disease and plasma 

concentrations of D-Ser, D-Asn, D-Asp, D-Pro, D-Leu and D-Phe85.

Liquid chromatography with a chiral stationary phase is applicable to a greater variety of 

small molecules than liquid chromatography with a chiral mobile-phase additive, and is 

often used for untargeted metabolite profiling183. Moreover, without the requirement for 

chiral derivatization, there are fewer sample preparation steps. In one example application of 

liquid chromatography with a chiral stationary phase, chiral organic acids were quantified, 

leading to the detection of elevated concentrations of D-2-HG in urine samples from patients 

with D-2-hydroxyglutaric aciduria184. It has been noted that chiral columns are also usually 

more expensive than achiral columns with chiral derivation. However, because individual 

chromatography columns are typically used for hundreds or even thousands of analyses, the 

cost per separation between chiral and ‘derivatized achiral’ separations is negligible.

To improve the selectivity and peak capacity of chiral separation, 2D and 3D chiral liquid 

chromatography techniques have been developed, in which two or three sequential columns 

are applied126,185–188. For example, a 2D chiral liquid chromatography that combined an 

achiral column and a chiral column was used to detect trace amounts of chiral metabolites, 

including those with enantiomeric excess below 1%187. In another example, four D-amino 

acids (phenylalanine, tyrosine, tryptophan and leucine), with concentrations ranging from 

0.01% to 1% of the corresponding L-amino acids, were found in human urine through 

2D chiral liquid chromatography that combined an octadecylsilyl column (achiral) and a 

Crownpak CR(+) (chiral) column188. 3D-HPLC methods have shown improved selectivity 

for the clinical samples over 2D-HPLC. For example, a 3D-HPLC method was developed 

for the determination of trace concentrations of D-Asn, D-Ser, D-Ala and D-Pro in human 

serum186. In this case, the extra anion-exchange column was needed as the second 

dimension to separate the interfering compounds from the derivatized amino acid analytes.

Gas chromatography.—Gas chromatography operates on an analogous principle to 

liquid chromatography, but requires analytes to be vapourized before they are delivered 

to, and separated in, a gaseous mobile phase travelling through a capillary column189. 

Either a CDR or a chiral stationary phase is needed for gas chromatography to achieve 

separation and subsequent detection of enantiomers. For example, gas chromatography 

with N,O-pentafluoropropionyl isopropyl derivatives has been applied to enantioselectively 

separate serine and alanine, and to determine their enantiomeric excess in blood and brain 
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tissues from rats20. Because gas chromatography requires volatile compounds, it is often 

used for compounds that contain derivatized hydroxyl, amine or carboxylate groups190. 

Amino acids must be doubly derivatized (that is, both the carboxylate group and the amine 

group must be sequentially derivatized) to obtain a sufficiently volatile product191. Typically, 

an ester is formed from the carboxy group and a small amide is formed from the amine 

functional group. When using an achiral column, one of the two derivatizing agents must 

be chiral. In contrast with liquid chromatography, gas chromatography often requires an 

additional derivation step for volatilizing the analytes into the gaseous phase.

Capillary electrophoresis

CE separates migrating molecules of different size to charge ratios in a capillary or channel 

across which a high voltage is applied139 (Fig. 3). After separation, a mass spectrometry 

or fluorescence detector is applied at the end of the channel to obtain sufficiently sensitive 

detection of the analytes. CE requires chiral mobile-phase additives in the running buffer 

in the capillary or channel to achieve enantiomeric separation and detection. CE often 

provides high efficiency separations and relatively short migration times, but these vary 

widely with the chiral mobile-phase additive used, the nature of the running buffer and 

the separation voltage. In one example study, the separation of ten chiral and three achiral 

amino acids using chiral CE was obtained in ~25 min192. CE has also been used to detect 

chiral amino acids and chiral drug molecules in human biofluids (for example, urine and 

plasma) with nanomolar sensitivity193. Chiral CE coupled with laser-induced fluorescence 

(CE–LIF) detection also allowed the simultaneous determination of the D-Ser and L-Ser 

concentrations in the midbrain tissues of a Parkinson disease mouse model194. CE–LIF has 

been used to detect high concentrations of D-Ser and L-Glu in single glial vesicles, indicating 

that these vesicles share similar biochemical features to neuronal synaptic vesicles195. CE–

LIF has also been used to detect D-Asp and D-Glu in individual neurons isolated from 

the central nervous system196. The main advantage of chiral CE is its small sample size 

requirements and relatively short separation times197. However, chiral CE has relatively 

low sensitivity compared with chromatography and difficulties in coupling chiral CE and 

mass spectrometry, which result from contamination of the mass spectrometry by chiral 

selectors, such as cyclodextrins198. For these reasons, chiral CE is usually coupled with 

fluorescence detectors and used for large-molecule separations (such as proteins, peptides 

and oligonucleotides), and is used far less commonly than liquid chromatography for small-

molecule separations in clinical settings199.

Nuclear magnetic resonance spectroscopy

Conventional nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for 

detecting molecular fingerprints and determining molecular structures200,201. For example, 

NMR spectroscopy was applied to determine the absolute configurations (that is, the 

chirality) of 2-HG and 5-oxoproline in human urine samples, which had strong correlations 

with independently diagnosed D-2-hydroxyglutaric aciduria and L-5-oxoprolinuria202. 

However, enantiomers of small molecules have indistinguishable conventional NMR spectra. 

To achieve enantiomeric detection, NMR requires either CDRs or the addition of chiral 

shift reagents to convert enantiomers to diastereomeric derivatives or association complexes, 

Liu et al. Page 14

Nat Rev Chem. Author manuscript; available in PMC 2023 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively203 (Fig. 4a). Moreover, without proper sample pre-separation, the NMR 

spectra are noisy, which limits the number of detectable metabolites to ~10, far from 

the 20 detectable with sample pre-separation and sensitivity to ~50 nM (refs.202,204). 

Chromatographic or electrophoretic separation as an extra sample preparation step can 

be coupled with chiral NMR to reduce noise and improve resolution for the detection 

of chiral small molecules in complex biosamples. However, if such pre-separation steps 

are necessary, NMR is superfluous unless it also can be used to determine the absolute 

configuration. Hence, there are few reports involving the use of NMR to detect and identify 

low-concentration chiral biomarkers of clinical importance.

Enzymatic assays

Enzymatic assays with chiral reagents can detect targeted enantiomers of specific molecules 

by catalysing the chemical reaction of a specific enantiomer to a by-product205. For 

example, the glucose oxidase enzyme catalyses the oxidation of D-glucose, but not L-

glucose, to H2O2 and D-gluconolactone206. Fluorescent imaging of the by-products can be 

applied to determine the concentrations of the specific enantiomers (Fig. 4b). Many common 

chiral small molecules, including amino acids and organic acids, have well-developed 

enzymatic assay kits for their measurements in biofluids207. For example, a DAAO-based 

chemiluminescent assay was used to assess the concentrations of D-Ser in brain tissues21 

and to monitor online its release from living neural cells208. In another study, using purified 

DAAO coupled to a tyramine-based fluorescent assay, the total concentration of 14 D-amino 

acids in CSF was profiled and was found to be 1.48 times higher in people with Alzheimer 

disease than in healthy controls209. In the context of diabetes, enzymatic detection of 

D-Lactate in human plasma and urine uncovered a twofold increase in the D-Lactate 

concentrations in urine samples from people with diabetes when compared with healthy 

controls18. Conventional transition metals can be used to enhance the catalysis reaction 

without chiral selectivity210. However, by engineering chiral monodentate or multidentate 

ligands within the coordination sphere of the metal catalyst, it can be used to enhance 

the reaction for the asymmetric synthesis of nonracemic chiral compounds211, and their 

products can also be measured by current flow using amperometric biosensors. For example, 

an amperometric chiral biosensor was used to detect several D-amino acids in serum212 and 

urine213 with a better response time (<50 s) than fluorescence imaging (~ 30 min).

Because of the high selectivity, low cost, minimal sample preparation requirements and short 

detection times (<50 s)212,213, enzyme-based chiral sensing is widely used in measuring 

concentrations of chiral small molecules in biofluids and tissues for early diagnosis 

and prognosis of diseases, such as cancers, kidney diseases and cardiovascular diseases. 

However, enzyme assays usually have limited sensitivity at ~1 μM, which is above the 

concentration of some chiral small molecules (Table 1). In addition, the specific enzymes 

required are not readily available for all chiral biomarkers. For example, no L-glucose 

oxidase is commercially available. Moreover, enzymes often display cross-selectivity for 

other related molecules. For example, DAAO can react with more than one type of D-amino 

acid. This limits specificity and accurate quantification and makes it difficult to measure 

enantiomeric excess using enzymatic assays in these cases.
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Chiroptical spectroscopy

Polarimetry.—Polarimetry can determine the overall chirality of molecules in a solution 

by monitoring the degree of rotation of plane-polarized light passing through the sample144 

(Fig. 5). However, polarimetry has low sensitivity and additional separation or fractionation 

steps (for example, using chromatography and centrifugation) are required to achieve 

the detection of targeted chiral small molecules in complex biosamples. For example, 

conventional liquid chromatography with an achiral column was coupled with a polarimeter 

for determining the enantiomeric purity in a standard solution with a sample loading of 

50 μg and claimed enantiomeric excess accuracies of ±1%142. However, if a certain chiral 

biomarker has a much higher concentration than other biomarkers in a sample, polarimetry 

can also be used to approximately quantify the enantiomeric purity without the sample 

separation214. For example, in vivo, real-time, non-invasive monitoring of blood chirality 

was demonstrated by measuring the polarimetric signals from the anterior chambers of 

rabbits’ eyes, which showed a strong linear correlation with blood glucose (which exists 

in the D-form in living bodies) concentrations that were measured using glucose meters143. 

Overall, polarimetry has the advantages of being capable of monitoring chirality changes 

with good speed (<1 min) and having simple sample preparation steps. Moreover, it can 

be used detect analytes that do not absorb UV–visible light, if they are in sufficiently 

high concentrations. However, because of its limited capability of detecting enantiomeric 

concentrations and its limited sensitivity above 1 mM, it is rarely used to measure disease-

related chiral biomarkers.

Circular dichroism spectroscopy.—CD spectroscopy is another chiroptical 

technique, which can quantify the enantiomeric excess of chiral molecules by measuring 

the difference in molecular absorption between left and right-handed circularly polarized 

light215 (Fig. 5). The signs and amplitudes of the spectral peaks and troughs of the CD 

spectra can provide information about the enantiomeric purity of chiral molecules in a 

sample, although standard sample compounds and curves are required. Moreover, additional 

separation steps are required to detect specific chiral biomarkers216. For example, CD 

spectroscopy coupled with HPLC has been developed to quantify the enantiomeric excess of 

phenylalanine in a mixture of 15 amino acids with a detection limit of ~5 μM (ref.217).

Although it can detect the enantiomeric purity of chiral metabolites at a similar 

enantiomeric excess to polarimetry, CD spectroscopy is mainly used to determine the 

secondary and tertiary structures of chiral macromolecules, such as proteins145,218–220. 

For example, disease-related secondary structures of amyloid-β-associated and amyloid 

light chain-associated amyloidosis can be quantified in the far-UV region221. However, 

as with polarimetry, extra separation and concentration steps are necessary to achieve 

targeted amyloidosis measurements. For example, CD spectroscopy has been used to detect 

amyloidosis in biofluids and tissues for brain, kidney and cancer diseases145,218,219; the 

lowest reported detection limit for protein in these studies was 0.1 mg ml–1 (ref.145).

CD spectroscopy provides more molecular information than polarimetry and has greater 

sensitivity for analytes that contain chromophores. However, it has poorer sensitivity 

and specificity than chiral liquid chromatography coupled with mass spectrometry or 
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fluorescence detectors. Moreover, a relatively large volume of biofluid (~1 ml) is required 

for CD spectroscopy145.

Raman optical activity spectroscopy.—Raman spectroscopy typically detects 

vibrational modes of molecules based on the inelastic scattering of light. The high specificity 

of Raman spectral shifts has allowed these shifts to be used as molecular ‘fingerprints’ 

to detect amino acids, protein and cells in human biofluids for diagnostic applications222. 

Raman optical activity (ROA) arises from the difference between the Raman spectra of 

molecules excited by left and right-handed circularly polarized light. The ROA spectra can 

reveal the absolute configuration and conformational dynamics of chiral molecules with 

high specificity222,223 (Fig. 5). ROA spectroscopy has been used to successfully detect a 

wide range of chiral biomolecules, including amino acids, carbohydrates, polypeptides and 

nucleic acids224,225. ROA spectra provide more stereochemical information than polarimetry 

and CD spectroscopy. However, for clinical measurements, ROA spectroscopy requires 

substantial analyte enrichment because its sensitivity is limited to ~0.2 mM (ref.226). The 

long signal acquisition time also limits ROA’s applicability in measuring chiral biomarkers 

for diseases.

Vibrational circular dichroism spectroscopy.—Vibrational circular dichroism (VCD) 

spectroscopy distinguishes enantiomers by their chirality-dependent optical absorption of 

circularly polarized light upon the excitation of their vibrational modes227. By analysing 

the g factors (that is, asymmetry in circularly polarized light absorption) across a broad 

frequency range, one can quantify the enantiomeric concentrations of chiral molecules 

with high resolution (Fig. 5). For example, the enantiomeric excess of chiral camphor and 

borneol was determined by VCD spectroscopy with a resolution of 1%228. By comparing the 

different vibrational modes in the VCD spectra with ab initio calculations, the absolute 

configuration of chiral molecules can also be determined, leading to high molecular 

specificity228,229. However, similar to ROA, VCD has limited sensitivity (~5 mM) and long 

signal acquisition times (up to several hours)230. Methods for analyte enrichment or signal 

enhancement are required for VCD spectroscopy to routinely detect chiral biomarkers in 

clinical samples.

Surface-enhanced chiroptical sensing

Chiroptical spectroscopic techniques have unique advantages in the enantiomeric detection 

of chiral small molecules and can often be used without the need for chiral derivations or 

added chiral selectors. However, most of them, including polarimetry, CD spectroscopy, 

ROA spectroscopy and VCD spectroscopy, have limited sensitivity and often require 

large quantities of sample, which limits their applicability in detecting low concentrations 

of disease-related chiral biomarkers in low-volume clinical samples. To overcome these 

limitations, surface-enhanced chiroptical spectroscopy has been developed.

Surface-enhanced CD spectroscopy.—Chiral plasmonic nanostructures, which are 

systems containing nanostructured metallic components that allow exploitation of surface 

plasmon resonances, have been used to enhance the sensitivity of CD spectroscopy for 

detecting small chiral molecules adsorbed to appropriate nanostructures. The enhancement 
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is enabled by the strong chiral electrical fields that exist near optically excited plasmonic 

nanostructures231,232. For example, gammadion-shaped metasurfaces, twisted nanorod 

metasurfaces and moiré chiral metamaterials with strong intrinsic CD signals have been 

applied to achieve sensitive detection of chiral molecules233–236. When chiral molecules 

approach metasurfaces or metamaterials, the CD spectral shifts of the metasurfaces or 

metamaterials with opposite handedness respond differently. The spectral shifts of left-

handed and right-handed metasurfaces or metamaterials are typically represented as λLH and 

λRH, respectively. Depending on the absolute value of the dissymmetry factor (ΔΔλ = λRH 

– λLH), the handedness and chiral purity of the chiral molecules can be determined. Because 

of the enhanced sensitivity, the application of chiral metasurfaces or metamaterials for chiral 

molecule detection can greatly reduce the sample consumption from millilitre to microlitre 

amounts. Moreover, with the integration of plasmon-enhanced molecular accumulation, 

moiré chiral metamaterials234,235 have been used to detect enantiomeric purity of chiral 

biomarkers, including glucose and lactate, with a sensitivity of ~100 pM237. This higher 

sensitivity enabled the detection of a diabetes-induced abnormal dextrorotatory shift in the 

chirality of urine metabolite with a good diagnostic accuracy of 84%237. Achiral plasmonic 

nanostructures have also been demonstrated to enhance the CD spectroscopy of chiral small 

molecules238. Once chiral small molecules are adsorbed on the surfaces of achiral plasmonic 

nanostructures, strong CD signals are induced near the plasmonic-resonance wavelengths, 

leading to higher sensitivity than conventional CD231,232.

Another strategy for surface-enhanced CD spectroscopy is to use the self-assembly of 

plasmonic nanoparticles and chiral small molecules, whereby two or more colloidal 

plasmonic nanoparticles spontaneously bind with chiral molecules to form chiral 

metamolecules239. Such self-assembled metamolecules can exhibit strong CD signals 

near the plasmonic-resonance wavelengths, improving the sensitivity of CD spectroscopy. 

For example, cysteine was bound with gold nanoparticles to form chiral metamolecules, 

which enabled the enantiomeric detection of cysteine with a sensitivity of 20 pM 

(ref.240). Dielectric nanostructures and metasurfaces have also been demonstrated for 

surface-enhanced CD spectroscopy with a potentially higher figure of merit and better 

sensitivity than their plasmonic counterparts241.

With strongly enhanced sensitivity and drastically reduced sample consumption, surface-

enhanced CD spectroscopy is a promising technique for detecting abnormal chiral 

biomarkers for disease diagnosis242,243. Further, the small size of plasmonic and dielectric 

nanostructures may lead to the development of point-of-care biomedical devices244. 

However, similar to conventional CD spectroscopy, proper sample separation and extraction 

procedures are required for surface-enhanced CD spectroscopy to be used to specifically 

measure a targeted chiral biomarker in complex clinical samples.

Surface-enhanced ROA spectroscopy.—The Raman signals of molecules can also be 

enhanced by plasmonic nanostructures245. This enhancement strategy has been applied to 

increase the intrinsically weak ROA signals of chiral small molecules. For example, L-ribose 

and D-ribose attached to silver–silica nanotags via covalent binding led to enhanced ROA 

spectra with mirror symmetry for the ribose enantiomers246. The enhancements can be up 

to three to six orders of magnitude greater than those of conventional ROA. In addition, 
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the acquisition time of surface-enhanced ROA spectroscopy is ten times shorter than that 

of conventional ROA spectroscopy246. Therefore, this may become a powerful tool for the 

detection of chiral biomarkers with high specificity. However, the reliability and the ease of 

spectral interpretation of surface-enhanced ROA spectroscopy need to be improved before it 

can be widely adopted for clinical applications.

Challenges and opportunities

Each technique for the detection and quantification of disease-related chiral biomarkers has 

advantages and limitations in biomedical research and for clinical applications (Table 2). 

Currently, chiral liquid chromatography and 2D liquid chromatography–mass spectrometry 

are the most widely used approaches because of their universality of application, sensitivity 

and reproducibility of qualitative and quantitative data. Many new approaches, especially 

chiroptical spectroscopy methods, could be advantageous in terms of speed, cost per analysis 

and sensitivity. However, they are currently not as common as chiral liquid chromatography 

or 2D liquid chromatography–mass spectrometry in clinical applications. In addition, every 

method requires some degree of sample preparation, which is often the ‘rate limiting step’ of 

the analysis. In this section, we discuss the challenges and opportunities for the development 

of reliable analytical techniques that can be widely adopted for chiral biomarker detection in 

disease diagnosis and monitoring.

Sample preparation

Proper sample preparation that can extract targeted chiral biomarkers from complex 

biosamples with a high recovery rate is crucial for accurate chiral detection247. This often 

requires the use of sophisticated sample preparation procedures248. Moreover, the large 

compositional, chemical and physical differences among different types of biosamples, such 

as urine, blood, CSF and tissues, require the sample-specific procedures249. Finally, many 

laboratories develop their own sample preparation procedures independently. These factors 

contribute to the high cost, high time consumption and low reliability of chiral biomarker 

detection. Therefore, standardization and automation of the sample preparation procedures 

will facilitate the advancement the field250. Automation is dependent on progress in the 

fields of microfluidics, machine learning and robotics.

Data validation and reproducibility

Many of the spectroscopic analytical techniques for detecting chiral biomarkers in clinical 

samples are still in the early stages of development. In all techniques, there is a lack of 

standardized instruments and protocols for measurements and data analysis. Further, sample 

complexity and variability can lead to changeable and sometimes contradicting measurement 

results251. These problems need be addressed to advance the detection of chiral biomarkers 

into clinical practices252.

Cost-effective and rapid detection

Because the concentrations of chiral biomarkers are strongly related to the identification 

and progression of many diseases, it is essential to routinely detect the variation of chiral 

biomarkers during diagnosis, prognosis and treatment monitoring253. Devices that can 

Liu et al. Page 19

Nat Rev Chem. Author manuscript; available in PMC 2023 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operate at the point of care will be especially beneficial to patients with chronic diseases, 

including some cancers and diabetes, by reducing the cost and increasing accessibility254. 

Rapid detection (that is, with results produced within 1 h of sample collection) is desirable 

for physicians to identify diseases, identify the potential for relapse and determine treatment 

strategies at the earliest time to improve patient outcomes255. However, the most widely 

adopted techniques, such as chiral chromatography coupled with a mass spectrometer, are 

expensive and can be time-consuming (that is, hours to days) unless multiplexed. Moreover, 

they are often limited to use by experienced technicians or scientists in centralized 

laboratories. We expect that tremendous development in the field of point-of-care devices 

will lead to cost-effective and rapid detection of chiral biomarkers in the future256.

Multiplexed detection of chiral biomarkers

Multiplexed detection (that is, simultaneous characterization and quantification of multiple 

biomarkers) is becoming increasingly important owing to the growing demand for 

untargeted profiling257. Simultaneous measurement of several chiral biomarkers is also 

desirable in clinical practices to increase disease specificity when the detection of a single 

biomarker is insufficiently sensitive. It is also desired for ruling out factors that could drive 

changes of a specific biomarker258. Currently, most chiroptical techniques have not achieved 

multiplexed detection. However, chromatography and CE can be used to analyse multiple 

chiral small molecules in a single sample analysis259. A challenge in simultaneously 

quantifying various amino acids and organic acids arises from the large amount of complex 

data generated by different chiral molecules within the low m/z area where there is also 

strong background noise260. To address the challenge for multiplexed detection, novel 

approaches and sensor designs are needed261. Machine learning has proved promising in 

complex data analysis. Its implementation in chiral detection will increase the detection 

accuracy and accelerate the identification of multiplexing chiral biomarker detection262.

Sensitivity improvement

Many of the techniques for the detection of small chiral molecules have limited sensitivity, 

which is typically at a micromolar or milli-molar concentration (Table 2). The limited 

sensitivity prevents their clinical application, for which it is necessary to detect much 

lower concentrations of targeted chiral biomarkers to distinguish between patient groups 

and control groups263. The development of analytical techniques with improved sensitivity 

even up to the single-molecule concentration will broaden the biomedical applications of 

small-molecule chiral biomarkers in both scientific research and clinical settings264.

Conclusions

‘Abnormal’ chirality and trace concentrations of enantiomeric small molecules are emerging 

as potential biomarkers for various diseases. For example, strong correlations have 

been observed between chiral biomarkers and life-threating and/or chronic diseases, 

including brain diseases, cancers, kidney disease and diabetes, as well as for osteoporosis, 

inflammatory bowel disease, atherosclerosis and hypertension265,266. However, the 

pathophysiological mechanism of many of these chiral molecules is still unclear. 
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Nevertheless, these studies have provided a valuable framework for the future study of new 

chiral biomarkers in other diseases.

Despite considerable efforts in developing techniques for detecting chiral molecules, 

some are still at proof-of-concept stages. Improving the sensitivity, increasing the sample 

throughput and lowering the cost per analysis of these techniques are necessary for 

both clinical and commercial viability. These improvements will enable the discovery, 

verification and pathological understanding of new chiral biomarkers, as well as the 

clinical diagnosis and prognosis of diseases, monitoring of adverse drug effects, companion 

diagnosis for personalized (precision) medicine and acceleration of treatment decisions.
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Glossary

Chiral The geometric property of a molecule that precludes it 

from being superimposable on its mirror image

Chiral selectors Chiral components in the chiral separation system that 

interact enantioselectively with the target chiral molecule

Chiroptical The optical properties related to the interaction of chirality

Enantiomeric excess The excess of one enantiomer over the other in a mixture of 

enantiomers

Enantiomers A pair of compounds that are not superposable onto their 

own mirror image

Metabolites Substances produced after metabolism (food, drugs or 

chemical digestion)

Metabolomics A systematic study of chemical processes involving 

metabolites, the small-molecule substrates, intermediates 

and products of cell metabolism

Metamaterials Materials engineered to have a property that is not found in 

the equivalent naturally occurring materials

Metasurfaces 2D thin film materials that can modulate the propagation of 

electromagnetic waves

Multiplexed A way of measuring the concentration of multiple 

biomarkers
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Recovery rates The percentages of molecular concentration that can be 

recovered from the total concentration after physical or 

chemical processes
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Fig. 1 |. Influential factors for ‘abnormal’ chirality, common chiral biomarkers and associated 
diseases.
Internal and external factors can induce abnormal concentrations of chiral biomarkers in the 

human body, which are associated with various diseases.
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Fig. 2 |. Sample preparation before chiral detection.
Filtration and extraction of chiral small molecules from biofluids and tissues.
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Fig. 3 |. Chiral detection of small molecules via chromatography and capillary electrophoresis 
coupled to mass spectrometry.
After sample preparation, small molecules can be enantiomerically separated using a chiral 

selector, such as a chiral derivatization reagent (CDR), a chiral mobile phase or a chiral 

stationary phase during chromatography. The small molecules can also be enantioselectively 

separated using chiral capillary electrophoresis. The enantiomers, which have different 

retention times, are separated and resolved by mass spectrometry.
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Fig. 4 |. Chiral detection of small molecules with NMR spectroscopy and an enzymatic assay.
a, After sample preparation, small molecules, with the addition of chiral derivatization 

reagents (CDRs), can be enantiomerically resolved using nuclear magnetic resonance 

(NMR) spectroscopy. The intensity between D and L peaks on the NMR spectrum reflects 

the enantiomeric excess. b, After sample preparation, enzymatic probes with enantiomeric 

selectivity are added to samples to form conjugated molecules. Fluorescent imaging of a 

colorimetric assay is used to determine the concentration of the targeted enantiomers. H0, 

magnetic field.

Liu et al. Page 39

Nat Rev Chem. Author manuscript; available in PMC 2023 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. Chiral detection using chiroptical spectroscopy.
Several chiroptical methods and surface-enhanced strategies can be used to detect the 

chirality and stereochemical purity of small molecules. λ, wavelength; CD, circular 

dichroism; f, frequency; ROA, Raman optical activity; VCD, vibrational circular dichroism.
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