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Abstract

Carbon–heteroatom bonds, most often amide and ester bonds, are the standard method to link 

together two complex fragments because carboxylic acids, amines, and alcohols are ubiquitous 

and the reactions are reliable. However, C–N and C–O linkages are often a metabolic liability 

because they are prone to hydrolysis. While C(sp2)–C(sp3) linkages are preferable in many cases, 

methods to make them require different starting materials or are less functional-group compatible. 

We show here a new, decarbonylative reaction that forms C(sp2)–C(sp3) bonds from the reaction 

of activated carboxylic acids (via 2-pyridyl esters) with activated alkyl groups derived from 

amines (via N-alkyl pyridinium salts) and alcohols (via alkyl halides). Key to this process is a 

remarkably fast, reversible oxidative addition/decarbonylation sequence enabled by pyridone and 

bipyridine ligands that, under reaction conditions that purge CO(g), lead to a selective reaction. 

The conditions are mild enough to allow coupling of more complex fragments, such as those used 

in drug development, and this is demonstrated in the coupling of a typical Proteolysis Targeting 

Chimera (PROTAC) anchor with common linkers via C–C linkages.
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Chemical biology and drug discovery rely upon a small suite of reactions capable of joining 

together two functionalized molecules. Of the strategies available, carbon–heteroatom bond 

formation, especially amide bond formation, is by far the most common (Scheme 1A).1 

Reactions to form amides (and esters) are favored because of the ubiquity of carboxylic 

acids, alcohols, and amines in bioactive molecules and the tolerance of these reactions 

for complex functionality.2–345 However, the instability of esters and amides to hydrolysis 

and metabolism can be limiting, as can the propensity of the amide to unpredictably alter 

binding properties (Scheme 1B). In a systematic survey of linkages used in PROTACs, it was 

found that C–N, C–O, and C(sp2)–C(sp) bonds had stability issues.6 These challenges have 

motivated the exploration of C(sp2)–C(sp3) linkages in PROTACs, despite extra steps often 

needed in the synthesis of these structures.7

A method to access C(sp2)–C(sp3) bonds directly from starting materials used for amide 

bond formation is highly desirable, but suitable reactions have not yet been reported. 

Coupling aryl carboxylic acids and their derivatives with aryl halides8 or aryl boron 

reagents9 can be high yielding and general, but translation to C(sp2)–C(sp3) bond formation 

has been challenging. Couplings with alkylzinc,10 organosilicon,11 and alkyl organoboron 

reagents9d,12 have been reported, but these reagents have limited stability, low commercial 

availability, and their syntheses have limited functional group compatibility. The need for 

better approaches has partially driven exploration of methods to convert aryl carboxylic 

acids to aryl halides13 or arylboron reagents.14

A potential solution is the coupling of a carboxylic acid ester with an amine-derived 

(via N-alkyl pyridinium salts15) or alcohol-derived (via alkyl halide) alkyl radical source 

under nickel-catalyzed conditions (Scheme 1C).16 Cross-electrophile coupling reactions 

of aryl halides with various alkyl radicals to form C(sp2)–C(sp3) bonds have the broad 

generality needed,17 but the use of aryl carboxylic acid esters under these conditions has 

been demonstrated to make ketone products, not alkylated arenes (Scheme 2A).18 The 

mechanistic challenge to be solved is how to convert an aroyl electrophile to an aryl 

electrophile; if this could be overcome, coupling to a wide array of alkyl electrophiles should 

be possible (Scheme 2).19–2021
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We conducted mechanistic studies on the feasibility of key steps in the proposed catalytic 

cycle to better understand how to favor cross-product formation over ketone formation 

(Scheme 2). While decarbonylation of aroylnickel(II) intermediates is a known side 

reaction in ketone synthesis, avoiding ketone formation entirely can be challenging, because 

oxidative addition and radical addition are usually faster than decarbonylation (Scheme 

2A).14f,18 First, we studied the rate of decarbonylation by reacting equimolar amounts of 

(dtbbpy)Ni0(COD) (1) and 4-trifluoromethylbenzoic acid 2-pyridyl ester (2) in THF at rt 

(Scheme 2B). Within 15 min, we obtained a 56% isolated yield of (dtbbpy)Ni(Ar)(OPy) 

(3), formed as the major product, along with (dtbbpy)Ni(CO)2 (4) (33% NMR yield). The 

identity of the decarbonylated species (3) was confirmed by single-crystal X-ray diffraction, 

revealing the pyridone ligand to be N-bound. The bond angles and lengths were otherwise 

not remarkable.22 In contrast, the reaction of 4-methylbenzoyl bromide with 1 resulted in 

an 89% NMR yield of the corresponding acylnickel(II) species (similar to 5, Br instead of 

2-pyridone).14f,23,24

Second, we tested the reversibility of the oxidative addition and decarbonylation steps, 

by exposing 3 (100 mM, 1.0 equiv) to 13C-labelled CO(g) (20 mM, 0.2 equiv) and 

monitoring the reaction by NMR (Scheme 2C). We observed formation of a new 13C-

labelled acylnickel(II) complex (5). Upon exposure to additional 13CO(g), 5 was further 

transformed into nickel(0) complex 4 (6% NMR yield with 0.2 equiv CO, 15% NMR yield 

with 1.0 equiv CO, along with 51% of Ni(13CO)4,25,26 see SI for details) and 13C-labelled 

2 (7% NMR yield with 0.2 equiv CO, 24% NMR yield with 1.0 equiv CO, see SI for 

details). This demonstrates that the decarbonylation and oxidative addition steps are fast 

and reversible at rt.27 This finding implies that 1) CO must be efficiently removed from 

the system to avoid ketone formation and 2) nickel(0) binds CO with high affinity.28 We 

surmised that heating the reaction and maximizing reaction headspace may be required to 

liberate bound CO from the nickel catalyst and to dilute the concentration of CO in the 

reaction flask, respectively.29

Third, to study the reactivity of the new pyridone-ligated arylnickel(II) species in cross-

electrophile coupling, we combined 3 with protected alkyl iodide 6 (1 equiv) under reducing 

conditions at rt, 60 °C, and 110 °C (Scheme 2D). We observed good yields of cross-product 

at all three temperatures, with a 93% yield in 20 min at 110 °C.

These results show that the pyridone ligand accelerates decarbonylation of an acylnickel(II) 

complex compared to a bromide, and the pyridone ligand may stabilize the resultant 

arylnickel complex.30 These findings are in agreement with previous reports, where more 

basic ligands, such as fluoride and imide anions, are less likelyto generate a cationic nickel 

complex, instead favoring CO release from a putative nickel(II) complex.14f,24c

Optimization of the nickel-catalyzed coupling of 2-pyridyl 1-naphthoate (12) with N-(3-

phenylpropyl) 2,4,6-triphenylpyridinium tetrafluoroborate (13) illustrated three key points 

(Table 1). First, 2-pyridyl esters provided the highest yield of cross-product and were better 

at avoiding ketone than acid fluorides9 and more reactive than phenyl esters10,12 (entries 

1–3). 2-pyridyl esters are also more stable and more functional-group compatible than 

acid fluorides.31 Second, ligand identity had a profound effect on the reaction outcome: 
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bipyridines provided primarily the decarbonylation product and terpyridines provided 

primarily ketone (entries 1, 4–5, For additional ligand data, see Supporting Information 

Figure S3). Third, lower temperatures resulted in larger amounts of ketone side-product 

(entry 6) unless an N2 sweep was used (entry 7).32 The yield was improved by using 

1.5 equiv of the alkyl pyridinium salt (entry 9). Besides ketone, the majority of the aryl 

mass-balance was Ar–H.

The substrate scope of the resulting reaction is broad (Scheme 3). Electron-rich (16, 20, 

28-30, 32), electron-poor (15, 17, 19, 21-26), and sterically hindered (16, 20, 27) aryl and 

heteroaryl carboxylic acid esters worked similarly well. The coupling of aryl carboxylic acid 

pyridyl esters with electrophiles derived from amines (N-alkyl pyridinium salts) and from 

alcohols (alkyl bromides and iodides) work comparably for primary alkyl groups, but alkyl 

iodides give the best results with secondary alkyl groups (25, 29–30, 32). Functional-group 

compatibility is high, despite the higher temperature, and esters, acetals, nitriles, tertiary 

amines, -Cbz, -Boc, and -BPin groups were all tolerated. A few functional groups were not 

tolerated, such as isoxazole and a terminal epoxide, due to ring opening (see Figure S9). 

Very hindered carboxylic acids, such as 2,4,6-trimethylbenzoic acid, provided only ketone 

product. The abundance of amines, carboxylic acids, and alcohols allowed for easy access 

to products derived from complex starting materials, such as advanced pieces of mosapride 

(17), an atorvastatin side chain (21), and substrates derived from glucose (30), uridine 

(31), hydroxyproline (29, 32), telmisartan (27) and febuxostat (28–30). Major side products 

observed in cases with lower yields were aryl dimer and ketone. For these preparative 

scale reactions (0.5 mmol), we found that sweeping the headspace with N2(g) and using a 

condenser to avoid solvent loss reduced the amount of ketone formed.32

PROTACs are a rapidly growing area of interest in biomedical research and drug 

development with at least 15 PROTACs entering clinical trials recently.33,34 These 

heterobifunctional molecules are comprised of an E3 ligase anchor that recruits the human 

proteosome, a warhead that targets a protein of interest, and a linker of appropriate 

conformational flexibility that joins these two components together (Scheme 3B, left). Due 

to ease of synthesis, the linker junction points are most commonly carbon–heteroatom 

bonds,6a which can present issues with hydrolytic and enzymatic stability, such as in amide 

bonds.6b The introduction of C(sp2)–C(sp3) bond linkages in PROTACs has been shown to 

improve their stability and protein degradation ability35 but is less explored due to limited 

synthetic approaches to access this motif.34 We sought to evaluate the compatibility of this 

new decarbonylative carbon–carbon bond forming reaction with typical PROTAC fragments 

(Scheme 3B).

The most common anchor in PROTACs is immunomodulatory imide drugs (iMiDs) that 

recruit the cereblon (CRBN) E3 ligase, of which thalidomide is the most representative 

example.36 Notably, approximately 1% of published CRBN anchors contain a C(sp2)–C(sp3) 

bound linker,37 which are generally prepared through Songashira coupling, followed by 

reduction of the alkyne.34 In a more direct approach, Novartis applied cross-electrophile 

coupling to lenalidomide-derived aryl bromides with alkyl tosylates,7 but the analogous 

thalidomide scaffolds were not assessed.
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We prepared the 4- and 5- carboxylic acid substituted thalidomide6a,38 2-pyridyl esters and 

coupled them to common linkers to form carbon–carbon linked PROTAC anchor fragments 

(Scheme 3C). We recognized the acidic imide N–H could present issues with formation 

of Ar–H from protonation of the intermediate arylnickel(II). Under modified reaction 

conditions, thalidomide carboxylic acid derivatives were coupled to linker fragments bearing 

a protected amine (33, 37), carboxylic acid (34, 38), alcohol (35, 39), and piperidinyl (36, 

40) functionality, which provide a handle to further link a variety of relevant warheads. 

These results enable a complementary, single-step approach in PROTAC development to 

access more stable analogues of common amine/amide-based linkages. This decarbonylative 

strategy is rapid and could be applied to library synthesis of PROTACs.39 We anticipate that 

this new chemistry will expand the types of synthetically accessible linkages in PROTAC 

development, potentially leading to greater clinical success.

In conclusion, we have reported how controlling a remarkably facile decarbonylation step 

has enabled the development of a reaction that might otherwise seem impossible: the 

coupling of activated carboxylic acids with activated amines that “edits out” the amide 

bond. We anticipate further advancements in activation strategies, catalysts, and coupling 

partners will allow a wide variety of new reactions to be developed based upon this work. 

As this system represents a facile method to produce an arylnickel(II) intermediate from an 

uncommon aryl source, we anticipate that reactions that couple 2-pyridyl aryl carboxylic 

acid esters with additional radical coupling partners (e.g., redox active esters, sulfones), 

alkyl organometallic reagents, and alkenes are now all possible. Further work in this area is 

ongoing in our group and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
A New Approach to the Utilization of Carboxylic Acid and Amine Substrate Pools in 

Synthesis.
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Scheme 2. 
Mechanistic Proposal for Decarbonylative Coupling of 2-Pyridyl Aryl Carboxylic Acid 

Esters with Alkyl Radical Donors.a

aFor experimental details, see Supporting Information page S19.

Wang et al. Page 12

J Am Chem Soc. Author manuscript; available in PMC 2024 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Substrate Scope for the Cross-Coupling of 2-Pyridyl Aryl Carboxylic Acid Esters with 

Alkyl Radical Donors.
aReaction conditions: X = Br, I: Ar-CO2Py (0.5 mmol), Alk-X (0.5 mmol), NiI2 (50 μmol), 

bpy (50 μmol), DMAP (50 μmol), Mn (1 mmol), TMSCl (62.5 μmol), 1:1 THF/DMA (3.0 

mL), 110 °C, 1 h. X = [N+]: Alk-[N+] (0.6 mmol, 1.2 equiv) was used in place of alkyl-

Br/I; DMAP and TMSCl were omitted. bReaction conditions: thalidomide-CO2Py (125 

μmol), Alk-I or Alk-[N+] (1.5 equiv), NiI2 (25 μmol), L2 (25 μmol), Mn (0.25 mmol), 1:1 

DMA/THF (1.0 mL), 110 °C, 2 h. Yields are isolated unless otherwise noted. cNMR yield 
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with CH2Br2 internal standard. Samples of analytically pure cross-product were obtained by 

reverse phase preparative HPLC.
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Table 1.

Optimization of the Catalytic Reaction.
a

Entry
b Change in conditions from scheme G 14 (%)

c
14’(%)

c

1 None OPy 65 <2

2 Different G on 12 F 56 4

3
d Different G on 12 OPh 0 0

4 L2 instead of L1 OPy 66 <2

5 L3 instead of L1 OPy <2 47

6 90 °C instead of 110 °C OPy 56 11

7
e 80 °C, N2 sweep OPy 50 4

8
f Zn instead of Mn OPy 11 4

9 1.5 equiv of 13 OPy 79 <2

a
For further optimization and side products, see supporting information figures S3–6.

b
Aryl ester (0.125 mmol), N-alkyl pyridinium salt (0.125 mmol), Mn (0.25 mmol), NiI2 (0.0125 mmol), and ligand (0.0125 mmol) were stirred in 

THF/DMA (1:1, 1 mL) at 110 °C for 1 h.

c
GC yield using 1,3,5 trimethoxybenzene as internal standard.

d
Quantitative recovery of aryl ester starting material after reaction.

e
Reaction on 0.5 mmol scale.32

f
Unreacted CO2Py observed as majority of mass balance.
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