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Abstract
Acetylcholine (ACh) is one of the most crucial neurotransmitters of the choliner-
gic system found in vertebrates and invertebrates and is responsible for many pro-
cesses in living organisms. Disturbances in ACh transmission are closely related 
to dementia in Alzheimer’s and Parkinson’s disease. ACh in biological samples is 
most often determined using chromatographic techniques, radioenzymatic assays, 
enzyme-linked immunosorbent assay (ELISA), or potentiometric methods. An alter-
native way to detect and determine acetylcholine is applying spectroscopic tech-
niques, due to low limits of detection and quantification, which is not possible with 
the methods mentioned above. In this review article, we described a detailed over-
view of different spectroscopic methods used to determine ACh with a collection of 
validation parameters as a perspective tool for routine analysis, especially in basic 
research on animal models on central nervous system. In addition, there is a discus-
sion of examples of other biological materials from clinical and preclinical studies 
to give the whole spectrum of spectroscopic methods application. Descriptions of 
the developed chemical sensors, as well as the use of flow technology, were also 
presented. It is worth emphasizing the inclusion in the article of multi-component 
analysis referring to other neurotransmitters, as well as the description of the tested 
biological samples and extraction procedures. The motivation to use spectroscopic 
techniques to conduct this type of analysis and future perspectives in this field are 
briefly discussed.
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1 Introduction

Neurotransmitters are chemical messengers responsible for carrying a multitude of 
signals between neurons (nerve cells) through synapses and from neurons to effector 
cells—muscle or glandular cells. Their action is manifested in perception, feeling, 
thinking, motor control, and cognition. Neurotransmitters are typically produced 
within nerve cells and may be released from them as a result of depolarization of the 
cell membrane and calcium-dependent exocytosis. Their role consists of transmit-
ting that signal from one cell (called presynaptic) to another (called postsynaptic). 
The most common neurotransmitters are glutamate, γ-aminobutyric acid, acetylcho-
line, noradrenaline, dopamine, and serotonin [1–6].

One of the most crucial neurotransmitters found in vertebrates and invertebrates 
is acetylcholine (ACh), which constitutes the main transmitter of the cholinergic sys-
tem (ChS) [7]. ACh was described at the beginning of the twentieth century by its 
discoverer Henry Hallett Dale. In 1921, Otto Loewi (an Austrian pharmacologist) 
named it and pointed out the existence of chemical conductivity [8–11]. The syn-
thesis of ACh takes place in nerve terminals and is based on the reaction between 
acetyl coenzyme A (CoA) and choline (Ch), catalyzed by the enzyme choline acetyl-
transferase (ChAT). As a result of the ChAT activity, the acetyl group is transferred 
from the acetyl coenzyme and combined with Ch. This neurotransmitter is, there-
fore, an ester of acetic acid and Ch. After being released and evoking its action in 
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the synapse, ACh molecules are hydrolyzed by acetylcholinesterase (AChE) to ace-
tate and choline. Instead, the synthesized molecules that were not secreted from the 
presynaptic neuron into the synaptic cleft are stored in the granules. Furthermore, 
the presence of ChAT in neurons suggests that those cells use ACh as one of their 
transmitters [7, 11, 12].

The two major cholinergic projections in the brain can be distinguished: mag-
nocellular basal forebrain ChS and brainstem ChS. The former is composed of the 
medial septal nucleus, the nucleus basalis of Meynert, the vertical and horizontal 
limbs of the diagonal band of Broca, and the substantia innominata. The basal fore-
brain ChS widely projects to different brain regions: neocortex, entorhinal cortices, 
hippocampus, basolateral amygdala, and olfactory bulb. Instead, the brainstem ChS, 
including the pedunculopontine nucleus and the laterodorsal pontine tegmental 
nucleus, primarily sends projections to thalamic structures and to basal forebrain 
regions [13, 14].

The ChS consists of two receptor families: the nicotinic receptors (nAChRs), 
belonging to the group of ionotropic receptors, and the muscarinic receptors 
(mAChRs), belonging to the group of metabotropic receptors. Both classes of these 
membrane-bound receptors are located in the central nervous system (CNS) and in 

Fig. 1  Scheme presenting the combination of microdialysis to segmented flow electrospray ionization 
mass spectrometry (ESI–MS): a—droplet generation device before it was sealed with epoxy, b—droplet 
coalescence connection, and c—liquid connection at ESI probe. Reprinted with permission from Ref. 
[28]. Copyright (2012) American Chemical Society



 Topics in Current Chemistry (2023) 381:16

1 3

16 Page 4 of 34

the peripheral nervous system (PNS). The first type, nAChRs, are ion channels for 
 Na+ and  K+ ions, characterized by a fast signal transduction. Moreover, there are 
muscular (N1) and neural (N2) subtypes of nAChRs. Expression of nAChRs was 
mainly found in entorhinal, temporal, and primary motor cortices, hippocampus and 
thalamus, neuromuscular synapses, parasympathetic ganglia, and neuromuscular 
junctions, but also non-neuronal cells. The second receptor class, mAChRs, are G 

Fig. 2  Graphs on the number of published articles and the types of spectroscopic techniques used. a 
Number of published articles on the detection and determination of ACh from 1966 to December 2022 
based on the following databases: ScienceDirect, Scopus, Web of Science, Google Scholar, and PubMed. 
b A graph showing the number and type of spectroscopic techniques used, where: AFM atomic force 
microscopy, FIS Faradaic impedance spectroscopy, FS fluorescence spectroscopy, IETS inealestic elec-
tron tunneling spectroscopy, IM imaging, INS incoherent neutron scattering, IR infrared, MEPPS minia-
ture end-plate potentials, MRI magnetic resonance imaging, MRS magnetic resonance spectroscopy, MS 
mass spectrometry, NIR near infrared, NMR nuclear magnetic resonance, RT radiometric techniques, RS 
Raman spectroscopy, TRVM real-time video microscopy, SERS surface enhanced Raman spectroscopy, 
SP spectrophotometry, SRS stimulated Raman spectroscopy, VECM video-enhanced contrast microscopy, 
XRD X-ray diffraction
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protein-coupled receptors (so-called GPCRs), and their activation leads to the for-
mation of secondary messengers. Among five subtypes of mAChRs there are both 
excitatory (M1, M3, and M5) and inhibitory (M2 and M4). These receptors can be 
found in different tissues, mainly in the caudate nucleus and nucleus accumbens, the 
preganglionic and parasympathetic postganglionic neurons of the autonomic part of 
the PNS, smooth muscle, and endocrine glands. It is worth mentioning that within 
both ACh receptor families, several subclasses may be identified, both on the pre- as 
well as postsynaptic site [7, 11, 15–17].

ACh is a main effector in the autonomic nervous system [7]. In particular, in the 
autonomic nervous system ACh is a signaling molecule in the preganglionic sym-
pathetic and parasympathetic neurons, and parasympathetic postganglionic fibers. 
Moreover, in the adrenal medulla ACh is used as a neurotransmitter at all organs 
innervated parasympathetically [18]. It plays a role as a transmitter at the sympa-
thetically innervated piloerector muscle at the sweat glands and it forms terminals of 
neuromuscular synapses in the somatic system. Moreover, ACh may cause the con-
traction of muscle groups after binding to receptors located in PNS. Its action deter-
mines, among other things, secretion of saliva, milk, sweat ,or tears; ACh regulates 
heart contractions and blood pressure, is responsible for contracting intestinal mus-
cles that results in moving the intestinal contents, controls urine release, causes erec-
tion, contracts skeletal muscles and those controlling near vision, causes adrenaline 
and noradrenaline release from adrenal glands, and through noradrenaline release 
from postganglionic fibers, ACh activates the sympathetic system [7, 8, 11, 18–21].

Apart from the important role of ACh in the PNS, ACh exhibits its effects on the 
CNS by changing neuronal excitability, impacting cellular and synaptic physiology, 
altering the presynaptic release of other neurotransmitters, and coordinating the fir-
ing of neurons [9, 22]. ACh being released from cholinergic neurons, that project 
to various brain regions, maintain the excitation–inhibition balance among neuronal 
circuits [7, 11, 12, 23]. In the CNS, ACh is responsible for processes such as arousal, 
attention, memory (long-term and working memory, memory formation, consolida-
tion, and retrieval), and motivation. ACh is considered as a morphogen since it is 
found in the first moments of the ectodermal system development (neuronal plate) 
and is crucial for the differentiation of neural cells. Additionally, it provides com-
munication between different CNS areas and switches network dynamics, caus-
ing behavioral transitions (e.g., from sleep to wakefulness, distraction to attention, 
learning, and recall). Its range includes primarily such structures as the hippocam-
pus, which is mainly responsible for memory, and neurons of the tegmental nuclei 
and interbranch nuclei in the brain, which regulate vegetative activities, e.g., sleep. 
Moreover, the basal forebrain innervates the dense neocortex that coordinates higher 
levels of cognitive processes. Thus, the activity of the ChS is associated with both 
peripheral and central functions, being especially associated with the motor func-
tions of muscles, with learning and memory, as well as with the greater organization 
of human consciousness [7, 8, 11, 18–21].
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The importance of the ChS is supported by the fact that impairments in the cor-
tical cholinergic innervation are closely associated with dementia of Alzheimer’s 
and Parkinson’s disease [18, 24]. It was proven that cholinergic neurons undergoing 
age-related moderate changes result in cholinergic hypofunctions and, thus, produce 
memory deficits and dementia [13]. Interestingly, ACh deficiency is also manifested 
by impaired rapid eye movement (REM) sleep, or its complete elimination, which 
results in a deterioration of memory and concentration. Likewise, disorders of the 
ChS can lead to many negative gastric symptoms, since it is a key regulator of gas-
trointestinal motility and pancreatic secretion [25].

ACh is often detected and determined in biological samples, e.g., blood, serum, 
plasma, urine, or tissues after homogenization. An extremely interesting approach is 
microdialysis, despite it still not having great applicability, which is a result of the 
need to have advanced equipment. ACh in the biological samples of animals from 
CNS disease models is most often detected and determined in the cerebrospinal fluid 
(CSF) collected from various brain structures, most often by microdialysis. Micro-
dialysis in freely moving laboratory animals is an analytical technique that allows 
dynamic monitoring of the concentration of a number of substances in living tissue 

Fig. 3  a Diagram of the cLC-MS system. Reprinted from Journal of Neuroscience Methods, 159/1, 
Holly M. Shackman, Minshan Shou, Nicholas A. Cellar, Christopher J. Watson, Robert T. Kennedy, 
Microdialysis coupled on-line to capillary liquid chromatography with tandem mass spectrometry for 
monitoring acetylcholine in vivo, 86–92, Copyright (2007), with permission from Elsevier. b Compari-
son of mass chromatograms for ACh in standard solution prepared in CSF and basal levels from the stria-
tum of a ketamine anesthetized rat, where: A ACh standard at concentration 330 pM and B correspond-
ing to selected reaction monitoring (SRM) MS/MS spectra, c basal ACh, and D corresponding to SRM 
MS/MS spectra. Reprinted from Journal of Neuroscience Methods, 159/1, Holly M. Shackman, Minshan 
Shou, Nicholas A. Cellar, Christopher J. Watson, Robert T. Kennedy, Microdialysis coupled on-line to 
capillary liquid chromatography with tandem mass spectrometry for monitoring acetylcholine in  vivo, 
86–92, Copyright (2007), with permission from Elsevier
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(in vivo), including the release of neurotransmitters in the extracellular fluid, which 
is its great advantage. Firstly, a microdialysis probe, a small dialysis catheter with 
a semipermeable membrane, is inserted into the investigated brain region. Then, 
microdialysis samples obtained by perfusion with artificial extracellular fluid are 
collected [26, 27]. Figure 1 shows an example of a procedure that includes micro-
dialysis [28]. This technique has been used to determine ACh using spectroscopic 
techniques in many literature reports.

The fundamental limitation in the study of this type of biological samples is a 
very complex sample matrix, low concentrations of the substances to be detected 
and determined, and small sample volumes (of the order of a few microliters). For 
this reason, it is necessary to use appropriate methods that will allow obtaining 
reliable information on the occurrence and concentration of this neurotransmitter 
in biological samples. These types of brain dialysates samples are analyzed using 
radioenzymatic assays, enzyme-linked immunosorbent assay (ELISA), or potenti-
ometric methods, but also the following analytical techniques: high-performance 
liquid chromatography (HPLC) or gas chromatography (GC), with electrochemi-
cal (ED), fluorescence (FLD), or optical absorption detection in the ultraviolet 
(UV) range, as well as in combination with mass spectrometry (MS) [27].

Liquid chromatography in the HPLC-ED version is most often used for the 
determination of ACh [22, 29–40]. This method is based on the integration of 
several steps: (1) separation of ACh on a dedicated column (e.g., a micropores 
reversed-phase column) under ion evaporation, (2) on-line conversion (enzy-
matic) of ACh to hydrogen peroxide, and (3) electrochemical analyte detection 
on an electrode (e.g., a platinum electrode). This type of approach, with some 
modifications, such as the type of analytical column or the material from which 
the electrode is made, but still based on the principle presented above, is the most 
commonly used method for the determination of ACh in biological material [22, 
29–40]. In recent years, a method for the determination of ACh in dialysates has 
been presented along with various methodological approaches to the calculation 
of the analytical result [29]. In this work, the occurrence of interference effects 
associated with a very complex matrix of samples was demonstrated, and the 
accuracy of the obtained results was assessed, together with an indication of the 
size of systematic errors made using traditional methods.

Alternative methods to detect and determine ACh are facilitated by spectroscopic 
techniques. Most spectroscopic techniques are fast and accurate compared with wet 
chemical methods, like ELISA, making them convenient for routine analysis. With 
these techniques, simultaneous studies of several parameters with a single measure-
ment is possible, in comparison with tests using separation techniques with detection 
under one measurement conditions. Moreover, in some cases sample preparation 
for spectroscopic measurements is simple, fast, and cost effective. Unfortunately, 
in some cases it is necessary to use very advanced equipment and complicated 

Fig. 4  Exemplary figure presenting visualization of ACh distribution in CNS tissue sections by tandem 
imaging MS. a Mass spectrum received from ACh standard and on brain tissue, b images representing 
ACh and other ion distribution (three groups of mice treated with different animal fixation methods), and 
c image of ACh distribution in the hippocampus. The figure is from an open access article distributed 
under the terms of the Creative Commons CC BY license. Copyright © 2012. Springer, Nature

▸
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procedures for sample preparation using antibodies compared with separation tech-
niques. Most of the spectroscopic techniques can be considered as non-destructive, 
which makes it possible to take measurements using different methods on the same 
sample. Some techniques, such as surface-enhanced Raman spectroscopy (SERS), 
are characterized by very good limits of detection that allow for obtaining analyti-
cal signals even for single molecules. An up-and-coming technique is MS, which 
is characterized by high accuracy of mass determination, resolution up to several 
atomic mass units, and a wide range of applications. MS is an analytical technique 
classified as a spectroscopic method on the basis of the measurement of the ratio 
of mass to the electric charge of a given ion. In the case of ACh testing, MS spec-
trometry is most often coupled with chromatographic techniques [41]. In this aspect, 
the use of, for example, the HPLC technique with ED detection is a much cheaper 
solution, but it does not allow for such low detection limits as it does in SERS spec-
troscopy or MS. In addition, MS spectrometry can visualize the presence of ACh in 
different tissue areas, which is impossible with chromatographic methods. Each time 
when choosing the best research method, it is necessary to take into account what 
is the goal of conducted research and what kind of sample is to be analyzed. Due to 
the mentioned features of spectroscopic techniques, despite some limitations, their 
application is an extremely interesting prospective approach used to determine ACh.

This article presents a review of the available scientific literature on spectroscopic 
techniques used for the detection and determination of ACh, especially in animal mod-
els as an alternative to commonly used chromatographic techniques. Additionally, this 
article presents a discussion of examples of other biological materials (blood, plasma, 
serum, urine, and tissues) from animals, as well as clinical and preclinical studies to 
give the whole picture of the application of spectroscopic methods. The aim of the arti-
cle is to show the last achievements in this area in historical reference dating back to the 
1960s. In the literature review, the oldest articles were published in 1966, and the latest 
in December 2022. The following databases: ScienceDirect, Scopus, Web of Science, 
Google Scholar, and PubMed, were used to search for articles. In the mentioned period, 
107 articles were found showing the detection and determination of ACh using spec-
troscopic techniques (Fig. 2a). Until 2015, the number of articles in the 5-year period 
remained constant, with an average of eight articles published. Since 2006, an almost 
two-fold increase in publications has also been observed in the 5-year period, so it can 
be concluded that a similar trend will occur in the years 2021–2025. The most com-
mon spectroscopic techniques are presented in Fig. 2b. The most significant number 
of reports, amounting to 60, concerns the use of MS, most often as a detection tech-
nique after the use of chromatographic separation. The second largest group consisted 
of reports on the use of the nuclear magnetic resonance (NMR) technique. However, 
these studies were mostly related to structural analysis. Fluorescence spectroscopy (FS) 
is the third most numerous group, and it was used mainly in the development of sensors 
allowing the detection of ACh. Techniques such as infrared (IR), Raman spectroscopy 
(RS), and spectrophotometry (SP) were mentioned between three and five times in pub-
lished studies. Other techniques were used less frequently, appearing in the conducted 
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research no more than two times. In the coming years, the SERS technique may prove 
to be an excellent tool for the determination of ACh in biological samples, which is 
associated with high detection capabilities (even a single molecule) and the stability of 
the recorded signal. This technique, together with fluorescence, may prove to be perfect 
mainly for developed sensors, also with the use of microfluidic systems. This article 
also presents a discussion of sensors for ACh-based research on the use of spectro-
scopic techniques.

2  Spectroscopic Techniques for the Determination of Acetylcholine

Any new analytical method should be well described according to the crucial sam-
ple preparation steps, measurement parameters, and analytical parameters character-
izing its performance. A summary of selected basic parameters [e.g., linearity range, 
determination coefficient, analytical curve equation, limits of detection (LODs) 
and quantification (LOQs)] characterizing the performance of methods developed 
for ACh analysis with spectroscopic methods, reported in the available literature, is 
included in Table 1. It should be stressed that some research contains only shredded 
information of considered analytical performance. Thus, they are not included in the 
tabular form of the summary. However, the authors report chromatographic methods 
coupled with MS of nano- and picomole working ranges [42–47] and LODs at the 

Fig. 5  Scheme of sensor used for the detection of Ch and ACh using C-dots. Based on [117], where: 
ChOx choline oxidase and AChE acetylcholinesterase
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picomole level [44–49] and femtomole level [50]. A number of other applications 
of MS spectrometry can be found in the literature [51, 52]. Figures 3 and 4 show 
the examples of tests using MS spectrometry [53, 54]. The lowest reported LOD for 
ACh, obtained using SERS, is at attomolar level (precisely 1 aM = 1 ×  10–18 mol/L) 
[55].

Another spectroscopic method—NMR—was applied for studies concerning 
ACh. It is mostly used for the standard analysis of compound structural confor-
mation [56–60]. Communications of the NMR studies of hydrogen bonding of 
ACh [61], ACh in the form of halides [62, 63] or ACh in the presence of anes-
thetics [64] are also presented in the available literature. Moreover, the NMR 
spectroscopy was used to examine enzymatic hydrolysis of ACh [65], to assess 
ACh status in synaptic vesicles [66], to evaluate the purity of ACh extracts from 
oat seedings [44], to study the solvent effect on ACh [67], to study intramolecular 

Fig. 6  a Illustration showing the sensing probe to detect ACh. Reprinted from Analytical Biochemistry, 
465, Chang Liu, Youming Shen, Peng Yin, Lidong Li, Meiling Liu, Youyu Zhang, Haitao Li, Shouzhuo 
Yao, Sensitive detection of acetylcholine based on a novel boronate intramolecular charge transfer fluo-
rescence probe, 172–178, Copyright (2014), with permission from Elsevier. b Exemplary normalized FS 
spectra of the probe. Reprinted from Analytical Biochemistry, 465, Chang Liu, Youming Shen, Peng 
Yin, Lidong Li, Meiling Liu, Youyu Zhang, Haitao Li, Shouzhuo Yao, Sensitive detection of acetylcho-
line based on a novel boronate intramolecular charge transfer fluorescence probe, 172–178, Copyright 
(2014), with permission from Elsevier, where: ChOx choline oxidase and AChE acetylcholinesterase.
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dynamics of polycrystalline acetylcholine chloride [68], or to control some 
kinetic phenomena [69]. According to the researchers, successful determina-
tion of ACh can be performed with RS [55, 55, 70–72], IR [70, 71, 73–75], FS 
[76–79], and SP [80]. Application of several microscopic techniques such as 
electron tunneling spectroscopy [49], magnetic resonance spectroscopy (MRS) 
[81], magnetic resonance spectroscopy (MRI) [82], video-enhanced contrast 
microscopy (VECM) [83], atomic force microscopy (AFM) [84–86], miniature 
end-plate potentials (MEPPs) [87], radiochemical technique (RT), and real-time 
video-microscopy (TRVM) [88] for ACh determination and imaging is as well 
discussed in the literature.

3  Sensors Technologies and Flow Techniques

There is some research focusing on the sensor detection of ACh with spectroscopic 
techniques. The most popular detection technique, due to its native sensitivity, is FS. 
Sensors designed for this approach are based on the host–guest complexes of ACh 
and the hosting molecules [77, 103, 108]. Another approach is the application of 
particles whose fluorescence properties are sensitive to the products of ACh enzy-
matic reaction induced by AChE. For such studies, carbon-based probes like carbon-
dots (C-dots) [117] (see Fig. 5, [117]) or graphene oxide-nanoconjugates [78] are 
used, as well as gold nanoclusters (AuNCs) [120] and other nonspecific fluorescent 

Fig. 7  a Schematic illustration of formation process of a complex of magnetic nano-bead (M) with 
AChE. b The streptavidin-coated M was conjugated with biotinylated AChE. The complex has been 
magnetically immobilized in every ion image detection area. Based on [88]
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molecules [79, 116, 122]. Figure  6 shows the developed sensor together with an 
example of a normalized FS spectrum [116]. ACh sensing with the FS facilitates 
detection in ranges of µM to nM level. SERS is another spectroscopic technique 
applied for the discussed purpose. The authors report ACh detection levels of 10 fM 
[121] and 1 aM [55] when SERS is used. For the sensing of ACh, an ion image sen-
sor was also designed [128]. Biotinylated AChE and streptavidin-conjugated mag-
netic nano-bead were components of the ACh-sensitive layer, see Fig. 7 [128]. In 
2018, nanoparticle sensors serving as MRI contrast agents for ACh detection were 
also reported [129] (Fig. 8 shows the diagram of the sensor operation and exemplary 
results).

Flow analysis is characterized by several features supporting its widespread 
use. The following advantages should be mentioned: simple construction of the 
system, maintained constant measurement conditions, reduced consumption 
of samples and reagents, the possibility of connecting the system with another 
measuring instrument, computerization of the system, high repeatability of 
recorded signals, and obtaining many signals during single analysis. The use of 
flow techniques for the determination of ACh using spectroscopic techniques has 
not been popular so far. Only three articles in this area have been published [63, 
80, 121].

In 1991, Sakai et al. presented two reports on the spectrophotometric determi-
nation of ACh and Ch using the flow-injection technique [80, 93]. This method 
involved the use of a reaction with tetrabromophenolphthalein ethyl ester (TBPE 
H). It was based on the creation of ion association compounds with TBPE H and 
thermochromism of ion associates in the organic phase. In more detail, ACh and 
Ch, due to possessing a quaternary ammonium structure, are able to react with 
an association reagent and create a blue ion association complex. The method 
developed in this way allowed for the improvement of the selectivity. A sche-
matic diagram of the built two-line flow-injection system is presented in the 
Fig. 9.

The sample solution was injected into the buffered carrier solution (pH 11) 
and then mixed with an extractant (TBPE H solution in dichloroethane), used for 
ion-pair extraction. The organic phase was separated using a porous polytetra-
fluoroethylene (PTFE) membrane [phase separator (PS)]. This phase was then 
directed through a microfluidic chamber (temperature controlled at 45 °C), where 

Fig. 8  a Schematic illustration of the structure and mechanism of constructed nanosensor. a pH-MRNS. 
pH-sensitive contrast agents were conjugated to the DSPE-PEG [1, 2-distearoyl-sn-glycero-3-phosphoe-
thanolamine-Poly(ethylene glycol)] lipids and coated on the surface of the lipophilic core [ACh is not 
hydrolyzed to alter local pH without coimmobilized BuChE (butyrylcholinesterase)]. b ACh-MRNS. pH-
sensitive contrast agents and BuChE were covalently conjugated to the DSPE-PEG lipids and coated on 
the surface of the lipophilic core (the BuChE catalyzes the hydrolysis of ACh to Ch and acetic acid, 
resulting in a drop in local pH, which triggers a conformational switch of the contrast agent—one more 
water molecule coordinated to one Gd(III) chelate in acidic conditions, which leads to an increased con-
trast agent relaxation rate). Reprinted with permission from Ref. [129]. Copyright (2018) American 
Chemical Society. b ACh detection  in vivo. a—Experimental procedure—subcutaneous administration 
of drug and nanosensor delivery through the cannula and three MR scans at different times. b—Exem-
plary coronal brain slices presenting ACh detection at different times. Reprinted with permission from 
Ref. [129]. Copyright (2018) American Chemical Society

▸
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the absorbance was measured. The blue ion ACh/Ch association complexes did 
not change the absorbance value with temperature changes. On the other hand, 
the absorbance of red amine complexes disappears at a temperature kept at 45 °C. 
The developed method was characterized by acceptable validation parameters.

One of the newer solutions published in recent years is based on using a micro-
fluidic technique coupled with SERS spectroscopy to determine ACh [121]. In 
this work, a completely new type of effect was proposed—the quaternary-ammo-
nium-modulated surface-enhanced Raman spectroscopy (QAM-SERS) effect. 

Fig. 9  Diagram of the flow system used to determination of ACh, where: CS carrier solution (buffer at 
pH 11), OS extractant (TBPE H solution in dichloroethane), P pump (flow rate equal to 0.8 mL/min), S 
sample injection (140 µL), RC reaction coil (3 m × 0.5 mm ID), PS phase separator, FC flow cell (8 µL), 
C circulator, D detector, Rec recorder, NV needle valve, Waq aqueous waste, Wo organic waste (based on 
[80, 93])

Fig. 10  Schematic diagram presenting quaternary-ammonium-modulated surface-enhanced Raman spec-
troscopy (QAM-SERS) effect applied in a constructed microfluidic device. Reprinted with permission 
from Ref. [121]. Copyright (2020) American Chemical Society
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The QA compounds (like ACh) cause a concentration-dependent modulation of 
the SERS signal intensity of the Raman reporter (Fig. 10). In this effect, the ionic 
bonds between QA nitrogen atoms and nanoparticles (NPs), such as Ag or Au, 
are created.

In the first step, the SERS-active substrate is prepared by electrostatic self-
assembly of Ag NPs on the bottom of the microfluidics system. Chips were pre-
pared with PDMS (polydimethylsiloxane) material, while microfluidic channels 
with a width of 500 μm and height of 100 μm were made on the surface. Then, 
glass slides were attached to the surface of the chips. The mixture consisting of 
the ACh solution and the Raman reporter is placed on the SERS substrate with 
which it interacts. The analytical signal from the Raman reporter decreases in 

Fig. 11  a SERS spectra of methylene blue (MB), with and without ACh (the inset shows the SERS inten-
sity at the 1617  cm–1 peak), b SERS spectra of MB (10 μM) after addition to a different concentration of 
ACh, c SERS spectra of MB after addition of L-dopa, dopamine (DA), and glycine (Gly), d SERS inten-
sities at 1617  cm–1 peak in c, e. SERS spectra of MB when MB and ACh were added to the SERS-active 
substrate in different sequences. f–i Fluorescence and SERS spectra for testing the interaction between 
ACh and MB on the Ag NPs: f FS spectra of MB molecules remained in the water, g FS spectra of MB 
in ACh solution, h SERS determination of MB in the outflow, and i SERS intensity of ACh with and 
without the MB solution. The concentration of MB was 1 μM, and the concentrations of ACh, DA, Gly, 
and L-dopa were 1 mM (unless expressly noted). Reprinted with permission from Ref. [121]. Copyright 
(2020) American Chemical Society
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direct proportion to the increase in analyte concentrations. Based on this effect, 
an improvement in the LOD (10 fM) and high sensitivity was obtained, as well 
as an ultrawide dynamic range (10 orders of magnitude) was observed. Example 
SERS spectra and other results are shown in Fig. 11. The time-dependent secre-
tion of ACh from living PC12 cells was carried out to test the method in the 
context of in vitro ACh dynamic changes. In the future, the discovered effect may 
turn out to be a universal strategy for the determination of ACh in biological sam-
ples, or it may prove to be an inspiration to develop research in this direction, 
especially with the use of the microfluidic technique.

4  Single/Multi Component Analysis

Works published so far in the field of spectroscopic determination of ACh include 
both single analysis and multi component analysis. Spectroscopic techniques for single 
(ACh) determination and their analytical characteristics have already been presented in 
Table 1.

However, it should be noticed that a lot of the developed spectroscopic methods 
allow for the simultaneous determination of ACh and one or more different analytes. 
Table 2 summarizes the most important information about multi component analyses 
including spectroscopic approaches. It can be seen that the analyte most often deter-
mined together with ACh is its precursor: Ch. The most popular methods of simultane-
ous determination of ACh and Ch among spectroscopic techniques include MS coupled 
to chromatography techniques: GC [43, 46, 48, 90, 130–132], LC and HPLC [50, 91, 
96, 99, 126, 133, 134], as well as matrix-assisted laser desorption/ionization time of 

Fig. 12  Types of real samples analyzed for ACh determination applying spectroscopic techniques. Other 
samples include liver, lungs, corneal epithelium, cerebrospinal fluid, PC12 cells, cell lysate and plant 
parts. Figure based on Table 1 data
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flight (MALDI-TOF) MS [110]. Moreover, ACh and Ch are determined by applying FS 
[117, 120, 122], SP [94], or NMR [44]. GC–MS is a popular technique for determina-
tion of ACh and propionylcholine [135, 136], ACh, propionylcholine and butyrylcho-
line [137], and tellurium containing analogs of ACh and Ch [46]. Magnetic resonance 
spectroscopy MRS has been applied for ACh, phosphocholine, and betaine determina-
tion [81]. To carry out three and more component analyses, including the determina-
tion of ACh, Ch, and other analytes, such as betaine, dimethylglycine, butyrobetaine, 
20-hydroxyecdysone, aspartic acid, asparagine, glutamic acid, glutamine, pyroglu-
tamate, γ-aminobutyric acid, N-acetyl-l-aspartic acid, tryptophan, kynurenine, car-
nitine, and acetylcarnitine, chromatographic techniques coupled with MS are used. 
Most often it is GC–MS [45, 138] or LC–MS/MS [102, 124] techniques that are used, 
as well as UPLC–MS/MS [110], HILIC–MS/MS [104], UHPLC–MS [119], and 
UHPLC–ESI–MS/MS [127]. In addition to Ch, dopamine is an analyte often co-deter-
mined with ACh. In this field LC–MS [139], LC–MS/MS [100], LC–ESI–MS/MS 
[115], and SERS [55] are applied. It is worth noting that the determination of ACh and 
dopamine is also accompanied with serotonin, γ-aminobutyric acid, glutamate, adeno-
sine, and/or 5-hydroxytryptamine. Multi component analyses also include simultane-
ous determination of ACh and neostigmine or ACh and histamine and its metabolites. 
Spectroscopic methods used for this purpose is a tandem MS coupled to LC [97] or 
UPLC [113], respectively.

5  Tested Samples and Extraction Procedures

Based on the works presented in the literature, it can be seen that the spectroscopic 
determination of ACh is carried out in various types of biological samples of human 
and animal origin (Table  1). Figure  12 shows that ACh is usually determined in 
brain samples. A similar trend is observed in multi component analyses (Table 2). 
The second most frequently analyzed sample type for ACh concentration is blood. 
Moreover, the indicated neurotransmitter is determined in urine samples and in 
other types of samples (liver, lungs, corneal epithelium, cerebrospinal fluid, PC12 
cells, cell lysate, and plant parts).

Preparation of samples for ACh determination using spectroscopic methods very 
often requires extraction process [42–46, 69, 73, 80, 89–91, 93, 95, 96, 104, 106, 
110, 112, 119, 119, 125–127, 131, 132, 135–138, 140–143]. Among the extrac-
tion methods used, simple ion pair extraction [80, 131] and multistep liquid extrac-
tion [45, 46, 73, 95, 104, 106] should be mentioned. In the works discussed in this 
review article, sample preparation is often accompanied by a microdialysis concept. 
This process, based on separation of small and large molecules by diffusion through 
a selectively permeable membrane, was applied, for example, for nuclear magnetic 
resonance studies of the enzymatic hydrolysis of ACh in monkey brains [65], studies 
of drug effects on the release of endogenous ACh in vivo [92], quantitative analysis 
of ACh in rat brain [144], or simultaneous determination of ACh and Ch in mouse 
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brain CSF [109]. Samples that were analyzed as dialysates are indicated in Tables 1 
and 2. In several spectroscopic methods for the determination of ACh described in 
the literature, no special sample preparation is needed: sometimes only dilution with 
water [50, 116] or buffer [98] is required. Moreover, in some cases, slide-mounted 
sections of biological samples are analyzed directly after matrix spraying [123]. 
This approach was applied in imaging MS to visualize increased ACh in lungs of 
asthma model mice (Fig. 13).

6  Conclusions and Future Perspectives

The use of spectroscopic techniques to detect and determine ACh, especially in bio-
logical samples from animal models, turned out to be an alternative to commonly 
used chromatographic methods, particularly HPLC-ED, and other methods like 
ELISA, radiometric assays, or potentiometric methods. The most frequently used 
technique was MS, allowing reliable determination of results for ACh after prior 
chromatographic separation. This application was characterized by high sensitivity, 
low limits of detection and quantification, as well as a wide dynamic range. The 
main disadvantage when coupling the mass spectrometer with the chromatographic 
system is the need for the often complicated preparation of biological samples to 
remove the complex sample matrix. The second most commonly used technique was 
NMR, but it was primarily used for structural studies and to determine the connec-
tions of ACh with the appropriate receptors.

When FS was applied, it showed very good applicability, mainly in properly 
developed sensors and probes. In the case of using the SERS technique, very low 
detection limits at the aM level were demonstrated due to the ability to detect even 
single molecules. In this area, it is necessary to use SERS-active substrates to 
amplify the Raman analytical signal.

ACh is determined as a single analyte, together with Ch, or in the presence of 
other neurotransmitters in the case of multiplexed analysis using separation tech-
niques. The vast majority of investigations focus on studying dialysates, brain tis-
sues from laboratory animals, and samples of body fluids, such as blood, serum, 

Fig. 13  a Schematic illustration of the mouse lung anatomy and imaging MS. a—Mouse lung anatomy. 
b—Imaging MS (IMS), which allows visualization of the distribution and abundance of a target mol-
ecule in biological tissue. The figure is from an open access article distributed under the terms of the 
Creative Commons CC BY license. Copyright © 2020. Springer, Nature. b Signal of ACh and amount-
dependent signal intensity.  a—ACh chemical structure (the theoretical exact mass is 146.1181).  b—
Comparison of ACh signal peaks for the standard and lung tissue. c—The ACh abundance dilution of the 
standard on lung tissue in spots visualized by Fourier transform ion cyclotron resonance mass spectrom-
etry (FT-ICR-MS). The figure is from an open access article distributed under the terms of the Creative 
Commons CC BY license. Copyright © 2020. Springer, Nature

▸
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or urine. Until now, only a few reports focused on the use of flow techniques with 
constructed, dedicated devices and microfluidics systems.

The use of the discovered QAM-SERS effect may prove to be highly prospec-
tive. It can be the basis for the creation of new biosensors in combination with 
the microfluidic technique or lab-on-a-chip systems. The technique supporting the 
SERS effect seems to be FS, which gives additional valuable information from the 
analytical point of view. Therefore, both spectroscopic methods can be integrated 
into a single system. Development in multiplex analysis is also forecasted, enabling 
the determination of several other neurotransmitters, in addition to ACh, in a single 
analytical procedure. The use of additional modules in appropriate microfluidic sys-
tems, allowing for proper sample preparation with the possibility of their separation 
directly on the chip, through the placement or generation in the flow microcolumns, 
may prove effective in this area. Based on the scientific literature, it is also predicted 
to integrate such chips with mass spectrometry. In the case of obtaining complex 
analytical signals from various spectroscopic techniques, it may be helpful to adapt 
already existing chemometric methods and algorithms.

Studies presented in this review paper and future innovations will allow for fast 
and reliable determination of ACh and its monitoring in tissue or cell cultures. In 
this way, approaches based on spectroscopic techniques can be a better alternative 
to the currently used separation methods, such as liquid chromatography, which are 
perfect for basic research due to lower costs of analyses and the apparatus itself.
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